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Abstract Today, in different countries, there exist

sites with contaminated groundwater formed as a result

of inappropriate handling or disposal of hazardous

materials or wastes. Numerical modeling of such sites

is an important tool for a correct prediction of con-

tamination plume spreading and an assessment of

environmental risks associated with the site. Many

uncertainties are associated with a part of the param-

eters and the initial conditions of such environmental

numerical models. Statistical techniques are useful to

deal with these uncertainties. This paper describes the

methods of uncertainty propagation and global sensi-

tivity analysis that are applied to a numerical model of

radionuclide migration in a sandy aquifer in the area of

the RRC ‘‘Kurchatov Institute’’ radwaste disposal site

in Moscow, Russia. We consider 20 uncertain input

parameters of the model and 20 output variables

(contaminant concentration in the observation wells

predicted by the model for the end of 2010). Monte

Carlo simulations allow calculating uncertainty in the

output values and analyzing the linearity and the

monotony of the relations between input and output

variables. For the non monotonic relations, sensitivity

analyses are classically done with the Sobol sensitivity

indices. The originality of this study is the use of

modern surrogate models (called response surfaces),

the boosting regression trees, constructed for each

output variable, to calculate the Sobol indices by the

Monte Carlo method. It is thus shown that the most

influential parameters of the model are distribution

coefficients and infiltration rate in the zone of strong

pipe leaks on the site. Improvement of these parame-

ters would considerably reduce the model prediction

uncertainty.

Keywords Radionuclide migration � Groundwater

transport � Uncertainty � Sensitivity analysis �
Response surface � Computer codes

1 Introduction

Today, in different countries, there exist sites with

contaminated groundwater formed as a result of

inappropriate handling or disposal of hazardous

materials or wastes. Numerical modeling of such sites

is an important tool for a correct prediction of con-

tamination plume spreading and an assessment of

environmental risks associated with the site. It was

recognized that in such complex numerical models

many input variables are largely uncertain and that a

rigorous procedure is necessary to arrive at realistic

uncertainty distributions. Numerical transport models

also require some initial (contaminant concentrations,

aquifer level, etc.) and boundary conditions, which are

often unknown or have been only partially recognized.

To deal with all these uncertainties, statistical

techniques are useful. In many applications of numer-

ical models simulating physical phenomena, the same
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difficulties arise: computer codes are more and more

complex, often very cpu time expensive, taking as in-

puts some large number of parameters and giving as a

result many variables of interest. This kind of problems

is treated in the general context of the ‘‘statistical

analysis of computer experiments’’ (Sacks et al. 1989;

Kleijnen 1997; Saltelli et al. 2000; Helton and Davis

2003). The uncertainty analysis is used to evaluate the

confidence interval or the density probability distribu-

tions of the model responses. The global sensitivity

analysis is used to quantify the influence of the

uncertainties of input parameters on the uncertainties

of output variables. Recent studies have applied dif-

ferent methods of uncertainty and sensitivity analysis

to environmental models (Helton 1993; Campolongo

and Saltelli 1997; Maddalena et al. 2001; Tarantola

et al. 2002; Ma 2002; Iooss et al. 2006).

This paper describes the methods of uncertainty

propagation and global sensitivity analysis that are

applied to a numerical model of radionuclide migration

in a sandy aquifer in the area of the RRC ‘‘Kurchatov

Institute’’ (KI) radwaste disposal site in Moscow,

Russia. Combined numerical model of groundwater

flow and radionuclide transport on the site is consid-

ered. It is created in a hydrogeological program pack-

age called MARTHE (developed by the ‘‘Bureau de

Recherches Géologiques et Minières’’, France). This

package allows numerical modeling of flow and trans-

port in three-dimensional porous media. MARTHE is

adapted for dealing with various problems of subsur-

face hydrodynamics (water balance assessment,

hydrodynamic influence of pumping, drainage and

other types of interference, groundwater contaminant

spreading prediction, etc.).

In our case, the package was used to construct a

combined three-dimensional flow and transport model

of Sr-90 radionuclide spreading. Our scenario consid-

ers a period of 8 years, starting from an initial con-

tamination plume observed in groundwater in 2002 and

predicting its spreading for the end of 2010. Radionu-

clide contamination has spread into groundwater from

a series of temporary waste storages on the territory of

the RRC ‘‘KI’’ that is situated close to the city resi-

dential area. That is why it is important to make an

accurate prediction of the plume spreading in order to

assess the potential risk and to be able to guide the

future works on the site. Prediction made by the model

is associated with some uncertainty, coming from

uncertainty in initial conditions and input parameters

values. Uncertainty propagation and sensitivity analy-

sis for the constructed model will allow evaluating this

uncertainty and distinguishing parameters that con-

tribute mostly to prediction uncertainty. Improvement

of these parameters would considerably reduce the

model uncertainty.

The following section presents the four steps of the

general statistical methodology: uncertainty propaga-

tion, linear sensitivity analysis between input and out-

put variables, calculations of non linear sensitivity

measures (Sobol indices), construction of response

surfaces (surrogate or simplified models requiring

negligible computation times) to replace the computer

codes for the Monte Carlo simulations. In the third

section, we develop and explain the numerical model

of radionuclide migration from the RRC ‘‘KI’’ rad-

waste disposal site. A statistical analysis of this model

is detailed in Sect. 4. A discussion concludes the paper.

2 Global sensitivity analysis methodology

The sensitivity analysis aims to investigate how a given

computational model responds to variations in its in-

puts. Such knowledge is useful for determining the

degree of resemblance of a model and a real system,

distinguishing the factors that mostly influence the

output variability and those that are insignificant,

revealing interactions among input parameters and

correlations among output variables, etc. A detailed

description of sensitivity analysis methods can be

found in Saltelli et al. (2000).

In the global sensitivity analysis strategy, the

emphasis is put on apportioning the output uncertainty

to the uncertainty in the input factors, given by their

uncertainty ranges and probability distributions. Most

of the used methods are based on variance analysis.

Assume that the model under consideration is given

by Y = f(X), where X = (X1, ..., Xp) are independent

input random values, f is a deterministic function and Y

is a scalar model output. Model function f can repre-

sent a system of differential equations, a program code

or any other deterministic correspondence between X

and Y values that can be calculated for a finite period

of time.

Let X* be some initial set of model input data. In

many works partial derivative @f
@Xk

�
�
�
X¼X�

is referred to by

the term ‘‘sensitivity’’ of response Y* = f(X*) to the

input parameter Xk. Such an approach is often called

local sensitivity analysis.

Global sensitivity analysis (called ‘‘global’’ in

opposition to the local one) does not distinguish any

initial set of model input values but considers function f

in the entire domain of possible input parameter vari-

ations. Thus, the global sensitivity analysis is an

instrument to study a mathematical model as a whole

rather than its particular solution.
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Schematically the global sensitivity analysis algo-

rithm can be presented as follows (Kleijnen 1997, 2005;

Campolongo and Saltelli 1997; Iooss et al. 2006):

1. uncertainty propagation: statistical modeling of

input parameters, calculation and statistical anal-

ysis of a set of output values;

2. correlation analysis of obtained data: calculation of

sensitivity indices under linearity or monotony

assumptions;

3. nonlinear sensitivity analysis: construction (if nee-

ded) of response surfaces (simplified models

approximating the computer code) and calculation

of Sobol sensitivity indices based on complete

variance decomposition.

2.1 Uncertainty propagation

The uncertainty analysis of numerical model aims to

evaluate the output parameter Y uncertainty that cor-

responds to uncertainties in inputs Xi. Each input

parameter Xi is considered as a random value. Thus,

the first stage is the statistical modeling of input

parameters by choosing their probability distribution

functions. This choice can be based on an expert

judgment of parameter physical nature, on some gen-

eral information on possible value intervals, on statis-

tical analysis of measurements, etc. (Devictor and

Bolado Lavin 2006). An example of this uncertainty

modeling phase for environmental models can be

found in Helton (1993).

Having a large number of experimental or obser-

vation data, one can conduct statistical analysis in

order to adjust a probability distribution law. The

choice of the distribution in this case can be based both

on visual data analysis and on classical statistical

tests (Chi-square, Kolmogorov–Smirnov, Anderson-

Darling, etc.). When the amount of available data is

not sufficient for a distribution function construction,

expert judgment is used to obtain some modeling

hypothesis based on preliminary information about the

parameter, its physical properties, etc. In case when

preliminary information is insufficient or unsuitable for

choosing a probability distribution law, the uniform

distribution function can be chosen, with a sufficiently

large interval of possible variation. Note that the pro-

cedure of probability distribution choice is often

strongly subjective.

On the next stage of uncertainty analysis, a large

number of model input value variants is generated

using the previously chosen distribution functions. The

most frequent is the simple Monte Carlo method, while

other efficient techniques can be also used, as Latin

Hypercube Sampling (McKay et al. 1979; Helton et al.

2003). Monte Carlo and Latin Hypercube Sampling are

becoming the most popular and accepted methods for

performing probabilistic analyses on complex models.

For each variant of input values, the model code is

executed. All calculated data are then gathered into

one output sample for which elementary statistics are

calculated. Analytical form of probability density

functions can be adjusted using classical statistical

tests. At this stage, an important issue to consider is

the sample size adequacy. No general rules are known

to determine how many samples are necessary to

provide sufficient accuracy on mean, standard devia-

tion, or empirical distributions of output variables. In

practice, we can use some bootstrap techniques to

determine confidence intervals on statistical estimates.

Another interesting way to study the sample size

influence is to resample the output values and look at

the convergence of the different statistical estimates in

function of the sample size (Devictor and Bolado

Lavin 2006).

On this stage, correlation coefficients of different

pairs of output parameters can be calculated. If cor-

relation coefficient between two output parameters is

close to ±1, this means that these two outputs are

quasi-proportional. Therefore, they are influenced by

the input parameters in an identical manner. Conse-

quently, one of these outputs can be excluded from the

analysis and calculation costs can be thus reduced.

2.2 Correlation analysis

Recall that the Pearson correlation coefficient between

samples X and Y of size N that is the simplest sensi-

tivity index, is defined as:

qX;Y ¼
PN

i¼1 ðXi � �XÞðYi � �YÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1 ðXi � �XÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
i¼1 ðYi � �YÞ2

q ; ð1Þ

where Xi and Yi are separate values of samples X and

Y and �X and �Y are their mean values. If qX,Y is close to

+1 or –1, the relation between X and Y is close to

linear.

If this is the case for all inputs Xi (i = 1,..., p), the

model is close to a linear relation that can be found

using a linear regression:

Y ¼ b0 þ
Xp

i¼1

biXi; ð2Þ

where bi (i = 1, ..., p) are the regression coefficients. In

this case, the degree of Xi variance contribution into
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the model variance is expressed by the standardized

regression coefficient (SRC):

SRCi ¼ bi

rðXiÞ
rðYÞ ; ð3Þ

where r(Xi) and r(Y) are the standard deviations of

the samples. Thus, the index SRC preserves the

information of positivity or negativity of relation.

Connection between standardized regression

coefficient and correlation coefficient is expressed as

follows:

qXi;Y ¼
covðXi;YÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2ðXiÞr2ðYÞ
p ¼ bir

2ðXiÞ
rðXiÞrðYÞ

¼ bi

rðXiÞ
rðYÞ ; ð4Þ

thus, qXi;Y ¼ SRCi:

However, quantifying sensitivity of output Y to in-

put Xi, SRC index does not take into account the fact

that correlation between Xi and Y can be a conse-

quence of a third parameter influence. In order to

evaluate correlation of Y to Xi without influence of any

other parameters, the partial correlation coefficient

(PCC) is used (Saltelli et al. 2000).

All these sensitivity indices are valid under the

hypothesis of linear relation between the output Y and

all the inputs Xi. In order to measure the degree of

linearity of the relation between Y and Xi (i = 1, ..., p),

the determination coefficient R2 is calculated:

R2 ¼ 1�
PN

i¼1 ðYi � ~YiÞ2
PN

i¼1 ð�Y � YiÞ2
; ð5Þ

where Y is the mean of Yi and ~Y is the value of the

linear model that is found by linear regression.

The more R2 is close to 1, the more the relation

between Y and Xi is close to a linear relation. In this

case, coefficient SRCi presents a sensitivity index of the

input Xi. Basing on these indices values, the input

parameters can be classified by the degree of their

contribution into the output variance. Otherwise (if R2

is not close to 1), SRCi gives inadequate evaluation of

relative input importance.

If the model is not linear, its monotony can be ver-

ified using a rank transform of the variables Y and Xi

(i = 1, ..., p). The values of analogous indices can be

calculated: Spearman correlation coefficient, stan-

dardized rank regression coefficient (SRRC) and par-

tial rank correlation coefficient (PRCC).

However, in practice one can often encounter

models that are neither linear, nor monotone. In this

case Sobol indices can be used to evaluate the model

sensitivity to input parameters.

2.3 Sobol global sensitivity indices

This variance-based method uses the so-called

ANOVA-representation of square integrable functions

developed by Sobol (for example, Sobol 2001).

Assume that the model under investigation is given

by a function Y = f(X), where X = (X1, ..., Xp) are

independent input variables and Y is a scalar output. In

order to determine the importance of each input vari-

able, the methods of variance analysis consider to what

extent decreases the variance of the output variable

when fixing variable Xi in its true value x*
i:

VðY Xij ¼ x�i Þ; ð6Þ

where V(.) denotes the variance function.

However, in general, the true value x*
i of Xi is un-

known, so instead of expression 6, the variance of

mathematical expectation is considered:

E½VðY Xij Þ�: ð7Þ

Expression 7 determines, on average, how much Y

varies, if Xi is fixed. This value decreases if Xi is an

important factor, because Y will have a small variation.

Instead of using E[V(Y|Xi)], we use V(E[Y| Xi]). The

sum of these two terms is constant and equal to V(Y)

by the variance decomposition formula.

Therefore, the global sensitivity index of the first

order is defined by:

Si ¼
VðE½YjXi�Þ

VðYÞ ¼ Vi

V
ð8Þ

and is comprised between 0 (the case of no influence of

Xi on Y) and 1 (all the variability of Y is explained by

Xi); the more Xi is important the closer V(E[Y|Xi]) is

to V(Y) and Si to one. Analogously indices of the

second and higher orders can be defined by:

Sij ¼
VðE½YjXi;Xj�Þ

VðYÞ ¼ Vij

V
; . . . ;

S1;...;p ¼
VðE½Y X1; . . . ;Xp

�
� �Þ
VðYÞ ¼ V1;...;p

V
:

ð9Þ

All Si1;...;is are nonnegative and their sum
Pp

s¼1
P

i1\���\is

Si1;...;is is equal to one.

Along with these indices, a notion of total sensitivity

index has been introduced. It expresses the total
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sensitivity of Y variance to the Xi input, including

sensitivity to all interactions that involve Xi:

STi
¼
X

k: i2k

Sk: ð10Þ

In practice, the FAST or Monte Carlo methods are

used to calculate the first and total Sobol indices

(Saltelli et al. 2000). These methods demand a signifi-

cant number of model calculations (about 10,000 for

complex models) to evaluate one index for one input

parameter. With the growth of the number p of input

parameters, the number of first order and total sensi-

tivity indices grows linearly and evaluation of Sobol

indices quickly becomes impossible. In order to per-

form calculations in such cases when the model

launching is time consuming (like in our study), the

model can be replaced by another one with negligible

computation time. Such models are called ‘‘response

surfaces’’ or ‘‘surrogate models’’.

2.4 Response surfaces

The response surface methodology is frequently used

to simulate the behavior of an experimental system or

a long running computational code based on a certain

number of output values. It was originally proposed as

a statistical tool, to find the operating conditions of a

process at which some responses were optimized (Box

and Wilson 1951; Box and Draper 1987). Subsequent

generalizations led to these methods being used to

develop approximating functions of deterministic

computer codes (Downing et al. 1985; Sacks et al.

1989; Kleijnen and Sargent 2000). It consists in gener-

ating a surrogate model that fits the initial data, which

has good prediction capacities and demands negligible

time for one calculation. It is thus efficient for uncer-

tainty and sensitivity analyses requiring several thou-

sands of model calculations (Iooss et al. 2006).

Multiple response surface families exist (Hastie

et al. 2002): polynomials, splines, generalized linear

models, or learning statistical models like neural net-

works, support vector machines, etc. Linear and qua-

dratic functions are commonly considered as a first

iteration. Knowledge on some input interaction types

may be also introduced in polynomials (Jourdan and

Zabalza-Mezghani 2004; Kleijnen 2005; Iooss et al.

2006). However, these kinds of models are not always

efficient, especially in hydrogeological heterogeneous

models which simulate complex and non linear phe-

nomena. For such models, modern statistical learning

algorithms can show much better ability to build

accurate models with strong predictive capabilities

(Khalil et al. 2004; Marrel et al. 2006).

To construct a response surface, we need the fol-

lowing elements:

• the availability of a model f representing the

phenomenon under investigation;

• a sample D consisting of N points ðxi; yiÞ where xi is

a vector of inputs (of dimension p), yi ¼ f ðxiÞ is the

response of the model f and i varies from 1 to N;

• a family H of functions hðx; cÞ where c is a vector of

parameters (parametric regression) or a vector of

indices (nonparametric regression) that allows dis-

tinguishing among different elements of H.

In order to adjust the best element h0ðx; c0Þ from

the family H, the least squares method is often used. It

involves the solution of an optimization problem,

consisting in minimizing the following function by c :

RðhÞ ¼ 1

N

XN

i¼1

ðyi � hðxi; cÞÞ2: ð11Þ

Necessary conditions on response surface include its

good approximation and prediction quality. Different

characteristics can be used to quantify these qualities:

the regression determination coefficient (Eq. 5), sta-

tistics of the regression residuals (mean square error,

test on the independence and normality, etc.), statistics

on the relative residuals, etc. (Kleijnen and Sargent

2000; Iooss et al. 2006). The principal methods of

evaluating these characteristics are the cross-validation

and bootstrap techniques (Stone 1974; Hastie et al.

2002). The cross validation method allows a good

estimation of the theoretical prediction error associ-

ated with the response surface, while the bootstrap

method is especially useful when the size of the data

sample is small. With a sufficient size of data sample, a

simpler method can be chosen by:

1. the quality of approximation is given by statistical

analysis carried out on the basis of the points used

to build the surface (this set of points is called here

a ‘‘training set’’);

2. the quality of prediction is obtained by a statistical

analysis carried out on the points not belonging to

the building base (this set of points is called a ‘‘test

base’’).

In this study we have used several response surfaces

like polynomials, neural networks, support vector ma-

chines, etc. In this paper, we present the model that

gives the best results: the boosting of regression trees.

This modern statistical learning method is based on the
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sequential construction of weak models (here these are

regression trees with a low interaction depth), which

are then aggregated (Schapire 1990). A lot of algo-

rithms are available to construct this model. We use

the multiple additive regression trees (MART) algo-

rithm that is one of the most popular and is described

in Hastie et al. (2002). The boosting trees method is

relatively complex, in sense of, as neural networks, it is

a black box model, very efficient but quite difficult to

interpret.

3 Numerical model of radionuclide migration

from the RRC ‘‘KI’’ radwaste disposal site

Numerical model of Sr-90 transport in groundwater is

developed for the RRC ‘‘KI’’ radwaste disposal site

situated in the city of Moscow, Russia. It aims to pro-

vide a correct prediction of further contamination

plume spreading till the end of the year 2010 that will

show the risks associated with contamination and can

serve as a base for future engineering decision-making.

3.1 Description of the site

In the period between 1943 and 1974 radioactive

wastes were buried in eleven temporary repositories

built on a specially allocated site at the RRC ‘‘KI’’

territory in Moscow. The site used for the temporary

radioactive waste repositories has an area of about

2 ha and is situated near the KI external perimeter in

the immediate vicinity to the city residential area

(Fig. 1) (Volkov et al. 2003, 2004). Radioactive survey

of the site and its adjacent area performed in the late

1980s to early 1990s and in 2002 showed that radioac-

tive contamination is present not only at the surface

but has a tendency of spreading into groundwater. The

porous media of the site is represented principally by

sands and clays that form several horizontal super-

posed aquifers. The uppermost moraine aquifer is

unconfined, the others are confined. Seasonal fluctua-

tions of groundwater level are small (£30 cm).

To analyze radioactive contamination of groundwa-

ter, about a hundred exploration wells were drilled on

the site. As a result of the survey, it was discovered that

contamination of the soil is mainly connected with Sr-90

and Cs-137, and contamination of groundwater—with

Sr-90. Since the radiation survey results have demon-

strated the necessity to clean up the site, rehabilitation

activities on radwaste removal and liquidation of old

repositories have been started at the site in 2002.

At present almost all old repositories have been

disposed. Now groundwater conditions of the two up-

per aquifers are controlled by an observation network

that consists of 20 observation wells for the upper

moraine aquifer and nine for the second Jurassic

aquifer; this network is used for a regular recording of

groundwater levels, its chemical and radionuclide

composition. The 20 observation wells of the first

aquifer can be visualized in Fig. 2, where they are

represented by black and white circles (each one being

combined with an alpha-numeric code).

3.2 Model development and calibration

A mathematical model of radionuclide contamination

transport from the radwaste disposal site is constructed

in the MARTHE hydrogeological program package

(developed by BRGM, the French Geological Survey).

It is a three-dimensional combined transient flow and

Fig. 1 Radwaste Disposal
Site on the territory of the
RRC ‘‘Kurchatov Institute’’,
Moscow, Russia
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transport convection-dispersion model taking into ac-

count sorption and radioactive decay. Since the Sr-90

contamination was found to be the most mobile on the

site, the model considers only this radionuclide trans-

port in groundwater of the upper moraine aquifer.

The model mesh is chosen oriented south-west along

the groundwater flow direction. A uniform planar dis-

cretization has a step of 5 m · 5 m and the whole

domain has an area of 250 m · 350 m (Fig. 2).

Vertical discretization of the model was chosen in

accordance with filtration and migration characteristics

of the sands forming the upper moraine aquifer; three

layers were singled out.

Input parameters of the flow and transport mod-

els—hydraulic conductivity of different layers, infil-

tration, possible locations of leakage from the pipes on

the site, sorption, porosity and dispersivity parame-

ters—were obtained as a result of the model verifica-

tion against observations, field and laboratory

experiments, as well as through the use of geostatistical

analysis methods.

3.3 Modeling results

Prediction of the initial contamination plume spread-

ing was made for the end of year 2010. Initial con-

centration plume and prediction made for the year

2010 are shown in Fig. 3.

As it can be seen in Fig. 3b contamination plume

predicted for the year 2010 is not uniform and is more

diffused than the initial one. This is due, above all, to

the influence of intensive infiltration assigned in sev-

eral zones of the model domain (see Fig. 4) that results

in local dispersion of contamination plume.

One can thus assume that the form of predicted

contamination plume depends essentially on the

model input values. Moreover, all the model inputs

are exposed to some uncertainty, since their values

have been obtained through the model calibration and

field and laboratory experiments that have some

irreducible error. These errors and other sources of

model uncertainty, such as parameterization, for

example, lead to errors in model prediction. In order

Fig. 2 Model domain borders
(dashed line) relatively to the
radwaste disposal site

Stoch Environ Res Risk Assess (2008) 22:17–31 23

123



to evaluate the degree of input influence on the

resulting contamination plume form and concentra-

tion values predicted in observation wells, it seems

interesting to perform statistical analysis of the con-

structed model. The uncertainty propagation method

will allow evaluating prediction error, while the global

sensitivity analysis will distinguish the most influent

model parameters.

4 Analysis for the numerical model of radionuclide

migration from the RRC ‘‘KI’’ radwaste disposal site

Global statistical analysis and uncertainty propagation

techniques described above are applied to the numer-

ical model of radionuclide migration from the RRC

‘‘KI’’ radwaste disposal site. This section presents

procedures of probability distribution choice, input

parameters generation, uncertainty propagation and

global sensitivity analysis phases including response

surface construction and calculation results.

The whole study procedure can be summarized as

follows:

1. Intervals of possible variation and probability dis-

tributions on these intervals are chosen for all

model inputs included in the analysis.

2. Three hundred variants of model input values are

generated using the Latin Hypercube Sampling

method. The MARTHE model code is launched

for each sample. Thus, 300 variants of output

parameters are obtained. They are organized into

Fig. 3 Initial (a) and predicted (b) Sr-90 concentrations (light color represents higher levels of concentration); the small white
rectangles (with alpha-numeric code inside) represent the location of the observation wells

Fig. 4 Zones (numbered
from 1 to 4) of low
conductivity; lines present
zones of high infiltration rates
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histograms and analyzed in order to obtain ele-

mentary statistics.

3. Input–output linearity and monotony are then

tested and simple sensitivity factors are calculated.

4. To validate obtained sensitivity values for those

outputs that display linear or monotonic behavior

and to find sensitivity indices for those output that

are neither linear nor monotonic, response surfaces

are constructed for all model outputs. Afterwards,

Sobol sensitivity indices are calculated using these

surrogate models.

4.1 Choice and generation of input parameters

Twenty input parameters of the MARTHE numerical

model are chosen for uncertainty propagation and

global sensitivity analysis. These parameters are the

following: hydraulic conductivity of different zones of

simulated area, longitudinal and transversal dispersiv-

ities of the geological layers, distribution coefficients,

porosity and infiltration rates in different zones of the

domain. Twenty outputs chosen for the analysis are Sr-

90 concentration values calculated by the model at the

20 observation wells locations for the end of the year

2010.

Each input parameter is analyzed in order to choose

an interval of possible variation and its probability

distribution on this interval. These characteristics are

chosen on the base of the analysis of possible param-

eter values. Such information is taken from different

sources: results of field and laboratory experiments,

statistical analysis of measurement results (in case of

sufficient number of data) and reference literature. For

parameters presenting hydraulic conductivity and Sr-90

distribution coefficients, the quantity of available

experimental results allows a construction of data

histograms. Corresponding probability distribution

laws are chosen using an automatic fitting procedure

(examples of such histograms and corresponding dis-

tribution densities are shown in Fig. 5). Due to the lack

of data, uniform probability distribution laws are taken

for the other model inputs (porosity, longitudinal and

transversal dispersivities and infiltration rates).

The Table 1 summarizes all the inputs included in

sensitivity analysis with their initial (model) values,

chosen type and parameters of probability distribu-

tions.

According to the chosen intervals and distribution

laws, 300 variants of model input values are generated

using the Latin Hypercube Sampling method (McKay

et al. 1979; Helton and Davis 2003).

Note in Table 1 that certain inputs are generated in

a dependent way while variance-based methods of

sensitivity analysis demand independency of model

input parameters. Correlation coefficients calculated

for such pairs show that values of parameters denoted

i1, i2 and i3 do not really correlate, while correlations

in pairs dk–dtk (k = 1,2,3) are significant. Nevertheless,

the sensitivity analysis performed later for the same

model with combined dk–dtk parameters showed that

the independency assumption for these parameters

does not influence the analysis results.

4.2 Uncertainty propagation

A special program that automates cyclic launching of

the MARTHE code is created. For each input variant

the program reads a set of 20 input parameter values,

generates corresponding MARTHE input files, starts

the MARTHE code calculation and saves values of 20

output variables in a separate file. Therefore, we re-

cover 300 variants of output variables that present

Fig. 5 Histograms for Sr-90
distribution coefficient
experimental values for the
first (a) and second (b) model
layers and corresponding
Weibull probability
distribution density curves,
m3/m3
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possible values of Sr-90 concentration in observation

wells. Elementary statistics (mean, maximum, mini-

mum, standard deviation, skewness, and kurtosis) are

calculated for each output variable. Output histograms

give uncertainty in predicted Sr-90 concentration in

each of 20 observation wells associated with assumed

uncertainties in model inputs. We can see in Fig. 6 that

some response distributions are far from Gaussian

behaviour.

Two output variables show negligible concentration

values for all calculations. These values are not physi-

cally significant and it makes no sense to analyze these

results. Therefore, we prefer to remove from our

analysis these two output variables. Eighteen output

variables are now to be considered. This example

illustrates the interest of making the uncertainty

propagation phase before the sensitivity analysis phase:

the uncertainty analysis allows validating the output

variables that are to be considered in the sensitivity

analysis.

The representativeness of the base of 300 values for

each output variable is controlled using a visual crite-

rion of empirical statistical moments estimation with

the growth of the number of output values. In this case

we start with a sample of 20 values chosen randomly

from the whole set of 300 results for the output under

consideration. We increase this sample stepwise by

adding a randomly chosen sample of 20 values until the

whole set is exhausted. This procedure is repeated 200

times and thus for each sample size (from 20 to 300) we

obtain the mean and standard deviation empirical

values together with their confidence intervals. The

convergence criterion is purely visual: we consider a

sample of size N representative, if empirical values of

statistical values tend to corresponding values of the

whole set and if the error bars do not fluctuate strongly

in the neighborhood of N. In our case, this criterion

gives a positive answer for the majority of output

variables. We illustrate this for the first output variable

(p1–76) in Fig. 7.

On this stage, correlation coefficients between

output variables are also calculated. High values of

correlation coefficients correspond to pairs of those

observation wells that are located close to each other

or in the zones of identical physical properties. Only

two pairs of output variables are strongly correlated:

p1–76 with p2–76 (q = 0.9) and p23 with p4–76

(q = 0.96). This is not sufficient to reduce drastically

the number of studied output variables, and in the

framework of this study we prefer keeping all of

them.

4.3 Correlation analysis

On the first stage of the sensitivity analysis, linear

regression is performed. It shows that for the majority

of outputs the determination coefficient R2 of linear

regression is not sufficiently close to one, which means

that the dependences between inputs and outputs are

not linear. Thus, linear sensitivity indices have no

quantitative sense in this case. Nevertheless, they give

a first idea for the list of the most influent model inputs,

Table 1 Input parameters for sensitivity analysis with initial values, distribution types and possible variation intervals

Parameters Notation Model
value

Distribution
type

Interval or
distribution parameters

1 Hydraulic conductivity layer 1 per1 8 Uniform 1–15
2 Hydraulic conductivity layer 2 per2 15 Uniform 5–20
3 Hydraulic conductivity layer 3 per3 8 Uniform 1–15
4 Hydraulic conductivity zone 1 perz1 8 Uniform 1–15
5 Hydraulic conductivity zone 2 perz2 8 Uniform 1–15
6 Hydraulic conductivity zone 3 perz3 8 Uniform 1–15
7 Hydraulic conductivity zone 4 perz4 8 Uniform 1–15
8 Longitudinal dispersivity layer 1 d1 0.8 Uniform 0.05–2
9 Longitudinal dispersivity layer 2 d2 0.8 Uniform 0.05–2
10 Longitudinal dispersivity layer 3 d3 0.8 Uniform 0.05–2
11 Transversal dispersivity layer 1 dt1 0.08 Uniform 0.01d1–0.1d1
12 Transversal dispersivity layer 2 dt2 0.08 Uniform 0.01d2–0.1d2
13 Transversal dispersivity layer 3 dt3 0.08 Uniform 0.01d3–0.1d3
14 Volumetric distribution coefficient l. 1 kd1 5.1 Weibull 1.1597, 19.9875
15 Volumetric distribution coefficient l. 2 kd2 0.34 Weibull 0.891597, 24.4455
16 Volumetric distribution coefficient l. 3 kd3 5.1 Weibull 1.27363, 22.4986
17 Porosity poros 0.3 Uniform 0.3–0.37
18 Infiltration type 1 i1 0.0001 Uniform 0–0.0001
19 Infiltration type 2 i2 0.004 Uniform i1–0.01
20 Infiltration type 3 i3 0.02 Uniform i2–0.1
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among which we can see distribution coefficient of the

first and second model layers, infiltration intensity of

the zones of strong leakage and hydraulic conductivity

of different model zones.

The next stage is to verify the monotony of input-

output dependence. Determination coefficient R2* of

rank regression has a value greater than 70% for 12 out

of 18 output variables (see Table 2). These are outputs

p102K, p103, p104, p106, p107, p109, p23, p27K, p29K,

p31K, p36K and p4–76. For these outputs, rank sensi-

tivity indices SRRC and PRCC have a quantitative

sense. Table 2 gives only the SRRC values which are

greater than 10%. The results based on the ranks show

approximately the same list of the most influent

parameters than the results based on the linear

regression.

In order to justify these results and to find sensitivity

indices for the outputs that are neither linear nor

monotonic, response surfaces are constructed and

Sobol sensitivity indices are then calculated.

Fig. 6 Examples of histograms for output parameters p1–76, p102K and p103, Bq/l

Fig. 7 Example of
convergence visualization for
the output parameter p1–76.
We calculate the mean and
standard deviation in function
of the sample size (varying
between 50 and 300).
Confidence intervals are
calculated by bootstrap
resampling
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4.4 Response surfaces construction

Different types of response surfaces (polynomials,

neural networks, support vector machines, etc.) have

been tested for each output variable and the best results

are obtained using the boosting trees algorithm. It uses

10,000 regression trees with interactions of order 3.

The statistical validity of each response surface is

verified using the 10-fold cross-validation method. The

procedure is the following:

• The 300 samples database is divided into 10 subsets

(each subset contains 30 values).

• The following procedure is repeated ten times:

construction of the response surface on nine sub-

sets, prediction on the other subset. At each

iteration the prediction subset is different.

• The approximation statistics are estimated on the

residuals of the whole construction database (2,700

residual values due to the ten times repetition of the

procedure).

Table 2 Determination coefficients of rank regression and monotonic sensitivity indices (SRRC multiplied by 102) of the input
parameters for each output variable

Parameter R2* kd1 kd2 kd3 i2 i3 per1 per2 per3 pz1 pz2 pz3 pz4

1 p1–76 0.32 30 –35 16 11
2 p102K 0.90 33 83 –12 –34 –17
3 p103 0.79 –65 –30 15 28 –11 35
4 p104 0.91 89 –30 16
5 p106 0.74 –63 –15 10 57
6 p107 0.92 –80 19 51
7 p109 0.70 73 –29 –14 –21 11
8 p110 0.63 30 –28 66 –13 –14
9 p2–76 0.30 32 –30 16
10 p23 0.90 32 78 –51
11 p27K 0.81 –10 –53 73 –16
12 p29K 0.83 –31 –74 32 –14 22 –14 21
13 p31K 0.71 15 69 –46 15 –13 13
14 p35K 0.68 –12 –56 49 –25 12 –17 16
15 p36K 0.74 –68 –34 19 35
16 p37K 0.68 15 –19 16 –66 38 15
17 p38 0.47 48 39 –21 14 –14 –14 13
18 p4–76 0.95 35 84 –45 –11
19 p4a 0.45 15 55 –20 –11 14
20 p4b 0.59 44 13 44 –19 –22 17

Table 3 Response surface determination coefficients and total Sobol sensitivity indices in percent (STi
� 10�2) of the input parameters

for each output variable

Variable R2 kd1 kd2 kd3 i3 per1 per2 per3 perz1 perz2 perz3 d2

1 p1–76 0.58 41 69 1
2 p102K 0.75 23 69 4 4
3 p103 –0.09 78 21 1 1 3 1 2
4 p104 0.94 93 4 3
5 p106 0.28 82 20
7 p109 0.33 43 1 14 30 2 7 1 4 4
9 p2–76 0.57 39 68 3 1
10 p23 0.93 14 78 9
11 p27K 0.43 78 16 1 7
12 p29K 0.82 19 66 3 2 4 2 3
13 p31K 0.45 3 94 6
14 p35K 0.56 91 3 5 1 8
15 p36K 0.56 70 11 3 11 1 2
16 p37K 0.64 6 24 2 52 28 3 2
17 p38 0.31 60 19 19 1
18 p4–76 0.96 14 80 6
19 p4a –0.03 15 33 5 19 4 15 5 5
20 p4b 0.39 71 11 8 6 2

Only the significant values (>1%) are given
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• The prediction statistics are estimated on the

residuals of the whole prediction database (300

residual values).

Table 3 gives the determination coefficients ob-

tained on prediction residuals. For several outputs,

boosting algorithm improves the quality of approxi-

mation as compared to monotonic model, though for

other outputs monotonic model gives better approxi-

mation. At the same time, certain outputs display non-

uniform approximation quality of response surface that

is caused by a large amount of output values that are

close to zero.

For certain output variables, boosting algorithm has

not brought any improvement compared to the

regression on the ranks. However, constructed re-

sponse surfaces allow the calculation of Sobol sensi-

tivity indices that give more rich information than

simple correlation and regression coefficients. We will

perform calculations for all outputs, though it should

be remembered that the ‘‘degree of trust’’ to these

results will be expressed by the R2 value.

4.5 Global sensitivity analysis

Taking into account the quality of response surface

adjustment expressed by the R2 value we can now re-

place the MARTHE code calculation by the response

surface and calculate the Sobol sensitivity indices using

the Monte Carlo method. For each output, calculation

of Sobol indices is repeated 10 times in order to obtain

its mean and variation interval. Total sensitivity indices

(in percent) STi
for the most influent parameters for

each model output are presented in Table 3.

Comparing the total Sobol indices and sensitivity

indices calculated in the monotonic context, we obtain

coherent sets of the most influent parameters. Note

that the three most influent inputs are the same for all

types of analysis. These are distribution coefficient of

the second model layer (kd2), distribution coefficient

of the first model layer (kd1) and infiltration intensity

in the zones of leakage (i3). Moreover, these inputs are

the only influent parameters for the outputs that dis-

play the best quality of response surface adjustment.

We should also note that the values of Sobol indices of

the first order and the total sensitivity indices are quite

close. It means that sensitivities to input parameters

are essentially due to the first order, i.e. interactions

between inputs are insignificant.

For every model output parameter, one of the three

inputs mentioned above is the most influent. Based on

this criterion, all outputs (and all observation wells,

accordingly) can be divided into three groups: those

that are mostly influenced by kd1, those that are mostly

influenced by kd2 and those that are mostly influenced

by i3. Such a division correlates with spatial distribu-

tion of corresponding observation wells.

It can be also seen that model values of longitudinal

and transversal dispersivities as well as model porosity

value have practically no influence as compared to the

other inputs.

5 Discussion and conclusion

The methods of uncertainty propagation and global

sensitivity analysis applied to a combined numerical

model of groundwater flow and radionuclide transport

developed in the MARTHE hydrogeological program

package allow estimating the uncertainty of prediction

results and quantifying the influence of the model input

parameters on Sr-90 concentrations predicted in 20

observation wells. Sensitivity analysis conducted for

the radionuclide spreading model shows that Sr-90

concentration values predicted by the model for the

end of the year 2010 are mostly influenced by uncer-

tainty in the values of distribution coefficient of the

first and second model layers and infiltration intensity

in the zones of pipe leakage on the site. At the same

time model values of longitudinal and transversal dis-

persivities as well as model porosity value have prac-

tically no influence as compared to the other inputs.

Thus, more precise knowledge of the values of the

most influent parameters will lead to considerable

reduction of the model prediction uncertainty.

This knowledge on the input–output relations gives

additional information for site characterization and can

help to define, for example, effective sampling or

measurements planning, and also to determine more

precisely the values of sensible parameters describing

the site.

The statistical analysis shows the greatest influence

of the Sr-90 sorption effect in soils on the model results

as compared with other hydrogeological parameters

(permeability or porosity). These distribution coeffi-

cients, assigned for Sr-90 at each geological layer, are

frequently estimated for transport modeling basing on

coefficient data base, and this study shows the impor-

tance to have real measurements on the site. We also

have time variability of this parameter in relation with

chemical conditions of the field (meteoric water infil-

trations, etc.) and usually it is not taken into account in

distribution coefficient estimations.

In the case of leakage zones, the water infiltration

rates are not measured in the field, because it is prac-
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tically impossible. Estimation of these values also leads

to errors in model responses.

Several remarks can be made that concern further

possibilities and extensions of this analysis. First, re-

sponse surfaces constructed with the boosting method

did not show good adjustment for all of the output

parameters. In the context of further model analysis, it

would be interesting to try other methods based on

local polynomials, kriging, etc. Marrel et al. (2006)

have done a specific work on the kriging model for

complex computer models, and promising results have

been obtained on our data: eight output variables are

better explained by kriging, while six remain badly

simulated. Second, several output variables cause

problems for regression since there are many values

that are close to zero. This type of data is difficult to

model, the results giving elevated values of relative

residual statistics. This problem can be treated by using

specific weighting of the data in the regression algo-

rithms, by ignoring all small values or by transforming

the output variable by taking its logarithm. Finally, the

form of zones 1–4 in the second model layer (see

Fig. 4), presenting alternation in the layer hydrogeo-

logical properties, influences the groundwater flow

direction modeled by MARTHE. At the same time,

the form of these zones used in this study has been

found by interpolation of spatial data that are quite few

in number. It seems interesting in a future work to

make geostatistical simulations of the form of these

zones and to analyze corresponding variation in the

model output variables. Recent studies (Tarantola

et al. 2002; Iooss and Ribatet 2006) have tackled the

global sensitivity analysis problem when one of the

input parameters is not a simple scalar random vari-

able, but a complex spatial random field.
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des XXXVIIIèmes Journées de Statistique, Clamart, France

Iooss B, Van Dorpe F, Devictor N (2006) Response surfaces and
sensitivity analyses for an environmental model of dose
calculations. Reliab Eng Syst Saf 91:1241–1251

Jourdan A, Zabalza-Mezghani I (2005) Response surface designs
for scenario management and uncertainty quantification in
reservoir production. Math Geol 38:965–985

Khalil A, Almasri MN, McKee M, Kaluarachchi J (2004)
Applicability of statistical learning algorithms in groundwa-
ter quality modelling. Water Resources Res DOI 10.1029/
2004WR003608

Kleijnen JPC (1997) Sensitivity analysis and related analyses: a
review of some statistical techniques. J Statist Comput Simul
57:111–142

Kleijnen JPC (2005) An overview of the design and analysis of
simulation experiments for sensitivity analysis. Eur J Oper
Res 164:287–300

Kleijnen JPC, Sargent RG (2000) A methodology for fitting and
validating metamodels in simulation. Eur J Oper Res
120:14–29

Ma HW (2002) Stochastic multimedia risk assessment for a site
with contaminated groundwater. Stochastic Environ Res
Risk Assess 16:464–478

Maddalena RL, McKone TE, Hsieh DPH, Geng S (2001)
Influential input classification in probabilistic multimedia
models. Stochastic Environ Res Risk Assess 15:1–17

Marrel A, Iooss B, Van Dorpe F, Volkova E (2006) An efficient
methodology for modelling complex computer codes with
Gaussian processes. Comput Statist Data Anal (submitted)

McKay MD, Beckman RJ, Conover WJ (1979) A comparison of
three methods for selecting values of input variables in the
analysis of output from a computer code. Technometrics
21:239–245

Sacks J, Welch WJ, Mitchell TJ, Wynn HP (1989) Design and
analysis of computer experiments. Statist Sci 4:409–435

Saltelli A, Chan K, Scott M (eds.) (2000) Sensitivity analysis.
Probability and statistics series. Wiley, New York

Schapire R (1990) The strength of weak learnability. Mach Learn
5:197–226

Sobol IM (2001) Global sensitivity indices for nonlinear math-
ematical models and their Monte Carlo estimates. Math
Comput Simul 55:271–280

Stone M (1974) Cross-validatory choice and assessment of
statistical predictions. J Roy Statist Soc B 36:111–147

Tarantola S, Giglioli N, Jesinghaus J, Saltelli A (2002) Can
global sensitivity analysis steer the implementation of

30 Stoch Environ Res Risk Assess (2008) 22:17–31

123



models for environmental assessments and decision mak-
ing? Stochastic Environ Res Risk Assess 16:63–76

Volkov VG et al (2003) Status of activities on rehabilitation of
radioactively contaminated facilities and the site of Russian
Research Centre ‘‘Kurchatov Institute’’. In: Proceedings of
WM’03 Conference, Tucson, Arizona, USA, February 23–
27, 2003, WM Symposia Inc

Volkov VG et al (2004) The First Stage of Liquidation of
Temporary Radwaste Repositories and Rehabilitation of
the Radwaste Disposal Site at the Russian Research Centre
‘‘Kurchatov Institute’’. In: Proceedings of WM’04 Confer-
ence, Tucson, Arizona, USA, February 29 – March 4, 2004,
WM Symposia Inc

Stoch Environ Res Risk Assess (2008) 22:17–31 31

123


	Global sensitivity analysis for a numerical model of radionuclide migration from the RRC ‘‘Kurchatov Institute&rdquo; radwaste disposal site
	Abstract
	Introduction
	Global sensitivity analysis methodology
	Uncertainty propagation
	Correlation analysis
	Sobol global sensitivity indices
	Response surfaces

	Numerical model of radionuclide migration�from the RRC ‘‘KI&rdquo; radwaste disposal site
	Description of the site
	Model development and calibration
	Modeling results

	Analysis for the numerical model of radionuclide migration from the RRC ‘‘KI&rdquo; radwaste disposal site
	Choice and generation of input parameters
	Uncertainty propagation
	Correlation analysis
	Response surfaces construction
	Global sensitivity analysis

	Discussion and conclusion
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


