
Abstract In the analysis of regionalized data, irregu-

lar sampling patterns are often responsible for large

deviations (fluctuations) between the theoretical and

sample semi-variograms. This article proposes a new

semi-variogram estimator that is unbiased irrespective

of the actual multivariate distribution of the data

(provided an assumption of stationarity) and has the

minimal variance under a given multivariate distribu-

tion model. Such an estimator considerably reduces

fluctuations in the sample semi-variogram when the

data are strongly correlated and clustered in space, and

proves to be robust to a misspecification of the multi-

variate distribution model. The traditional and pro-

posed semi-variogram estimators are compared

through an application to a pollution dataset.
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1 Introduction and scope of the work

Variogram analysis is a key step for modeling the

spatial distribution of regionalized data and is a

requirement in most applications concerned with spa-

tial interpolation or with uncertainty characterization

at unsampled locations, through either kriging or sim-

ulation techniques (Chilès and Delfiner 1999). The use

of semi-variograms for modeling spatially or tempo-

rally correlated data is popular in many disciplines in

the physical and engineering sciences, including

hydrology, mining and petroleum engineering, meteo-

rology, forestry, agricultural land management, soil

and environmental sciences. However, practitioners

are often confronted to difficulties in the calculation,

interpretation and posterior fitting of the sample semi-

variogram, especially when dealing with small datasets

or when the sampling pattern is highly irregular in

space.

The motivation of this work is to propose an alter-

native approach to the traditional semi-variogram

estimator, in order to reduce fluctuations in the esti-

mator and to ease variogram analysis. Henceforth, the

term fluctuation refers to the deviation between a

parameter calculated from a dataset (in the present

case, the sample semi-variogram) and its expected va-

lue (the theoretical semi-variogram) (Matheron 1989).

This definition makes sense if the attribute under study

is regarded as a realization of a random field {Z(x), x

2Rd} (in general, d = 1, 2 or 3).

In the following, we focus on the case of stationary

random fields, for which the finite-dimensional distri-

butions are shift-invariant (Matheron 1971). Under this

assumption, the semi-variogram between two variables

(Z(x),Z(x + h)) representing the values of the attri-

bute at locations x and x + h only depends on the

separation vector h:

cðhÞ ¼ 1

2
E ½ZðxÞ � Zðxþ hÞ�2
n o

: ð1Þ

In practice, this semi-variogram has to be estimated

from a finite set of data, corresponding to the values of
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the attribute monitored at given locations {x1,..., xn}. In

this respect, a common assumption is that the sampling

pattern is not preferential, i.e. the sampling density

does not depend on the data values.

The next sections give an overview of the tradi-

tional semi-variogram estimator and the current

alternatives to it, and propose a new estimator con-

sisting of a weighted average of the squared data and

products of paired data values. The weights are

determined so as to account for the spatial clustering

of the data and the redundancy in their values. The

traditional and weighted semi-variograms are then

compared through the analysis of a few sampling

patterns and finally applied to a case study in envi-

ronmental science.

2 Tools for variogram analysis

2.1 Traditional sample semi-variogram

For h 2 Rd, let N(h) be the subset of {1,..., n} such that

" i 2N(h), {xi, xi + h} � {x1,..., xn} and let n(h) be the

cardinal of N(h); in particular, n(0) = n. The traditional

semi-variogram estimator is defined by substituting an

arithmetic average for the expected value in Eq. 1

(Matheron 1971):

ĉðhÞ ¼ 1

2nðhÞ
X

i2NðhÞ
½ZðxiÞ � Zðxi þ hÞ�2: ð2Þ

The estimator in Eq. 2 is unbiased, i.e. its expected

value is equal to the theoretical semi-variogram

(Eq. 1), and is currently the most widespread in prac-

tice. Since most applications of variogram analysis deal

with uneven sampling patterns, lag vectors are usually

binned to form lag classes, i.e. tolerances are intro-

duced on the norm and on the orientation of h. The use

of tolerances deteriorates the quality of the semi-vari-

ogram estimator and may introduce biases. We will

momentarily pass over this problem, which will be

tackled again when examining the weighted sample

semi-variogram in the next section.

Despite its unbiasedness, the traditional sample

semi-variogram (Eq. 2) is sensitive to the occurrence of

extreme data values, to data sparsity and to irregular

sampling patterns, in particular in the presence of

clusters of data (Armstrong 1984; Srivastava and

Parker 1989; Rivoirard 2001; Kovitz and Christakos

2004). Alternative tools are therefore sometimes pre-

ferred in geostatistical studies. The main ones are

presented and discussed in the following subsections.

2.2 Robust and resistant semi-variogram estimators

An estimator is said to be ‘robust’ if it is efficient under

a given statistical model and still performs well when

the available data do not conform to this model. In

contrast, the concept of ‘resistance’ is model-free and

means that the estimator is not affected by a (even

large) change in a few data values.

Robust and/or resistant semi-variogram estimators

are generally related to one of the following ap-

proaches or a combination of them: (1) to replace the

average operator in Eq. 2 by a quantile operator

(Armstrong and Delfiner 1980; Dowd 1984; Genton

1998); (2) to replace the squared increments by incre-

ments of lower order, such as the absolute increments

or their square roots (Cressie and Hawkins 1980;

Genton 1998); (3) to clip large increment values, or (4)

to calculate the sample semi-variogram of a nonlinear

transform of the original data, e.g. of their logarithms

(Armstrong 1984; Rivoirard 1987). The resulting semi-

variogram estimators are less sensitive to the presence

of extreme data values than the traditional estimator

and are helpful to ‘clean up’ a sample semi-variogram

affected by outliers.

A model of the bivariate distributions of the random

field {Z(x), x 2Rd} is needed to rescale the aforemen-

tioned estimators and ensure that their expected values

match the theoretical semi-variogram. In general,

bivariate normality is assumed, although other types of

distributions may be considered (Emery 2005a).

However, should the bivariate distribution model be

incorrect, the semi-variogram estimators would be

biased (inaccurate).

2.3 Covariance and correlogram

Alternatively, one may be interested in other mea-

sures of spatial continuity, such as the covariance

function and the correlogram, from which the theo-

retical semi-variogram can be derived. Several esti-

mators of the covariance and correlogram have been

proposed in the geostatistical literature (Journel and

Huijbregts 1978; Cressie and Glonek 1984; Isaaks and

Srivastava 1988, 1989). All of them make use of an

estimate of the prior mean of the random field {Z(x),

x 2 Rd} and, concerning the correlogram, of its prior

variance. However, the uncertainty in the true mean

and variance is ignored, which introduces a bias

(Cressie 1993, p. 71). Corrections to such a bias may

be considered if the data are mutually independent, a

usually unrealistic assumption when dealing with

regionalized data.
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2.4 Noncentered covariance

Rivoirard et al. (2000) suggest the use of the noncen-

tered covariance to estimate the semi-variogram, by

putting:

~cðhÞ ¼ 1

n

X
i2Nð0Þ

ZðxiÞ2 �
1

nðhÞ
X

j2NðhÞ
ZðxjÞZðxj þ hÞ: ð3Þ

This estimator avoids estimating the prior mean

value and is unbiased. It constitutes an alternative to

the traditional sample semi-variogram and may some-

times outperform it. For instance, suppose that the data

are mutually independent (pure nugget effect) with

mean zero. Let us introduce their successive moments:

8k 2 N; 8x 2 Rd; mk ¼ E½ZðxÞk�: ð4Þ

Assume that the two sets {Z(xj), j 2N(h)} and

{Z(xj + h), j 2N(h)} are disjoint (i.e. the tail datum of

a pair is never the head datum of another pair), which

implies that n(h) is less than or equal to n/2. Under

this condition, the fluctuation variances of the tradi-

tional sample semi-variogram (Eq. 2) and of the semi-

variogram estimated via noncentered covariance

(Eq. 3) are:

var½ĉðhÞ� ¼ ð2nðhÞ þ 1Þm2
2 þm4

2nðhÞ � c2ðhÞ;

var½~cðhÞ� ¼ ðn� 1Þm2
2 þm4

n
þ m2

2

nðhÞ � c2ðhÞ:
ð5Þ

The difference between both variances simplifies into:

var½ĉðhÞ� � var½~cðhÞ� ¼ ½n� 2nðhÞ�ðm4 �m2
2Þ

2n nðhÞ ; ð6Þ

which is nonnegative since n ‡ 2 n(h). This result

indicates that, if the correlations between data are low,

the traditional sample semi-variogram is likely to

present greater fluctuations around the theoretical

model than the estimator based on the noncentered

covariance, which should therefore be preferred in

practice. A comparative study of these two semi-

variogram estimators (Eqs. 2, 3) in the context of

spatially correlated data will be made further on.

2.5 Weighted sample semi-variogram

The idea of weighting data pairs in semi-variogram

calculation is first due to Omre (1984), who introduced

an estimator of the form:

cwtðhÞ ¼
1

2

X
i2NðhÞ

xi½ZðxiÞ � Zðxi þ hÞ�2: ð7Þ

Several methods for determining the weights {xi, i

2N(h)} have been proposed by Omre (1984), Rivoirard

(2001), Richmond (2002) and Kovitz and Christakos

(2004), based on the geometrical configuration of the

available data. The weighted semi-variogram (Eq. 7) is

unbiased as soon as the weights assigned to the data

pairs add to one. Distributional assumptions are re-

quired if one wishes to determine the weights mini-

mizing the fluctuation variance, i.e. the variance of the

difference between the estimator cwt(h) and its ex-

pected value c(h). For instance, Emery and Ortiz

(2005) examined the case of a Gaussian random field

{Z(x), x 2Rd} and defined a system of linear equations

to derive the ‘‘optimal’’ weights.

3 On a more general form of weighted semi-variogram

3.1 Principle

Let us expand the traditional semi-variogram estimator

in Eq. 2 as follows:

ĉðhÞ ¼ 1

nðhÞ
X

i2NðhÞ

ZðxiÞ2 þ Zðxi þ hÞ2

2

� 1

nðhÞ
X

j2NðhÞ
ZðxjÞZðxj þ hÞ:

ð8Þ

This expression is comparable to the estimator

based on the noncentered covariance defined in Eq. 3,

except that the first term (corresponding to the nonc-

entered covariance at lag zero) is not estimated from

all the data, but only from a subset corresponding to

the paired data at lag h. The basic idea of this work is

to seek a more general semi-variogram estimator of the

form

c�ðhÞ ¼
X

i2Nð0Þ
xiZðxiÞ2 þ

X
j2NðhÞ

kjZðxjÞZðxj þ hÞ: ð9Þ

Henceforth, this estimator will be referred to under

the generic name ‘‘weighted sample semi-variogram’’

or ‘‘declustered sample semi-variogram’’. Note that the

estimator in Eq. 7 is a particular case of Eq. 9. To

make c*(h) as accurate and precise as possible, the

weights {xi, i 2 N(0)} and {kj, j 2 N(h)} will be

determined in order to minimize the mean squared

fluctuation:
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E ½c�ðhÞ � cðhÞ�2
n o

: ð10Þ

3.2 Derivation of the optimal weights

The previous criterion amounts to looking for an

unbiased estimator and to minimizing the fluctuation

variance. Unbiasedness implies the following con-

straints on the sum of weights:

X
i2Nð0Þ

xi ¼ 1;

X
j2NðhÞ

kj ¼ �1:
ð11Þ

Under this condition, the fluctuation variance is

varfc�ðhÞ � cðhÞg ¼ Efc�ðhÞ2g � cðhÞ2: ð12Þ

To express the expected value of the squared esti-

mator, let us introduce the vectors X ¼ ðx1; . . . ;xnÞT
and K ¼ ðk1; . . . ; knðhÞÞT; as well as the matrices M1, M2

and M12 defined for any quadruple of indices (i, i¢, j, j¢)
2N(0)2 · N(h)2 by:

M1ði; i0Þ ¼ E½ZðxiÞ2Zðxi0 Þ2�
M12ði; jÞ ¼ E½ZðxiÞ2ZðxjÞZðxj þ hÞ�
M2ðj; j0Þ ¼ E½ZðxjÞZðxj þ hÞZðxj0 ÞZðxj0 þ hÞ�:

ð13Þ

It comes:

Efc�ðhÞ2g ¼ XTM1Xþ 2XTM12Kþ KTM2K: ð14Þ

Minimization subject to the unbiasedness con-

straints (Eq. 11) leads to the following system of linear

equations, in which l1 and l2 are Lagrange multipliers,

and 0m (resp. 1m) is a column vector with m entries equal

to 0 (resp. 1):

M1XþM12Kþ l1 ¼ 0n

MT
12XþM2Kþ l2 ¼ 0nðhÞ

1T
n X ¼ 1

1T
nðhÞK ¼ �1:

ð15Þ

To solve this system of equations, one needs to

specify a multivariate distribution model so as to ex-

press the matrices of fourth-order moments (Eq. 13).

A first example, which is widely used in the geostatis-

tical simulation of continuous attributes, is that of a

stationary multivariate Gaussian distribution with

mean zero and covariance function C(h). In such a

case, for any set of locations {xa, xb, xd, xe} (not nec-

essarily distinct), one has (Isserlis 1918; Triantafyllop-

oulos 2003):

E½ZðxaÞZðxbÞZðxdÞZðxeÞ� ¼ Cðxa � xbÞCðxd � xeÞ
þ Cðxa � xdÞCðxb � xeÞ
þ Cðxa � xeÞCðxb � xdÞ:

ð16Þ

A second example of interest is that of a multivariate

gamma random field {Z(x), x 2 Rd} with shape para-

meter 0.5, obtained by squaring a stationary standard

Gaussian random field {Y(x), x 2Rd}. The fourth-order

moments of the former are eighth-order moments of the

latter and can be expressed in the following fashion

(Isserlis 1918; Triantafyllopoulos 2003):

E½ZðxaÞZðxbÞZðxdÞZðxeÞ�
¼ E½Y2ðxaÞY2ðxbÞY2ðxdÞY2ðxeÞ�

¼ 2
X
ðI;JÞ

Y4

k¼1

qYðxik � xjkÞ;
ð17Þ

in which the sum is calculated over all the possible

pairs of subsets I = {i1, i2, i3, i4} and J = {j1, j2, j3, j4}

such that I \ J = ˘ and I [ J = {a,a,b,b,d,d,e,e}. In

Eq. 17, qY(h) stands for the covariance function of the

Gaussian random field {Y(x), x 2Rd}; the covariance of

the gamma random field {Z(x), x 2 Rd} is twice the

square of this function: C(h) = 2qY(h)2.

3.3 Comments

1. The problem of the ‘‘optimal’’ estimation of semi-

variogram weights is similar to that of estimating

the expected value of a random field by ordinary

kriging, using a weighted average of the data val-

ues (Matheron 1971, p. 127). Here, instead of a

first-order moment, one estimates a second-order

moment of the random field from two types of

information (the squared data values and the

products of paired data values), leading to an or-

dinary cokriging-type system of linear equations.

2. The proposed semi-variogram estimator (Eq. 9)

should not be used in the scope of non-stationary

models, in particular intrinsic models (with an

infinite variance) or models with drifts. In the

former case, the expected value of the semi-

variogram estimator (Eq. 9) and of its square

(Eq. 14) may not be finite. In the latter case, the

expression of the theoretical semi-variogram
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(Eq. 1) is no longer valid (the variance of the

increment should be used instead of the expected

squared increment) and the semi-variogram esti-

mator (Eq. 9) is likely to be biased.

3. From the multivariate Gaussian and gamma

examples, it is seen that the determination of the

weights (Eqs. 15, 16, 17) requires knowledge of

the covariance function C(h), which is precisely the

purpose of semi-variogram calculation. To break

the deadlock, a prior covariance model must be

assumed, for instance the one derived from tradi-

tional variogram analysis. To avoid that the result

is sensitive to the prior model, a sequential ap-

proach could be used, in which the covariance

obtained at a current step becomes the prior model

of the subsequent step. The rate of convergence of

such an approach is still unknown to a great extent,

although some experiments made by the author

indicate that few iterations (less than 5) may suffice

in practice (see last section for a case study).

4. Even if the traditional semi-variogram shows no

interpretable structure and one chooses a pure

nugget covariance as an initial guess, the proposed

approach may lead to a non-uniform weighting of

the data pairs. Indeed, data pairs that share one

datum (e.g. the tail datum of a pair is also the head

datum of another pair) are partially redundant and

are likely to be down-weighted with respect to the

other pairs.

5. Likewise, one has to choose a type of multivariate

distribution in order to express the fourth-order

moments (Eq. 13) and to calculate the optimal

weights. The choice of such a multivariate distri-

bution may be guided by further considerations,

for instance it is reasonable to decide on a multi-

variate Gaussian distribution if the goal of the

geostatistical study is to perform multigaussian

kriging or simulation. Otherwise, the type of mul-

tivariate distribution is an arbitrary decision of the

practitioner and is used as a reference for ‘‘declu-

stering’’ the sample semi-variogram: this approach

is as valid as using a declustering algorithm based

on the geometrical configuration of the data (Ri-

voirard 2001; Richmond 2002). Note that the de-

clustered semi-variogram may become imprecise if

the multivariate distribution model is ill suited to

the available data, although it will always remain

unbiased because of constraints (Eq. 11).

6. The proposed approach provides an estimate of

the semi-variogram and, at the same time, an

estimation variance that measures the expected

amplitude of the sample semi-variogram fluctua-

tion (Eq. 12). Such a variance accounts for the

number of pairs considered in semi-variogram

calculation and for the spatial redundancies be-

tween these pairs, and can be used for fitting a

semi-variogram model by weighted least squares

(Chilès and Delfiner 1999, p. 109).

7. The methodology is easily applicable if the

number of data and data pairs involved in semi-

variogram calculation is relatively small (say,

n + n(h) < 1,000), for which the system of linear

equations (Eq. 15) can be solved by matrix inver-

sion. This situation corresponds to the case of small

datasets and is the most critical in practical appli-

cations for inferring the semi-variogram. When the

number of data increases, the solution to system

(Eq. 15) can be approximated by iterative algo-

rithms (Greenbaum 1997), using for instance the

weights corresponding to the traditional sample

semi-variogram as the initial guess.

8. If tolerances on vector h are used, the semi-vario-

gram estimator (Eq. 9) becomes:

c�ðhÞ¼
X

i2Nð0Þ
xiZðxiÞ2þ

X
j2NðhÞ

kjZðxjÞZðxjþhjÞ; ð18Þ

where {hj, j 2N(h)} are vectors falling into the

tolerance region attached to h. In this case, the

conditions in Eq. 11 do no longer guarantee that

the estimator is unbiased, as the weighting may not

be uniform over the tolerance region. Table 1

Table 1 Optimal weights {kj,j 2N(h)} assigned to the products of paired data

Data pair Optimal weight of the data pair without
additional constraint (Eq. 19)

Optimal weight of the data pair with
additional constraint (Eq. 19)

Tail data
abscissa

Head data abscissa

0 9 – 0.8424 – 0.4419
0 10 – 0.0243 – 0.0698
0 11 – 0.1334 – 0.4883

One-dimensional configuration with four locations at coordinates 0, 9, 10 and 11, a lag distance ||h|| equal to 10 and a lag tolerance of
five. The reference model is a multivariate Gaussian distribution with an exponential covariance function with practical range 30
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shows a simple example for which the pairs (Z(xj),

Z(xj + hj)) with jhjj[jhj are down-weighted with

respect to the other pairs. To ensure unbiasedness,

an additional constraint must be introduced:

X
j2NðhÞ

kjCðhjÞ ¼ �CðhÞ; ð19Þ

and a third Lagrange multiplier has to be included

in the system of equations (Eq. 15). Note that the

additional constraint (Eq. 19) is useless and would

entail a singularity in the system if C(hj) is the

same for all j 2 N(h). This happens if the sampling

pattern is regular, if no tolerance on vector h is

used, or if all the data pair separations {||hj||,j

2N(h)} are greater than the range of the assumed

covariance model.

4 Comparison of the traditional, covariance-based

and weighted semi-variogram estimators

In this section, the performances of four semi-vario-

gram estimators are compared for two configurations in

R2: a regular sampling over a square domain with size

L and a highly clustered sampling over the same do-

main (Fig. 1). Each configuration contains exactly 100

data. The estimators under study are the traditional

sample semi-variogram (Eq. 2), the estimator based on

the noncentered covariance (Eq. 3), the optimally

weighted sample semi-variogram (Eqs. 9,18), and the

‘‘classical’’ weighted sample semi-variogram (Eq. 7)

based on univariate declustering weights obtained with

the cell method (Isaaks and Srivastava 1989). Con-

cerning the latter, the weight assigned to each data pair

has been chosen proportional to the product of declu-

stering weights of the two data, as suggested by Ri-

voirard (2001) and Kovitz and Christakos (2004). For

the regular sampling case, this estimator matches the

traditional semi-variogram estimator and therefore will

not be examined. Instead of the fluctuation variance,

the estimators will be compared on the basis of the

fluctuation relative standard deviations (square root of

the fluctuation variances divided by the semi-variogram

value), which are dimensionless.

4.1 Multivariate Gaussian and gamma distribution

models

For each configuration shown in Fig. 1, two models are

examined: the standard multivariate Gaussian and

gamma distributions (Eqs. 16, 17). Both models are

associated with an isotropic exponential covariance

function, therefore only omni-directional sample semi-

variograms are calculated (i.e. with a 90� tolerance on

the azimuth). Sensitivity to the practical range of the

covariance function is performed by determining the

fluctuation relative standard deviations for three range

values: L/10, L/2 and L.

The results (Figs. 2, 3) call for the following com-

ments.

1. The optimally weighted sample semi-variogram

substantially improves the traditional sample semi-

variogram when the spatial correlations are

Fig. 1 Two-dimensional sampling patterns: a regular sampling, b highly clustered sampling
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Fig. 2 Fluctuation relative standard deviations for the tradi-
tional semi-variogram (solid lines), semi-variogram based on
noncentered covariance (dash dots) and optimally weighted
semi-variogram (dashed lines), associated with a regular sam-

pling in R2. Semi-variograms are calculated for lags multiple of
the sampling mesh (L/10), with no tolerance on the lag distance
and a 90� tolerance on the azimuth
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Fig. 3 Fluctuation relative standard deviations for the tradi-
tional semi-variogram (solid lines), semi-variogram based on
noncentered covariance (dash dots) and weighted semi-vario-
grams (dashed lines), associated with a clustered sampling in R2.
Weighted semi-variogram (1) uses univariate declustering

weights obtained with the cell method, while weighted semi-
variogram (2) uses the optimal weights derived from Eq. 15.
Semi-variograms are calculated for lags multiple of L/10, with a
tolerance on the lag distance equal to half the lag and a 90�
tolerance on the azimuth

398 Stoch Environ Res Ris Assess (2007) 21:391–403

123



important (large ranges) and when the sampling

pattern is highly irregular (clustered sampling). In

the other cases (weak correlations between data or

even sampling pattern), improvements are not so

significant, so that in practice there is no need for

declustering the sample semi-variogram.

2. To a lesser extent, the optimally weighted sample

semi-variogram (Eq. 9) also outperforms the

weighted semi-variogram estimator based on uni-

variate declustering weights (Eq. 7). However, the

latter still performs relatively well in the presence

of clustered sampling and strong spatial correla-

tions (Fig. 3) and is far much simpler to calculate

than the former. It therefore constitutes a shortcut

approach to variogram declustering, although its

efficiency is not guaranteed: for instance, one ob-

serves in Fig. 3 that the relative error for the first

lag is sometimes higher than that obtained with the

traditional semi-variogram estimator.

3. The comparison between the Gaussian and gamma

models proves that fluctuations in the sample semi-

variogram are much more important in the latter

than in the former model, which reflects that semi-

variogram inference is more arduous when dealing

with skewed and long-tailed distributions.

4. As mentioned earlier, the semi-variogram estima-

tor based on the noncentered covariance (Eq. 3)

may outperform the traditional sample semi-

variogram (Eq. 2), in particular when the correla-

tions between data are small (short ranges).

However, it turns out to be less precise at small lag

distances when the data are significantly correlated

and highly clustered in space.

4.2 Robustness to model misspecification

The weighting of the data and data pairs in the pro-

posed semi-variogram estimator (Eqs. 9,18) depends

on the choice of a prior multivariate distribution

model. In this subsection, a simple exercise is carried

out to analyze the implications of a model misspecifi-

cation in the precision of the weighted sample semi-

variogram derived from Eq. 15.

Figure 4 displays the relative standard deviations of

the semi-variogram fluctuation when a standard mul-

tivariate Gaussian model is chosen by default, whereas

the distribution of the available data actually corre-

sponds to a multivariate gamma model. Both models

are assumed with the same correlogram (isotropic

exponential) and the two previous sampling patterns

are examined. Overall, little difference is observed in

the results in comparison to the ones displayed

in Figs. 2 and 3 for the gamma model. In general,

despite the model misspecification, the weighted semi-

variogram remains more precise than the traditional

and covariance-based semi-variograms, which suggests

that the former is still a worthy alternative when the

type of multivariate distribution is uncertain.

This observation may be explained by the fact that

the true (gamma) and assumed (Gaussian) multivari-

ate distributions have similar features: both of them

correspond to diffusion-type random fields with gra-

dational transitions in space (Chilès and Delfiner

1999, p. 402) and with the same correlogram model,

which turns out to characterize well enough the spa-

tial continuity of the available data. Of course, the

conclusion may not hold if a flagrant error in

the multivariate distribution model is made, i.e. if the

spatial continuity of the data is completely mistaken.

However it should be stressed that, even in such a

case, the weighted sample semi-variogram remains an

unbiased estimator of the theoretical semi-variogram

and can therefore complement the traditional sample

semi-variogram.

5 A case study in environmental science

An application of the previous concepts to a real

dataset is now presented. This application deals with

soil pollution at a smelter site located near Dallas,

Texas. To assess the extent of the pollution and its

impact on human health, a sampling campaign has

been performed under guidance of the U.S. Environ-

mental Protection Agency. Specifically, a set of 180 soil

samples have been collected over a circular area with a

radius of about 1.7 km (Fig. 5a), in each of which the

lead concentration has been measured. Although the

spacing between sample locations is quasi-regular, one

notices that several areas are not well recognized, in

particular flooded areas to the northeast of the pollu-

tion plume and in the eastern part of the smelter site.

Further details on how the samples have been collected

as well as a listing of the data coordinates and values

are reported in Isaaks (1984).

The histogram of the lead concentrations is posi-

tively skewed and long-tailed, with more than 70% of

the data below 300 mg/kg and less than 6% above

2,000 mg/kg (Fig. 5b; Table 2). The maximum mea-

sured concentration is 10,400 mg/kg and is located in a

junkyard on the extreme east part of the sampled area.

Assume that the goal of the geostatistical analysis is

to simulate the lead concentrations over the smelter

site, in order to assess the probability that these con-

centrations (upscaled to remediation units) exceed a
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Fig. 4 Fluctuation relative standard deviations for the tradi-
tional semi-variogram (solid lines), semi-variogram based on
noncentered covariance (dash dots) and optimally weighted
semi-variogram (dashed lines). Parameters for semi-variogram

calculation are the same as in Figs. 2 and 3. The weights are
calculated by assuming a multivariate Gaussian distribution,
while the true model corresponds to a multivariate gamma
distribution with shape parameter 0.5
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regulatory threshold. This requires defining a prior

model that represents the multivariate distribution of

lead concentrations. In this respect, the aforemen-

tioned multivariate gamma model is deemed adequate,

as it is associated with skewed univariate distributions

and with an asymmetry in the spatial correlation of the

indicators around the median threshold (Emery 2005b,

p. 428): high values are spatially more continuous than

low values and tend to cluster in space, as in the map

displayed in Fig. 5a.

The first step of the study consists in transforming

the original lead values into a set of data with a stan-

dard gamma univariate distribution with shape

parameter 0.5. The reader is referred to Emery (2005b,

2006) for details and implementation aspects on the

gamma scores transformation and on the conditional

simulation of multivariate gamma random fields.

A preliminary covariance or semi-variogram model

is required as an initial guess for describing the spatial

correlation of the gamma scores data. Since no clear

anisotropy can be detected, an omni-directional sample

semi-variogram is calculated for lags multiple of the

average sampling mesh (230 m), with a tolerance

on the distances of half the lag. This sample semi-

variogram is fitted by a nugget effect with a sill equal to

0.05 plus an isotropic exponential model with a sill

equal to 0.55 and practical range of 1,850 m (Fig. 6a).

Having specified the multivariate distribution

(multivariate gamma) and its parameters (prior semi-

variogram model), one can determine the weighted

semi-variogram estimator for the same lag distances

and tolerances as in Fig. 6a. The idea is then to update

the semi-variogram model, to use it as an initial guess

for re-calculating the weighted sample semi-variogram,

and to loop until convergence is reached. In the present

case study, three iterations suffice to obtain the final

model (Fig. 6d). Although its shape is similar to that of

the preliminary model shown in Fig. 6a, it has a lower

sill, lower nugget effect and a significantly lower

practical range (1,000 m only).

6 Conclusions

The optimally weighted sample semi-variogram com-

plements the traditional sample semi-variogram and

may improve the determination of the spatial structure

of a set of regionalized data. It is unbiased and

produces the smallest fluctuations under a given

multivariate distribution model. In practice, the

Fig. 5 Posting of the available data (a) and histogram of lead
concentrations (b). The histogram has been declustered using the
cell method, with a reference cell size of 600 m · 600 m. The

last bar of the histogram corresponds to lead concentrations
greater than 2,000 mg/kg

Table 2 Basic univariate statistics of lead concentrations before and after cell declustering

Mean
(mg/kg Pb)

Variance
(mg/kg Pb)2

Lower quartile
(mg/kg Pb)

Median
(mg/kg Pb)

Upper quartile
(mg/kg Pb)

Unweighted 430.4 9.90 · 105 78.75 159.0 314.5
Declustered 492.7 1.73 · 106 79.51 162.1 315.5
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determination of the optimal weighting requires

defining the type of multivariate distribution and its

parameters, in particular a prior covariance model. The

latter can be determined after a traditional variogram

analysis, while the former is chosen according to the

intended goal of the study (e.g. if multigaussian kriging

or simulation are considered, then a multivariate

Gaussian distribution is appropriate). Alternatively,

the multivariate distribution may constitute only a

‘‘reference’’ for representing the expected spatial

behavior of the available data.

The proposed methodology is relevant and helpful

for variogram analysis when the following conditions

are met:

1. one looks for a stationary model, for instance in

view of using ordinary kriging;

2. the sampling pattern is irregular;

3. there is a significant spatial correlation, hence

there exist redundancies between data values;

4. the number of data and data pairs is less than a few

thousands, a situation that often arises in envi-

ronmental sciences. The determination of the

optimal pair weighting is impractical with large

datasets, as CPU requirements to solve Eq. 15

become excessive. However, the weighted sample

semi-variogram may still be used for inferring the

spatial structure at small distances, for which one

generally has fewer data pairs.

Although it accounts for spatial redundancies

between data values, the weighted sample semi-

variogram approach does not necessarily solve prob-

lems associated with the occurrence of extreme values

(outliers) and with preferential sampling patterns, e.g.

those for which high-value areas are over-sampled with

Fig. 6 Omni-directional sample semi-variograms (dashed lines)
and associated models (solid lines) for the gamma score data.
The weighted semi-variograms have been calculated by assuming

a multivariate gamma distribution with shape parameter 0.5 and
by using the semi-variogram fitted at the previous iteration as a
prior model
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respect to other areas. Such preferential samplings

remain a critical issue in structural analysis, as they

often entail biases in the sample semi-variogram

(Omre 1984, p. 111) and interfere with one’s under-

standing of the spatial continuity.
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David M, Journel AG, Maréchal A (eds) Geostatistics for
natural resources characterization. Reidel, Dordrecht, pp
107–125

Richmond A (2002) Two-point declustering for weighting data
pairs in experimental variogram calculation. Comput Geosci
28(2):231–241. DOI 10.1016/S0098-3004(01)00070-X

Rivoirard J (1987) Computing variograms on uranium data. In:
Matheron G, Armstrong M (eds) Geostatistical case studies.
Reidel, Dordrecht, pp 1–22

Rivoirard J (2001) Weighted variograms. In: Kleingeld WJ,
Krige DG (eds) Proceedings of the 6th international geo-
statistics congress. Geostatistical Association of Southern
Africa, Cape Town, pp 145–155

Rivoirard J, Simmonds J, Foote KG, Fernandes P, Bez N (2000)
Geostatistics for estimating fish abundance. Blackwell, Ox-
ford, p 206

Srivastava RM, Parker HM (1989) Robust measures of spatial
continuity. In: Armstrong M (ed) Geostatistics. Kluwer,
Dordrecht, pp 295–308

Triantafyllopoulos K (2003) On the central moments of the
multidimensional Gaussian distribution. Math Sci
28(2):125–128

Stoch Environ Res Ris Assess (2007) 21:391–403 403

123


	Reducing fluctuations in the sample variogram
	Abstract
	Introduction and scope of the work
	Tools for variogram analysis
	Traditional sample semi-variogram
	Robust and resistant semi-variogram estimators
	Covariance and correlogram
	Noncentered covariance
	Weighted sample semi-variogram
	On a more general form of weighted semi-variogram
	Principle
	Derivation of the optimal weights
	Comments
	Tab1
	Comparison of the traditional, covariance-based �and weighted semi-variogram estimators
	Multivariate Gaussian and gamma distribution models
	Fig1
	Fig2
	Fig3
	Robustness to model misspecification
	A case study in environmental science
	Fig4
	Conclusions
	Fig5
	Tab2
	Fig6
	Acknowledgment
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


