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Abstract Recent advances in statistical learning

theory have yielded tools that are improving our

capabilities for analyzing large and complex datasets.

Among such tools, relevance vector machines (RVMs)

are finding increasing applications in hydrology

because of (1) their excellent generalization properties,

and (2) the probabilistic interpretation associated with

this technique that yields prediction uncertainty.

RVMs combine the strengths of kernel-based methods

and Bayesian theory to establish relationships between

a set of input vectors and a desired output. However, a

bias–variance analysis of RVM estimates revealed that

a careful selection of kernel parameters is of para-

mount importance for achieving good performance

from RVMs. In this study, several analytic methods are

presented for selection of kernel parameters. These

methods rely on structural properties of the data rather

than expensive re-sampling approaches commonly

used in RVM applications. An analytical expression

for prediction risk in leave-one-out cross validation is

derived. For brevity, the effectiveness of the proposed

methods is assessed first by data generated from the

benchmark sinc function, followed by an example

involving estimation of hydraulic conductivity values

over a field based on observations. It is shown that a

straightforward maximization of likelihood function

can lead to misleading results. The proposed methods

are found to yield robust estimates of parameters for

kernel functions.

Keywords Bayesian learning � Relevance vector

machines � Interpolation � Leave-one-out

cross-validation � VC dimension � Bayes information

criterion � Power spectrum

1 Introduction

In recent decades, with improved information tech-

nology and remote sensing tools, our capabilities of

collecting hydrological data have increased many fold.

An unprecedented investment in collecting hydrologic

data has resulted in large archives of hydrologic data

(e.g., USGS national water information system, the

global observing systems information center database,

national operational hydrologic remote sensing center

datasets, agricultural research service water database,

etc.). A large fraction of such data tends to be high-

dimensional (i.e., exhibits large variability over a wide

range of space and time scales) and severely under-

constrained (sparse coverage over the input space), and

is often interspersed with spurious data that confound

analysis. This renders many of the previous learning

algorithms such as local regression, spline interpolation,

and logistic regression either inefficient or inapplicable.

For hydrologic applications, the challenges are (a)

achieving good generalization performance in high

dimensional data where curse of dimensionality stipu-

lates exponential increase in the amount of data for

good predictions; (b) representing and effectively

combining the available physical knowledge of hydro-

logical systems into data learning algorithms; (c) char-

acterizing and quantifying uncertainty in predictions;

and finally (d) making learning algorithms computa-

tionally efficient to handle voluminous data.
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Kernel methods, which have been gaining popular-

ity in machine learning, provide a radically different

approach for high dimensional learning problems.

Unlike traditional learning algorithms where data are

represented individually, kernel methods seek pair-

wise comparisons using kernel functions (Scholkopf

and Smola 2002). This representation provides a simple

and elegant way of capturing nonlinear relationships

between input vectors and corresponding outputs using

linear algorithms. Examples are support vector ma-

chines (Vapnik 1995), kernel Fisher discriminant

(Mika et al. 1999), and kernel principal component

analysis (Twining and Taylor 2003; Muller et al. 2001;

Wu et al. 1997). These methods have demonstrated

excellent generalization capabilities and good effi-

ciency in high dimensional problems. However, most

of these methods cannot provide important measures

such as predictive distribution of the evidence as they

are not developed with a probabilistic foundation.

Thus the important issue of model uncertainty remains

unsolved.

A possible way to overcome this problem is to ex-

ploit versatility of kernel methods in conjunction with

Bayesian learning. Based on this idea, Tipping (2001)

developed relevance vector machines (RVMs) that are

kernel-based methods formulated under Bayesian

construct. RVMs provide sparse solution to regression

tasks by implementing Bayesian automatic relevance

determination (MacKay 1994) in the transformed

kernel space. RVMs have achieved excellent results for

many learning problems including 3D image analysis

(Agarwal and Triggs 2006), optical diagnosis of cancer

cells (Majumder et al. 2005; Wei et al. 2005), predic-

tion of chaotic time series (Quinonero-Candela and

Hansen 2002) and analysis of radar data (Kovvali and

Carin 2004). Recently, RVMs have found hydrologic

applications in groundwater quality modeling (Khalil

et al. 2005a), real time management of reservoir re-

leases (Khalil et al. 2005b), and modeling of chaotic

hydrologic time series (Khalil et al. 2006).

While RVMs are being used increasingly in hydro-

logic applications, there still remain some unresolved

hurdles for their successful implementation. An

important question that has not received the attention

it deserves is the selection of kernel function parame-

ters. It is widely acknowledged that a key factor that

determines the generalization capabilities of kernel

methods in general is the choice of kernel width

parameter (Scholkopf and Smola 2002; Hastie et al.

2001; Vapnik 1995). The kernel function can be inter-

preted as a nonlinear transformation that maps the

input space to a higher dimensional feature space.

According to Cover’s theorem (Cover 1965) a linear

function can be formulated in the higher dimensional

feature space to seek a nonlinear relationship between

inputs and outputs in the original input space. Thus,

the problem of choosing a kernel is equivalent to

finding an appropriate form of data representation for

learning (Evgeniou et al. 2000). Although, there is no

available general solution to this problem, several

empirical and theoretical studies provide insights for

specific applications (Scholkopf et al. 1999; Cherkassky

and Mulier 1998; Vapnik 1999, 1998). Recently,

Lanckriet et al. (2004) proposed a method for

extracting kernel matrix from data using semi-definite

programming for a classification problem. Wang et al.

(2003) proposed a method for determining the width of

a RBF kernel based on scale-space theory in computer

vision for support vector machines. Cherkassky and

Ma (2004) suggested that width of a radial basis func-

tion (RBF) kernel for regression problems can be

reasonably estimated form the range of input data

vectors.

In spite of various theoretical and empirical studies

on kernel methods, there is no general consensus on

appropriate choice of kernel parameters because of

contradictory opinions presented by authors (Cher-

kassky and Ma 2004). Hence, for many applications, re-

sampling from data remains the only recourse for

model validation. Unfortunately learning kernel

parameters via traditional re-sampling methods is not

only computationally expensive but requires large

amount of data for successful implementation. The

objective of this work is to present techniques for

practical selection of kernel function parameters, and

to show the effectiveness of the proposed techniques

through an example of spatial interpolation of hydro-

logic data.

The remainder of this paper is structured as follows:

Section 2 presents the mathematical formulation of

RVMs. The details of the data used for the study are

presented in Sect. 3. In Sect. 4, results of bias–variance

analysis of RVMs are provided to gain insights into the

possible consequences of inappropriate selection of

kernel function parameters. In Sect. 5.1, Tipping’s

(2001) method of kernel function parameter selection

by maximizing the likelihood is examined for the

example datasets. In Sect. 5.2, the linearity in the for-

mulation of RVMs is exploited to develop an analytical

expression for leave-one-out cross-validation. In

Sect. 5.3, the applicability of analytical model selection

methods for obtaining optimum kernel function

parameters is demonstrated. In Sect. 5.4, the possibility

of selecting kernel parameters from data is explored.

Thus, Sects. 4, 5.2, 5.3, and 5.4 constitute novel con-

tributions of this paper. The proposed new kernel
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parameter selection methods are then applied to the

example data sets and results obtained are discussed in

Sect. 6. A set of conclusions drawn from this study and

recommendations for future use are presented in

Sect. 7.

2 Mathematical formulation

Consider a finite training sample of N patterns {(xi, yi),

i = 1, ..., N}, where xi denotes ith input pattern in a

d-dimensional space (i.e., xi = [xi1, ..., xid]2<d; x =

[x1, ..., xN]T) and yi 2< is the corresponding output.

Further, let the learning machine f(x; w) be defined as a

linear combination of kernel functions

f x; wð Þ ¼ ŷ ¼
XN

j¼0

wjK x; xj

� �
¼ Uw ð1Þ

such that

y ¼ f x; wð Þ þ e ð2Þ

where, weight vector w = [w0, ..., wM]T is an adjustable

or tuning parameter, K(x, xj) are the kernel functions

with K(x, x0)=1, UN�Nþ1 is the design matrix with

elements Uij = K(xi, xj), i = 1, ..., N ; j = 0, ..., N and e

is the error term. There are several possibilities for the

choice of kernel function, including linear, algebraic

polynomials, trigonometric polynomials, RBFs, and

sigmoid functions. In this study we have adapted a

RBF kernel that is defined as

K xi; xj;~rj

� �
¼ exp �

Xd

z¼1

xiz � xjz

� �2

r2
jz

 !
ð3Þ

where ~rj ¼ rj1; . . . ; rjd

� �
is the width of the RBF ker-

nel. In practice, this is held constant for all basis

functions (i.e., ~rkernel ¼~rj; j ¼ 1; . . . ;N) and is chosen

to be radially symmetric (i.e., r • 1 = r • 2 = ... = r • d

= rkernel).

The form of kernel function K (•) is fixed and

known a priori based on domain knowledge. However,

there are no general guidelines available for the

selection of kernel parameters for hydrologic datasets.

In Sect. 4, using bias–variance analysis, we argue that

kernel width parameter (rkernel) is one of the most

sensitive parameters and has an important role on the

performance of the learning machine. This important

aspect has received little attention, and here we suggest

some techniques for practical selection of rkernel.

If the error term, e in Eq. (2) is assumed to normally

distributed with zero mean and unknown variance r2
e ;

and the input patterns {(xi, yi), i = 1, ..., N} are

generated independently, then the likelihood of the

observed dataset can be written as

p yjw; r2
e

� �
¼
YN

i¼1

1ffiffiffiffiffiffiffiffiffiffi
2pr2

e

p exp � 1

2r2
e

yi � f xi;wð Þð Þ2
h i� �

ð4Þ

Under a Bayesian perspective, model parameters w

and r2
e can be estimated by first assigning prior

distributions to the parameters and then estimating

their posterior distribution using likelihood of the

observed data. For RVM, Tipping (2001) proposed a

prior conditional distribution of the form

p wjjaj

� �
¼

ffiffiffiffiffiffi
aj

2p

r
exp � 1

2
ajw

2
j

� 	

¼ N 0;
1

a2
j

 !
; j ¼ 0; . . . ;N ð5Þ

for each of the weights, where a ¼ a0; . . . ; aN½ �T are

called a hyperparameters, and a uniform uninformative

prior over logarithmic scale for r2
e and aj. The choice of

zero-mean-Gaussian-prior for weights expresses a

preference for smaller weights, and hence a smoother

estimate of the function f(x, w). Another advantage of

this formulation is that during the process of learning,

many of the hyperparameters aj approach infinity, so

the corresponding weights wj tend to be delta functions

centered at zero, and are thus deleted from Eq. (1)

leading to sparseness. The remaining patterns corre-

sponding to non-zero weights are only deemed to be

relevant for function approximation, and hence the

learning machine is known as RVM.

An analytical expression for the posterior distribu-

tion of model parameters, p w; a; r2
e jy

� �
is not available.

However, it can be decomposed into two components

as

p w; a; r2
e jy

� �
¼ p wjy; a; r2

e

� �
p a; r2

e jy
� �

ð6Þ

The first term on the right hand side of Eq. (6) is the

posterior probability of the weight w given re
2 and a;

and is normally distributed.

p wjy; a; r2
e

� �
¼ N lw;Rwð Þ ð7Þ

where mean and covariance are respectively

lw ¼ r�2
e RwUTy ð8Þ

Rw ¼ r�2
e UTUþA

� ��1 ð9Þ
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with A = diag(a0, a1, ..., aN).

The second term on the right hand side of Eq. (6) is

the posterior probability of a and re
2 . The estimation of

this probability is analytically intractable, and is

approximated by delta function at its mode i.e.,

p a; r2
e jy

� �
� d amax; r

2
e max

� �
ð10Þ

where re
2

max and amax are values for which p a; r2
e jy

� �

reaches it maximum value. It turns out that maximizing

p a; r2
e jy

� �
is equivalent to maximizing the marginal

likelihood p yja; r2
e

� �
which is given by

p yja; r2
e

� �
¼
Z

p yjw; a; r2
e

� �
p wjað Þdw

¼ 2pð Þ�N=2
r2

e I þUA�1UT


 

1=2

� exp � 1

2
yT r2

e I þUA�1UT
� ��1

y

� �
ð11Þ

Closed form solutions of re
2

max and amax are not

available. Tipping (2001) proposed an iterative

estimation method based on a type of automatic

relevance determination (MacKay 1994; Neal 1996).

After convergence, the learning algorithm provides

hyperparameter posterior mode (re
2

max and amax) and

posterior distributions of weights conditioned on re
2

max

and amax: The distribution of dependent variable y* at

new location x* can be obtained by

p y�jyð Þ ¼
Z

p y�jw; r2
e max

� �
p wjy; amax; r

2
e max

� �
dw

¼ N ly� ; r
2
y�

� �
ð12Þ

where the mean and variance of the predicted value

are, respectively,

ly� ¼ lT
wU x�ð Þ ð13Þ

r2
y� ¼ r2

e max þU x�ð ÞTRwU x�ð Þ ð14Þ

The variance of the predicted value (Eq. (14)) is the

sum of the variance associated with noise in the

training data and uncertainty associated in prediction

of weights.

3 Data used in this study

We first used synthetic data generated form sinc

function for evaluation of our proposed strategies. The

sinc function sinc (x) = sin(x)/x has been a popular

choice to illustrate the performance of kernel methods

(Chalimourda et al. 2004; Cherkassky and Ma 2004;

Vapnik 1998). In this work samples were randomly

generated from the range x 2[–10,10] and an inde-

pendent Gaussian noise was added to each data point

for different experiments. This was followed by a sec-

ond data set of electrical conductivity measurements

(surrogate for hydrologic conductivity) obtained from

Zhang (1990). Surface soil samples were initially col-

lected at 100 locations over a 1,000 by 1,000 m agri-

cultural field near Marana, Arizona, with some

additional samples collected randomly at various

locations (Fig. 1). A total of 129 measurements of

electrical conductivity were available for this site. One

measurement was unusually large in comparison to

other measurements and was not considered further in

this study. The main reason of choosing a relatively

small dataset is that its results are amenable to visual

interpretation. Moreover, spatial interpolation of

hydrologic data is often challenging due to the

sparseness and presence of noisy samples in the data.

Spatial interpolation of hydrologic data can be a

benchmark test for statistical learning algorithms.

While several other high-dimensional large data sets

were also investigated, we report results from only

these two data sets for clarity and brevity.

4 Bias–variance analysis

A key tool for understanding the effect of parameter

selection in a machine-learning algorithm is the bias–

variance decomposition of the approximation error. In

recent years the use of this method for obtaining the-

oretical insights into machine-learning algorithms has

grown rapidly (Berardi and Zhang 2003; Meyer et al.

0

200

400

600

800

1000

0 200 400 600 800 1000

Y
 -

co
or

di
na

te
 (

m
)

0

X - coordinate (m)

Fig. 1 Locations of electrical conductivity measurements ob-
tained from Zhang (1990). The squares show the measurement
locations, while the rhombus shows the location of outlier in the
dataset
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2003; Stankovic et al. 2002; Buciu et al. 2002; Snijder

et al. 1998; Twomey and Smith 1998; Geman et al.

1992) but does not appear to have been used in the

context of RVMs. In bias–variance decomposition, bias

measures the accuracy of the estimate given by a

learning machine while variance measures the preci-

sion or specificity of the estimate. These terms are not

independent but obey a form of conservation law. On

one hand, a learning machine with too many degrees of

freedom, will over-fit the data resulting in low bias but

high variance. On the other hand, a model that con-

tains very few degrees of freedom will not be flexible

enough to approximate important features in the data

resulting in high bias but low variance. The goal of

learning is then to strike a right balance by identifying

an appropriate tradeoff between these two terms. This

tradeoff is well known in statistical literature as the

bias–variance tradeoff.

For function approximation problem, the mean-

square error of the learning machine can be decom-

posed as (Geman et al. 1992)

E y� ŷð Þ2
h i

¼ E y� E y½ �ð Þ2
h i

þ E ŷ� E ŷ½ �ð Þ2
h i

þ E y½ � � E ŷ½ �ð Þ2

¼ Noise yð Þ þVariance ŷð Þ þ Bias2 ŷð Þ ð15Þ

The first term on the right hand side is the variance of

the intrinsic noise present in the data. This term forms

a lower bound on the error that can be obtained by any

learning algorithm. The second term is the error in

estimation due to random variation in selecting finite

training samples, while the third term is the error due

to mismatch between the target and approximating

functions.

Although there are various advantages of studying

bias–variance decomposition of a learning machine,

there are certain limitations that arise when applying

this method to real data sets. To be able to estimate the

noise, variance, and bias for a particular problem (see

Eq. (15)), we need to know the actual function being

learned. This is not available for most real-world

problems. To overcome this hurdle several alternatives

have been suggested in the literature (Bauer and

Kohavi 1999; Breiman 1998; Kohavi and Wolpert

1996). However, these approaches are marked by high

computational cost and subjectivity in their design.

Since the main purpose of studying bias–variance in

this work is to understand the effect of kernel param-

eters on the performance of an RVM, we have used

synthetic data (sinc dataset) to overcome this problem.

Following (Valentini and Dietterich 2004), 400

different small training sets of 50 samples each were

generated from the sinc function followed by large test

set of 1,000 samples. Further, to each training set a

Gaussian noise with a standard deviation of 0.2 was

added. The main idea behind selecting small training

sets and a much larger test set is that small training sets

show bias and variance more clearly, whereas a large

test set gives reliable estimates of bias and variance.

For each training set, RVMs were trained by varying

the kernel width rkernel. Bias and variance decompo-

sition of the error was then evaluated using test set as

given by Eq. (15). Figure 2 depicts the estimated

mean-square error, bias, and variance for different

values of rkernel.

It is evident from the figure that the generalization

capability of RVM is highly sensitive to the proper

choice of rkernel. In particular, for high values of rkernel

the bias is very high and so is the mean-square error.

Lowering the value of rkernel results in sudden drop in

bias, which then stabilizes for a range of rkernel values

before beginning to increase again. Variance, on the

other hand, has maximum contribution to mean-square

error for smaller values of rkernel as expected. It gen-

erally decreases with increase in rkernel and stabilizes

for high values of rkernel. Interestingly, there exists a

common region in which both bias and variance take

low values. This region is marked by a sudden drop in

mean-square error. In summary, the bias–variance

analysis demonstrates that, for RVMs, there exists a

band of suitable values of rkernel. Outside this range, an

RVM will likely have poor generalization performance.

The aim of model selection should therefore be to

identify this region for appropriate selection of rkernel.

5 Methods of kernel parameter selection

In this section, we first show that the method of esti-

mating kernel parameters by maximizing the likeli-

hood function (Eq. (11)) may not yield satisfactory

results. Subsequently, other new methods are pre-

sented to address this issue.

5.1 Maximizing likelihood

Tipping (2001) proposed a method for estimating

kernel parameters of RVM by maximizing the likeli-

hood function (Eq. (11)). This can be achieved by

taking the derivative of log-likelihood with respect to

kernel parameter rkernel, and performing gradient-

based local optimization (see Tipping (2001), p. 235 for

details). This approach was adopted by Khalil et al.

(2005b) for developing an adaptive RVM for real-time

management of water releases.
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It is to be noted that if kernel parameter rkernel

becomes a free variable to be determined during the

learning process, the learning machine (given by

Eq. (1)) will become nonlinear in the unknown

parameters. Estimating parameters in such a context

will need a rigorous nonlinear optimization algorithm.

Tipping (2001) and Quinonero-Candela and Hansen

(2002) reported significant improvement in the per-

formance of an RVM by this technique, but empha-

sized the difficulties in its implementation and

suggested cross-validation as a better approach for

practical problems.

Besides the computational costs involved with the

implementation of this method, we found that for the

experimental data set at the Marana site, a naı̈ve

optimization of log-likelihood may lead to severe over-

fitting. In fact, Tipping (2001) cautions that maximizing

the likelihood is not guaranteed to yield optimum va-

lue of kernel parameter rkernel in terms of model

accuracy. Figure 3 shows the value of rescaled log-

likelihood and number of statistically relevant vectors

identified by the RVM model, as a function of rkernel,

developed for the approximation of electrical conduc-

tivity values at the Marana site. Figure 4 illustrates the

electrical conductivity surface generated by RVM for

the value of rkernel corresponding to maximum likeli-

hood. The generated surface is very complex with

many sharp peaks and valleys. This is an example of

the RVM model over-fitting the training data. Further,

it may be noted that 112 out of 128 vectors were chosen

as being relevant in this RVM application. Thus, a

complex model has been adopted with no advantage of

sparsity.

From these figures, it is seen that smaller values of

rkernel imply that a highly complex model is needed to

fit the data. Such models typically over-fit the training

data resulting in higher values of likelihood function,

but result in poor generalization performance. There-

fore, in some cases, estimation of kernel parameter by

maximizing the likelihood function alone may be

undesirable.

5.2 Derivation of prediction risk by leave-one-out

cross-validation

Estimation of parameters by re-sampling is by far the

most popular method utilized in learning problems

(Scholkopf and Smola 2002; Hastie et al. 2001; Haykin

1999; Cherkassky and Mulier 1998). The basic approach

is to partition the available data into two sets; a training

set and a validation set. The model is trained using the

first set, and the validation error is measured using the

second set. The validation error gives an estimate of the

prediction risk or generalization error of the model.

The parameters for which the generalization error is

minimized are selected as best parameters. The main

drawback of this approach is that it assumes that both

training and validation sets are representative of the

entire data. This holds true only for large data sets.

When the number of samples is small, choice of parti-

tions of training and validation data sets have an impact

on the estimate of prediction risk.
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Fig. 2 Bias–variance
decomposition of error in the
estimation of sinc function by
RVM as a function of kernel
width rkernel
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Cross-validation provides a strategy so that estimate

of prediction risk is invariant to a particular partition-

ing of data. This method of parameter estimation has

gained wide popularity in hydrologic literature (Khalil

et al. 2005a; Asefa et al. 2004). One practical approach

to cross-validation is k-fold cross-validation. In this

approach available data is divided into k disjoint sets of

approximately equal sizes. The model is trained on all

the sets except for one and validation error is measured

on the set left out. The procedure is repeated for a total

of k trials, each time using a different subset for vali-

dation. Average error under validation over all trials of

the experiment is used to assess the generalization

performance of the model. The limitation of the k-fold

cross-validation method is the high computational cost

and uncertainty associated in the choice of k. Leave-

one-out is a special case of k-fold cross-validation,

where k equals the available number of input patterns

N. Luntz and Brailovsky (1969) proved that leave-one-

out is an almost unbiased estimator of prediction risk.

However, leave-one-out estimate of prediction risk can

yield a high variance.

For linear learning machines, it is possible to com-

pute an analytical expression for leave-one-out esti-

mate of prediction risk (RLOO ). This has a significant

computational advantage over other re-sampling ap-

proaches in vogue in the literature for selection of

parameters in RVM (Khalil et al. 2005a; Tipping

2001). The analytical expression for RLOO is derived

next for RVMs.
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Fig. 3 Plot showing the value
of rescaled log likelihood and
number of vectors deemed
relevant by the RVM model
developed for the
approximation of electrical
conductivity values at the
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kernel width rkernel

Fig. 4 Performance of the
RVM method for the
approximation of electrical
conductivity values at the
Marana site with kernel width
rkernel = 20 as obtained from
maximizing the likelihood
function. One hundred and
twelve vectors (shown as solid
circles) out of a total of 128
vectors were considered
statistically relevant by the
RVM model
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The RVM is linear in parameter w, once the design

matrix U is fixed (Eq. (1)). Therefore, the function

f(x, w) learned from RVM obeys the superposition

principle. Further, Tipping (2004) shows that estima-

tion of weights in RVM formulation is identical to

penalized least square estimation. It then follows from

duality in least square problems (Strang 2006) that

there always exists a projection matrix P that projects

the observed output y into its estimate ŷ which in turns

lies in the column space of design matrix U; so that

ŷ ¼ f x; wð Þ ¼ Uw ¼ Py ð16Þ

The projection matrix P is a N · N matrix often called

as ‘hat matrix‘ or ‘smoothing matrix’. From Eqs. (1),

(8) and (13)

ŷ ¼ Uw ¼ Ulw ¼ r�2
e URwUTy ð17Þ

Comparing Eqs. (16) and (17) the projection matrix P

for RVM learning is given by

PN�N ¼ r�2
e URwUT ð18Þ

Further, let the j th pattern xj be left out of training set

during leave-one-out cross-validation. Then the

prediction for xj during validation operation is given

as (Cherkassky and Mulier 1998)

ŷj ¼
1

1� Pjj

XN

i¼1
i 6¼j

Pjiyi ð19Þ

where Pji is the j th row and i th column element of the

projection matrix P. The square error in the prediction

of xj can be computed by

yj � ŷj

� �2 ¼ yj �
1

1� Pjj

XN

i¼1
i 6¼j

Pjiyi

0
B@

1
CA

2

¼
yj �

PN

i¼1

Pjiyi

1� Pjj

0
BBB@

1
CCCA

2

¼ yj � ŷj

1� Pjj

� 	2

ð20Þ

Hence, the leave-one-out estimate of prediction risk is

RLOO ¼
1

N

XN

j¼1

yj � ŷj

� �2 ¼ 1

N

XN

j¼1

yj � ŷj

1� Pjj

� 	2

ð21Þ

Figures 5 and 6 illustrate the estimation of prediction

risk by analytical leave-one-out cross-validation for

sinc data and Marana site data, respectively. For sinc

data (Fig. 5), leave-one-out cross-validation can suc-

cessfully identify the region of sudden drop in predic-

tion risk as obtained during bias–variance analysis. The

prediction risk then remains approximately constant

for a wide range of rkernel values before increasing

again. Increase in prediction risk for smaller values of

rkernel occurs at a slower rate when compared to the

results of bias–variance analysis. For Marana site data

(Fig. 6), there are some local minima in the estimate of

prediction risk. These may be attributed to high vari-

ance that is associated with leave-one-out cross-vali-

dation. However, unlike log-likelihood maximization,

the leave-one-out estimate does not show monotonic

behavior with decrease in values of rkernel.

5.3 Analytical model selection

Under regularization framework, it is widely accepted

that for a given sample size, there exists a model of

optimal complexity corresponding to the smallest pre-

diction risk (Hastie et al. 2001; Haykin 1999; Cher-

kassky and Mulier 1998). Analytical model selection

criterion uses analytical estimates of the prediction

risk as a function of training error [empirical risk

(Rempirical)] and a penalty term based on some measure

of model complexity. These estimates are grouped into

two categories: classical estimates that are based on

asymptotic analysis (as sample size N fi ¥) and the

structural risk minimization (SRM) method from sta-

tistical learning theory that is based on non-asymptotic

analysis (Cherkassky and Mulier 1998).

5.3.1 Asymptotic analysis

In classical estimates, the forms of prediction risk vary

depending on the class of approximating functions

supported by the learning machine. For linear models,

a number of these estimates are available such as

Akakie information criterion (AIC), Bayes informa-

tion criterion (BIC), minimum description length, etc.

Among them, AIC and BIC are very popular in

hydrologic literature (Xu and Li 2002; Gyasi-Agyei

2001; Honjo and Kashiwagi 1999; Knotters and De

Gooijer 1999; Mutua 1994; Gregory et al. 1992). The

general form of the classical estimate of prediction risk

for a linear model can be written as

prediction risk ¼ W
dof

N

� 	
� Rempirical ð22Þ

where Y is a monotonic increasing function of the ratio

of degrees of freedom (dof) and training sample
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size (N). For penalized linear models, the effective

degrees of freedom can be determined from the

projection matrix P (Hastie et al. 2001; Cherkassky

and Mulier 1998). To the best of our knowledge, this has

not been investigated for RVMs. From linear algebra

(Strang 2006), it is well known that the eigen values of P

for a penalized linear model are in the range [0,1]. The

effective degrees of freedom is given by the number of

eigen values that are proximal to unity. Determining

eigen values of P is computationally intensive, hence

approximations are made to determine the number of

large eigen values, and hence the dof. One popular

approximation (Cherkassky and Ma 2003; Cherkassky

and Mulier 1998; Hastie et al. 2001) is

dof � trace PPT
� �

ð23Þ

Thus if we know the dof, we can estimate prediction

risk based on a particular choice of Y using Eq. (22).

For demonstration, we have used BIC or Schwarz’
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criteria (Schwarz 1978). BIC estimate of prediction risk

is given by

prediction risk ¼ �2 � log-likelihoodþ logðNÞ � dof

ð24Þ

The estimated prediction risk obtained from BIC for

sinc data and Marana site data are shown in Figs. 7 and

8, respectively. BIC estimate of sinc data (Fig. 7) could

not only capture the region of sudden drop in prediction

risk but closely follows the pattern obtained from bias–

variance analysis. For Marana site data, the estimate of

prediction risk (Fig. 8) shows a suitable range of rkernel,

penalizing very simple as well as very complex models.

5.3.2 Structural risk minimization

Statistical learning theory provides a very general and

conceptual framework for complexity control using

SRM. Under SRM principle, a set of possible models

are arranged in order of increasing complexity. Selec-

tion of an optimal model is based on computation of

the Vapnik-Chervonenkis (VC) generalization bound

that provides an upper bound on prediction risk. For a

function approximation problem with N samples, the

following VC generalization bound holds with a

probability 1 – Q (Vapnik 1998)

prediction risk6Rempirical

� 1� c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a1

h log a2N=h

� �
þ 1

h i
� log H=4

� �

N

vuut

8
>><

>>:

9
>>=

>>;

�1

þ

ð25Þ

where h is the VC dimension of the approximating

function, and c is a theoretical constant that depends

on the choice of loss function. The quantities a1 and a2

are constants with values in the range 0 < a1 £ 4;

0 < a2 £ 2. The values of a1 and a2 depend upon the

joint distribution of the input and output variables that

is usually unknown. For worst case distribution (dis-

continuous density function), a1 and a2 have been de-

rived to be 4 and 2 respectively (Vapnik 1995, 1999).

For a function approximation problem with square

error loss function, empirical studies suggest values of

a1 = 1, a2 = 1 and c = 1 (Cherkassky et al. 1999;

Vapnik 1998). However Cherkassky and Mulier (1998)

suggested that a1 and a2 should be altered based on

data. The quantity Q in Eq. (25) determines the con-

fidence interval to be described shortly.

The main difficulty in applying VC bound is to

estimate VC dimension (h) of the approximating

function. Unfortunately, it is not possible to obtain an

exact analytical estimate of h for most approximating

functions including the form given by Eq. (1). To

overcome this difficulty, experimental methods of

determining h are available (Cherkassky and Mulier

1999; Shao et al. 2000). Most of these methods are too

complex to be applied for practical problems. However

for penalized linear models like RVM, h can be

approximated by effective dof given by Eq. (23). This

heuristic estimate of h has been successfully applied in

various statistical learning problems (Cherkassky and

Ma 2003; Cherkassky et al. 1999; Cherkassky and

Mulier 1998) and is used in this study. The upper

bound on prediction risk for RVM is therefore given

by

prediction risk6Rempirical

� 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dof log N=dof

� �
þ 1

h i
� log H=4

� �

N

vuut

8
>><

>>:

9
>>=

>>;

�1

þ

ð26Þ

The value of confidence interval Q should be chosen

based on the number of samples. When the number of

samples is small, the confidence level is set low,

whereas when the number of samples is large, the

confidence level is set high. Vapnik (1995)

recommended the following rule for choosing the

confidence interval, and was used in this study

H ¼ min
4ffiffiffiffi
N
p ; 1

� 	
ð27Þ

The upper bound on prediction risk as estimated by

SRM principle for sinc data and Marana site data are
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Fig. 7 Estimation of prediction risk using Bayes information
criterion (BIC) for the approximation of sinc function by RVM
with varying kernel width rkernel
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shown in Figs. 9 and 10, respectively. The results from

sinc data suggest that for the value of a1 = 1 and a2 = 1

as suggested in literature, the estimated prediction risk

could capture the region of sudden drop, but increases

only for very small values of rkernel. However, we

found that the estimated prediction risk closely follows

the results of bias–variance analysis for a1 = 2 and

a2 = 1. The results from Marana site data also indicate

that SRM principle can be useful in finding values of

rkernel for which RVM model is neither very complex

nor very simple. In fact, results obtained from SRM

principle are very similar to those obtained from BIC

estimate of prediction risk.

5.4 Structure of data

The kernel function, used in a model such as Eq. (1),

can be visualized as mathematical formulation for the

notion of similarity in input space of x (Scholkopf and

Smola 2002; Vapnik 1998). In the context of Gaussian

processes, kernel function is often interpreted as a

covariance function that encodes our knowledge of

how observations at different points of input space are

related (Rasmussen and Williams 2006; Scholkopf and

Smola 2002). Since RVMs also belong to the family of

Gaussian processes (Tipping 2001), this interpretation

can provide a way for selecting kernel width (rkernel).

The Euclidean distance in the input space (x) beyond

which the dependent variable (y) ceases to have any

significant correlation can provide a reasonable esti-

mate for the value of kernel width. This strategy has

been reported to give satisfactory results in the context

of SVM regression (Asefa et al. 2004).

The correlogram for sinc data and Marana site data

are shown in Figs. 11 and 12, respectively. For sinc

data, the correlation goes to zero at approximately 2.5

separation distance. This value is close to the optimum

value as obtained from bias–variance analysis. It can be

seen from Fig. 12 that for Marana site data, the esti-

mated value of rkernel from correlogram and optimum

RBF kernel obtained from Bayes information criterion

and SRM principle are in close agreement.

In an attempt to explain the regularization capabil-

ity of kernel methods, Smola et al. (1998) argue that

kernels act as a filter in frequency domain. For exam-

ple an RBF kernel with a large kernel width will act as

a low-pass filter in frequency domain, attenuating

higher order frequencies and thus resulting in a smooth

function. Alternatively, an RBF kernel with small

kernel width will retain most of the higher order fre-

quencies leading to an approximation of a complex

function by the learning machine. This interpretation

provides yet another way of determining kernel width.

It is widely acknowledged in the field of signal pro-

cessing that the frequency of optimal filter should

match the frequency distribution of the signal to be

constructed (Scholkopf and Smola 2002). Thus, if we

know the distribution of data in frequency domain we

can construct an appropriate kernel such that it filters

out spurious frequencies of the data.

Power spectrum of sinc data and Marana site data

along with the power spectrum of the optimal kernel as

obtained from previous analyses are shown in Figs. 13

and 14, respectively. It is evident from the figure that

the chosen kernels are effective in filtering out low

power high frequency signals. These signals can be

attributed to the noise present in data. This interpre-

tation of kernel as filters in frequency domain can also

be used for designing anisotropic kernels. Figure 14

shows the power spectra in two orthogonal directions

(X and Y) for the Marana site data. The similarity in

these figures suggests that the kernel function should

be isotropic in this case.

6 Results

The procedures described in Sect. 5 were tried on

many datasets of different size and dimensionality, and

the RVM performance was found to be qualitatively

similar. For brevity, the values of rkernel obtained for

electrical conductivity measurements at Marana site

along with sinc data are presented in Table 1. It is

evident from the tabulated results that there exists a

range of appropriate values for RVM kernel width

rkernel. This is in agreement with the findings of Wang
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et al. (2003) that the generalization performance of

kernel methods (SVM in their case) remains stable

within a certain range of rkernel values. It also corrob-

orates the findings of bias–variance analysis discussed

in Sect. 4. The results further indicate that the ranges

of rkernel obtained from various methods generally

tend to overlap. Based on many different datasets, the

performance of BIC and SRM principles in selecting

the value of rkernel appears to be promising.

Figures 15 and 16 illustrate the fitted surface ob-

tained from developed RVM model based on the value

of rkernel selected from above analysis. The RVM

performed reasonably well in approximating sinc

function (Fig. 15) and selected only 8 out of a total of

100 data points as relevant vectors. For electrical

conductivity values at the Marana site, the RVM

model considered only 11 vectors out of total 128

vectors as statistically relevant (Fig. 16a). The corre-
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sponding prediction variance surface shown in Fig. 16b

is quite revealing. Note that the high variance esti-

mates are associated with locations where the separa-

tion between observed values and model prediction is

large, as one would expect intuitively. Similarly, the

model variances tend to be larger for locations that

have little or no data support. It is worth mentioning

that the number of data points deemed relevant by

RVM depends on the complexity of the function to be

approximated. However, for the various datasets used

in this study, RVM typically chose less than 10% of

available data as relevant.

7 Concluding remarks

In this study the importance of kernel parameters in

generalization performance of RVMs was established

using bias–variance analysis. Following this, several

techniques for practical selection of kernel parameters
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Table 1 Range of Gaussian kernel width parameter r kernel for sinc data and electrical conductivity measurements at the Marana site
data obtained from different model selection methods

S. no. Method of kernel selection Range of rkernel

Sinc data Marana site data

1 Bias–variance analysis 1–3 –
2 Analytical leave-one-out cross-validation <3 50–250
3 BIC 1–3 150–300
4 SRM 1.5–4 150–250
5 Correlogram 1.5–2.5 150–200
6 Power spectrum 2–3 150–200
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were suggested. The effectiveness of the proposed

techniques was illustrated through application to syn-

thetic as well as real data sets using Gaussian kernels.

For clarity, the results are presented for small data sets

only. However, the proposed techniques are general,

and the same approach can be easily extended to other

forms of kernel functions. Further the proposed tech-

niques are applicable to both small and large hydro-

logic data sets.

Bias–variance analysis of RVMs suggested that

there exists a region of suitable values for RBF kernel

width rkernel over which both bias and variance have

low values. Outside this region, both bias and variance

increase resulting in poor generalization performance

of RVMs.

Maximizing the likelihood function to estimate

kernel parameters for RVMs have gained popularity in

spite of the fact that its implementation requires solu-

tion of highly complex nonlinear optimization prob-

lems. Results from this study indicate that in some

cases, estimation of kernel parameters by maximizing

the likelihood alone may result in over-fitting. Thus,

apart from maximizing the likelihood function, other

methods as mentioned here should be utilized.

Linear models have been the mainstay of statistical

learning for many decades. Consequently, a vast array

of tools is available for parameter selection in linear

models. In this work, linearity in the formulation of

RVMs was used to develop an analytical expression for

leave-one-out cross-validation. Further, linearity was

exploited to adopt analytical model selection methods

for use in RVMs. In particular BIC and Vapnik-

Chervonenkis (VC) generalization bounds were

demonstrated to yield satisfactory results in selection

of rkernel.

It is widely accepted that the form of kernel function

and its parameters depends on the structure of data.

The results from this study reveal that the correlogram

can be used to get a satisfactory range of rkernel in

context of RVMs also. The interpretation of kernels as

filters in frequency domain can not only help in

understanding the regularization property of kernels,

but can also be useful for designing anisotropic kernels.

Based on empirical studies with a variety of hydro-

logic data sets, we found that the following steps yield

reasonable value of rkernel and are therefore recom-

mend for practical hydrologic applications. (1) Pre-

liminary data analysis: this includes detecting outliers

and applying appropriate transformation to the data.

(2) Plotting correlogram or power spectrum of the data

to decide an approximate range of rkernel: for high

dimensional data where, relative importance of input

variables in estimating desired output varies, power

spectrum can be more useful. (3) Training RVM for

the chosen range of rkernel and estimating prediction

risk using BIC or SRM principle. (4) Selecting rkernel

corresponding to minimum value of prediction risk as

optimal value for kernel parameter. Our experience

suggests that the above steps yield satisfactory value of

rkernel and will make RVMs more amenable to

hydrologic applications.

Although RVMs are new to the field of hydrology,

they provide a promising alternative to many statistical

hydrologic problems because of their excellent gener-

alization properties. Besides this they have the added

advantage of probabilistic interpretation that yields
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prediction uncertainty. Therefore, several avenues

should be explored in order to make this technique

better-suited to a wide variety of hydrologic data. In

particular, incorporating and representing physics of

the hydrologic system into RVM learning, modifying

the RVM formulation to handle flexible priors, and

making the algorithm robust against outliers will

make RVMs more amenable to hydrologic problems.

Further studies by the authors will be directed at

addressing some of these issues.
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