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Abstract There is an urgent need for the development
and implementation of modern statistical methodology
for long-term risk assessment of extreme hydrological
hazards in the Caribbean. Notwithstanding the inevita-
ble scarcity of data relating to extreme events, recent
results and approaches call into question standard
methods of estimation of the risks of environmental
catastrophes that are currently adopted. Estimation of
extreme hazards is often based on the Gumbel model and
on crude methods for estimating predictive probabilities.
In both cases the result is often a remarkable underesti-
mation of the predicted probabilities for disasters of large
magnitude. Simplifications do not stop here: assump-
tions of data homogeneity and temporal independence
are usually made regardless of potential inconsistencies
with genuine process behaviour and the fact that results
may be sensitive to such mis-specifications. These issues
are of particular relevance for the Caribbean, given its
exposure to diverse meteorological climate conditions.

In this article we present an examination of predictive
methodologies for the assessment of long-term risks of
hydrological hazards, with particular focus on applica-
tions to rainfall and flooding, motivated by three data
sets from the Caribbean region. Consideration is given
to classical and Bayesian methods of inference for an-
nual maxima and daily peaks-over-threshold models.
We also examine situations where data non-homogene-
ity is compromised by an unknown seasonal structure,
and the situation in which the process under examina-
tion has a physical upper limit. We highlight the fact
that standard Gumbel analyses routinely assign near-

zero probability to subsequently observed disasters, and
that for San Juan, Puerto Rico, standard 100-year pre-
dicted rainfall estimates may be routinely underesti-
mated by a factor of two.

Keywords Bayesian analysis Æ Caribbean Æ Extreme
value theory Æ Hydrological hazards Æ Risk assessment

1 Introduction

The Caribbean has a complex and often volatile mete-
orological system, which makes extreme value analysis
an essential tool for planning purposes, but also difficult
to implement in a non-superficial way. This is compli-
cated further by the fact that, as in any statistical anal-
ysis, there is a dichotomy between making sampling
errors as small as possible through efficient inference,
but adopting a way of managing uncertainty in a way
that does not diminish genuine and unavoidable effects
due to random variation. There are many examples of
extreme value analyses in which this dichotomy has been
resolved by going to one extreme or the other: either by
ignoring sampling error completely, or by publishing
results whose estimation errors are so large as to be
worthless in practice. Neither of these approaches is
satisfactory, and we aim to show in this article, via
application to a number of datasets drawn from the
Caribbean, the advantages in taking a more balanced
approach to handling statistical uncertainties in extreme
value analyses.

The basis of the techniques we describe have been
developed and proposed by Coles and Pericchi (2003)
and Coles et al. (2003), although we extend this work
here substantially. Taken as a whole the techniques offer
a simple, yet powerful, tool with which to tackle the
modelling of extremes. This is one motivation for the
present article. Our other motivation, by pooling a
number of analyses of datasets drawn from the Carib-
bean, is to emphasize the potential benefits to regional
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planners in adopting the approach to extreme value
modelling that we are advocating. The datasets we
consider are water levels in Lago de Managua, Nicara-
gua, and daily rainfall levels at the international airports
of both Maiquetia, Venezuela and San Juan, Puerto
Rico. A common aspect of each of these datasets is that,
in one way or another, what might be regarded as
standard extreme value analyses prove unsatisfactory. In
fact, for two of the series, standard analyses of historical
data under predict by orders of magnitude the likelihood
of events that subsequently occurred.

In many respects the techniques that we adopt are
simply those of good statistical practice. We seek to use
all relevant data, model components of non-homoge-
neity, and take proper account of uncertainty when
making predictions. The novelty arises from the fact that
the unique aspects of an extreme value analysis make
each of these aspects more challenging to implement in
practice. However, developments in the theory of ex-
tremes over the last 20 years or so have led to repre-
sentations of extremal processes which afford the
possibility to utilize more data than is possible with
classical representations. Moreover, by moving from,
say, annual to daily maxima of a process, the opportu-
nity (not to say the need) arises of modelling within-year
variations. These classes of extreme value model are
integral to our methodology. The other main theme of
our approach is a Bayesian re-interpretation of extreme
value analyses. This offers a number of advantages
including the possibility to add additional information
in the form of a prior distribution. However, the main
advantage is the ease and flexibility with which measures
of uncertainty can be handled. In particular, we argue
that a predictive version of the conventional return level
plot is the most constructive way to present and inter-
pret the results of an extreme value analysis. This type of
analysis relies heavily on Markov chain Monte Carlo
methods of computation (for example, Coles and
Pericchi 2003 for a related analysis, or Robert and Ca-
sella 2004; Gilks et al. 1996 for more general MCMC
methods), but these are found to be relatively simple to
implement in our examples.

In Sect. 2 we discuss the various methods available
for the analysis of extremes of environmental processes.
In Sects. 3–5 respectively we consider three cases of
interest in the Caribbean: water volume in Lago de
Managua, the Vargas rainfall tragedy, and data from
San Juan International Airport. Finally, we conclude
with a discussion in Sect. 6.

2 Methods

The central asymptotic theory of extremes is summa-
rized by a series of results on weakly mixing stationary
series (Leadbetter et al. 1983, for example). Denoting a
stationary series by X1,X2,..., which in our setting might
represent daily rainfall measurements, for example, it is
usual to characterize the behaviour of the extremes of

this process by considering the limiting behaviour of a
block maxima of size n

Mn ¼ max
i¼1;...;n

fXig: ð1Þ

Under some regularity conditions, normalizing se-
quences {an} and {bn} can be found such that

PrfðMn � anÞ=bn � zg ! GðzÞ ð2Þ
as n fi ¥, for a non-degenerate distribution function G.
In this case G must belong to the generalized extreme
value (GEV) family of distributions, having distribution
functions of the form:

GðzÞ ¼ exp � 1þ n
z� l

r

� �h i�1=n� �
; ð3Þ

defined on the set {z:1+n(z�l)/r>0}, where l and r
are location and scale parameters respectively. The
shape parameter n determines the type of tail behaviour:
the cases n<0, n>0 and n=0 correspond to the Wei-
bull, Fréchet and Gumbel sub-families of distributions
respectively. In the latter case, the distribution function
is interpreted as the limit as n fi 0 of (Eq. 3), leading to

GðzÞ ¼ exp � exp � z� l
r

� �n oh i
; �1\z\1: ð4Þ

The mathematical argument leading to the limits
Eq. 3 and Eq. 4 provides a convenient strategy for
modelling extremes. The population distribution is un-
known, though its extremal characteristics determine the
values of l, r and n in Eq. 2. Interpreting the limit as an
approximation to the distribution of Mn for large, but
finite, n in Eq. 1 and absorbing the unknown constants
an and bn into the parameters l and r, immediately gives
rise to a working family for the distribution of block
maxima Mn. Partly for historical reasons, and partly
because the limit family for many well-known distribu-
tions is the Gumbel distribution, a tradition has devel-
oped in which the Gumbel distribution itself is used as
the complete family with which to model block maxima
rather than the full GEV family. We argue in subsequent
sections that such a strategy runs very high risks unless
there is external information which supports the Gumbel
choice.

A typical application of model Eq. 3 involves fitting it
to a series of annual maximum observations (effectively
assuming n=365 in Eq. 2 in the case of daily observa-
tions). Obviously, the choice of annual blocks is made
for convenience, but experience also suggests it is often a
reasonable choice in terms of validity of the asymptotic
approximation. Many techniques are available for
parameter estimation; our own preference is for likeli-
hood-based methods. These enable modifications to the
model to handle such features as non-stationarity, and
also lead to a Bayesian formulation of extreme value
problems which we will argue is the most natural for this
type of analysis.
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Regardless of inferential method, an unavoidable
obstacle to obtaining an accurate inference is the limited
amount of data that can be incorporated in the block
maximum analysis. It is common to have series with as
few as 10 years’ of annual maxima, and rare to have
more than 50 years. Often, models estimated with such
short series have large sampling errors, especially on
extrapolation. (As a side point, we note that many ex-
treme value analyses resolve this problem by not
reporting sampling errors. However, this simply hides
rather than solves the difficulty.)

Efficient methods of model estimation may offer
slight improvements in terms of reducing sampling er-
ror, but substantial changes can only be brought about
by the inclusion into the model of additional informa-
tion. One possibility, made feasible by the adoption of a
Bayesian analysis, is the use of expert prior information,
based perhaps on a knowledge of the underlying physi-
cal dynamics of a process. A complementary possibility
is to try to use more of the available data than just the
block maxima in drawing inference on extremal behav-
iour. It may well be, for example, that several extreme
events arise in a given year, while only the largest of
these would contribute to an analysis of annual maxima.
This limitation of the block maxima approach has led to
the development of modelling techniques based on an
alternative threshold exceedance characterization of ex-
tremes.

Denoting the level of a process on (say) day j by Xj,
one interpretation of the GEV limit Eq. 3, obtained by
Taylor expansion of n log (F(x))=log G(x) about the
point x (Coles 2001; Leadbetter et al. 1983, for example),
is that

F ðxÞ ¼ P ðXj\xÞ ¼ exp � 1

d
1þ n

x� l
r

� �n o�1=n� �
;

x > u;
ð5Þ

for a sufficiently large threshold u, where d=365.25
corresponds to the (average) number of days in a year.
Note we substitute d in place of n in this setting to
highlight our use of ‘‘daily’’ data. This model is consis-
tent with the GEV distribution for annual maxima in the
sense that if Eq. 5applies for the daily observations, then
Eq. 3 is the distribution of the annual maxima. The
advantage of this representation however is that all
observations exceeding the threshold u contribute to
inference on the extreme value parameters, for which we
again favour likelihood-based methods. The choice of
threshold u represents a trade-off between bias (due to
failure of the asymptotic model at low thresholds) and
variance (due to few exceedances of a high threshold). In
practice there are simple diagnostic tools to assist with
this choice (Davison and Smith 1990).

For most environmental applications the assumption
of daily observations having a stationary distribution is
not sustainable (Smith 1989; Walshaw 2000, for exam-
ple). In this case model Eq. 5 suggests a natural gener-
alization to

FjðxÞ ¼ P ðXj\xÞ ¼ exp � 1

d
1þ nj

x� lj

rj

� �� ��1=nj
" #

;

x > uj:

ð6Þ
In this case parametric or seasonally-blocked models can
be proposed for daily variations in extreme value
behaviour as represented by the potential variations in
the parameters lj, rj and nj. It may also be appropriate
to allow the threshold uj to be time-dependent in this
case. For such models likelihood-based inference repre-
sents the only feasible inferential method (see Ramesh
and Davison 2002 for a local-likelihood approach).

Taking model Eq. 5 as a simple example, the likeli-
hood function based on data x1,...,xn takes the form

Lðl; r; nÞ ¼
Yn

i¼1
gðxi; l; r; nÞ ð7Þ

where

gðx; l; r; nÞ ¼ F ðuÞ if x � u
dF
dx ðxÞ if x > u:

�
ð8Þ

That is, the likelihood contribution is of the form Eq. 6
for x 2(u,¥), or is censored at F(u) for observations that
fall below the threshold, u. Maximum likelihood esti-
mation corresponds to the selection of parameters that
maximize Eq. 7. Standard asymptotic theory of the
likelihood function then yields immediate approxima-
tions to standard errors and confidence intervals.

An alternative to maximum likelihood, which offers
several advantages, is a Bayesian analysis. In this case,
starting with a prior density p (l,r,n) and a likelihood
function L(l,r,n), the posterior density is obtained as

f ðl; r; njx1; . . . ; xnÞ / Lðl; r; nÞpðl; r; nÞ ð9Þ
The main objections to a Bayesian analysis are the
requirement to specify a prior distribution, and
the computational difficulties involved in calculating the
proportionality constant implied by Eq. 9. In our
experience, however, posterior inferences are usually
robust to prior choice provided the prior is reasonably
flat, corresponding to an absence of genuine prior
knowledge. On the other hand, if genuine prior knowl-
edge is available, the opportunity to exploit such
knowledge through the Bayesian paradigm is actually an
advantage. For the second aspect, although computa-
tion is more demanding than maximum likelihood,
modern simulation-based techniques such as Markov
chain Monte Carlo provide simple procedures to effect
Bayesian inferences.

The conventional way to summarize an extreme value
analysis is by means of a return level plot. Based on a
standard annual maximum analysis, the m-year return
level zm satisfies

P ðZ � zmÞ ¼ 1� 1

m
; ð10Þ
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corresponding (loosely) to the level that is expected to
occur once every m years. A return level plot is a plot of
zm against m, usually on a logarithmic scale, with
parameters replaced by their maximum likelihood esti-
mates.

The Bayesian analogue of the return level is given by
the solution of

P ðZ � zmjHÞ ¼ 1� 1

m

where

P ðZ � zjHÞ ¼
Z

P ðZ � zjl; r; nÞPðl; r; njHÞdðl; r; nÞ

is the so-called predictive distribution of the annual
maximum distribution given the historical data and
prior information denoted by H:Return levels can again
be plotted as a function of m, with the advantage of
providing a more conservative estimate having ac-
counted for the uncertainty which derives from the
parameter estimation.

3 Lago de Managua, Nicaragua

Nicaragua is a country that is accustomed to cata-
strophic events. It has suffered the destruction by
earthquake of its capital, Managua City, twice in a 40-
year period. Belonging to a tropical ecosystem, its cli-
mate produces great variations in precipitation through
which the country alternates between cycles of drought
and flooding. The tropical cyclones that traverse the
Atlantic every year frequently cross Nicaragua due to its
geographical location, thereby routinely provoking
extensive flooding and landslides. In 1982, tropical
storm Alleta caused severe flooding in the western part
of the country, in 1990 flooding of the Bambana and

Prinzapolka rivers affected 100,000 people along its
banks, and in 1998 the rains brought by Hurricane
Mitch caused human and material damages that were
without precedent in the history of climactic disasters in
Nicaragua.

We focus on water levels of Lago de Managua, Ti-
pitapa, determined by precipitation runoff in the vicin-
ity. In particular, the cumulative effects of extreme storm
events lead to extreme water levels in the lake. Figure 1
shows annual maxima of water levels in the lake for the
period 1926–1998 excluding the years 1948–1955 for
which the data are missing (it is perhaps worth noting
that missing-data are quite naturally handled in a
Bayesian analysis). The outstanding extreme level in
1998 is attributed to the effects of Hurricane Mitch. The
volume of water produced by Mitch is in the order of
4,000 Hm3, more than double the previously observed
maximum volume induced by tropical storm Alleta.

These data were originally analyzed in an unpub-
lished technical report by Córdova and Camachov
(1999). Finding the Gumbel model to provide a poor fit
to the entire series, their approach was to eliminate the
smaller observations until a reasonable fit with the
Gumbel distribution was obtained (Kite 1977). Such
manipulation, however, leaves doubts about the validity
of the Gumbel model for an arbitrary annual maximum,
and it is our preferred approach to consider the broader
GEV family as a candidate model.

A comparison of return level estimates based on the
Gumbel and GEV models, and using both maximum
likelihood and Bayesian methods of inference, is shown
in Fig. 2. For the Bayesian analysis we assumed the
noninformative prior p(l,r,n)� 1 defined over the sup-
port of the parameters, simulating random draws from
the posterior Eq. 9 via random-walk Metropolis-Has-
tings updates (Hastings 1970). The return level plots are
obtained by solving Eq. 10, or the Bayesian analogue,
for m. In Fig. 2 the Gumbel model is confirmed as being
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Fig. 1 Lago de Managua,
Nicaragua, annual maximum
monthly volume. Scale is
measured in Hm3. Open circles
denote the 1982 tropical storm
Alleta, and the clear outlier
Hurricane Mitch in 1998
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woefully inadequate: according to this model the return
level of the 1998 event is around 800,000 years. In
contrast, the GEV model fares much better: the esti-
mated shape parameter of n̂ ¼ 0:21enables a curvature
in the return level plot that reflects much better the
empirical information. The standard error of 0.11 for
this estimate implies that at usual levels of significance
the Gumbel hypothesis of n=0 should be rejected.

The correspondence between data and model is even
clearer from the Bayesian analysis, reflecting the
importance of using a model that does not impose a
strong form of tail behaviour and an inferential para-
digm in which uncertainties are properly managed and
illustrated. A numerical summary of various return
period estimates is given in Table 1.

Despite the improvements that we believe accrue
from both the retention of the full GEV family and the
use of a Bayesian inference, there remain some caveats
about the accuracy of the final analysis. First, our model
assumes a stationarity in process behaviour. Though this
is supported by the data for the period of observation
(for example, through rejection of models with time-
dependent parameters (lt,rt, nt), or with oscillation
indices as predictors), slight changes in general climate
may result in dramatically different behaviour for the
regional hurricane climate, and consequent changes in

extremal characteristics (Goldenberg et al. 2001). For
the Venezuelan data in the next section, assumptions of
time-constant parameters are not reasonable for the
analysis. Secondly, we have assumed the validity of the
GEV model for annual maxima of monthly observa-
tions. In this case we are effectively adopting the GEV
limit with just n=12 in Eq. 1. Though the empirical
evidence is that the model fits reasonably well, the
strength of the asymptotic basis for this model should be
treated with some caution.

4 Vargas, Venezuela (Maiquetia International Airport)

As stressed in Sect. 2, it is essential in an extreme value
analysis to exploit all relevant information. In the pre-
vious example, there was precious little data, and so little
advantage in digressing from a conventional annual
maximum type of analysis (apart from the importance of
using a GEV family and the preference for a Bayesian
analysis). In this section we consider a different example
based on measurements of rainfall recorded at Mai-
quetia International Airport, Venezuela, for the period
1951–1999 (see Fig. 3). Daily observations are available
from 1961, making a threshold-type analysis available.
There is particular interest in this series since the event
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Fig. 2 Return levels for
expected annual maximum
volume of Lago de Managua,
excluding Hurricane Mitch,
using both Gumbel and GEV
models. Both Bayesian and
MLE estimates are shown

Table 1 Predicted volumes for Lago de Managua at 50, 100, 500 and 1000 year return levels in Hm3, under various annual maxima
models. Final columns denote the expected return period (years) for an event the size of Mitch, and the negative log likelihood evaluated
at the maximum likelihood estimate

Model Return period (years) Return period of Mitch (4,031 Hm3) �log (L)

50 100 500 1000

MLE Gumbel 1,394 1,583 2,021 2,209 823,570 462.94
Bayes Gumbel 1,384 1,584 2,051 2,255 343,042
MLE GEV 1,786 2,204 3,445 4,121 916 460.74
Bayes GEV 1,967 2,574 4,887 6,532 311
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which occurred on 15th December 1999, at over
410 mm, was almost three times greater than any pre-
viously recorded and was regarded as virtually impos-
sible by previously published models for the process.

Analyses of these data were previously performed in
an unpublished technical report by González and Cór-
dova (2000). Inference based on fitting the Gumbel
model to annual maxima prior to 1999 suggested a re-
turn period of some 17 million years for an event of the
magnitude which subsequently occurred in 1999. Coles
and Pericchi (2003) then suggested a number of modi-
fications which, in combination, led to an analysis which
gives much greater credibility to the 1999 event—see
Table 2. The fundamental changes were: replacement of
the Gumbel with the GEV model; adoption of a
Bayesian inference; use of the daily data; handling of
seasonality. The first two of these aspects correspond to
the changes we made in the analysis in the previous
section, but the extra information now available in the
daily data enabled the analysis to be taken further.

A particular feature of the analysis by Coles and
Pericchi (2003) was the specification of a two-season
structure to the rainfall process, but with non-specified
seasonal changepoints. Specifically, the model assumed
two seasons I1and I2;within each of which the tail
parameters of the model Eq. 6 were assumed constant,
with the intervals themselves being treated as unknown
quantities. Based on the pre-1999 data, it emerged that
whilst an event of the magnitude of that of December
1999 was indeed exceptional, its level was by no means

unforeseeable—the predictive probability of such an
event at some point during a 50-year observation period
was around 1/3.

This analysis is open to criticism of the assumption of
a two-season structure, despite accordance to the mete-
orology of the region consisting of both ‘wet’ and ‘dry’
seasons. If the modelling of seasonal-structure is crucial
in properly accounting for fluctuations in the process,
sensitivity of any conclusions to imposing a two-season
structure should be examined.

Here we re-evaluate the analysis of Coles and Pericchi
(2003) by lifting the restriction on a known and fixed
number of seasons. Adopting a Bayesian model aver-
aging framework we analysed a model containing rsea-
sons, where r is now a random variable upon which we
require to make inference. While requiring a more
technical computational implementation to handle the
non-constant dimensionality of the problem (Green
1995), we are able to effectively integrate over our
uncertainty in the number of seasons.

Following Eq. 7, the log-likelihood for an r-season
model is given by

lðl;r;nÞ/�
Xr

j¼1

(X
i2Ir

 
logrjþð1þ1=njÞ

log

"
1þnj

xi�lj

rj

!�!
þny jIrj

n

"
1þnj

 
u�lj

rj

!�1=nj
#)

;

0
@

where l ¼ ðl1; . . . ; lrÞ; r ¼ ðr1; . . . rrÞ and
n ¼ ðn1; . . . ; nrÞ are now vectors of (random) length r,
jIrj is the number of days in season Ir; and ny is
the total number of years of observation. The prior
distribution, which we specify as
pðl; r; n; rÞ / pðrÞ

Qr
j¼1 pjðlj; rj; njÞ; is similarly defined

across all models. Apart from the non-constant dimen-
sionality, and a prior distribution of p(r�1)� Poisson(1)
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Fig. 3 Time series and
realizations against day of year
for the rainfall values recorded
in Venezuela. Rainfall is
measured in mm. Annual
maxima are represented by open
circles. Lower plot focuses on
extremes by containing only
events above 10 mm

Table 2 Expected return period (years) for an event the size real-
ized on 15th December, 1999, in Vargas, Venezuela

MLE Bayes

Gumbel 17,600,000 2,170,000
GEV 4,280 660
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on the unknown number of seasons, which has the
advantage of a prior mean value coincident with the
meteorological belief in a two-season structure, all other
details are similar to those adopted in the original
analysis. We note that adopting an improper prior
pj(lj,rj,nj)P 1 becomes problematic in this multi-model
setting, as unknown normalizing constants then define
the posterior model probabilities. Instead we specify
pj(lj,rj,nj)=N(0,sl)·log N(m,sr)·N(0,sn), and adopt
sensible values for sl, sr, sn and m for which repeated
simulations indicate an insensitivity in the posterior to
their specification.

A summary of results in terms of inference on sea-
sonal structure, that is the posterior p(r�1|x) having
seen the data, x, is given in Table 3. By any measure the
evidence against a homogeneous structure across the
entire year is overwhelming, as is the evidence against a
structure more complicated than three-seasonal. It

would seem then that the data entertains only the pos-
sibility of two or three seasons per year. Furthermore,
measured in terms of posterior probabilities of the
number of seasons, the support for a three-seasonal
structure is considerably weaker than that of a two-
seasonal structure, although this is less the case when the
1999 event is included as specific parameter combina-
tions are required to account for the magnitude of the
event. Moreover, even if uncertainty in the number of
seasons is maintained, results are largely unchanged: see
Table 4 and Fig. 4. This suggests that a two-seasonal
structure, as proposed in the meteorological literature
and adopted by Coles and Pericchi (2003), actually has
considerable empirical support within the historical
data, strengthening the validity of the original analysis.

5 San Juan, Puerto Rico (Luis Muñoz Marin International
Airport)

Given the apparent failure of the Gumbel model in each
of the two previous examples, its widespread use as the
basic model for annual maxima is disconcerting. An-
other example drawn from the Caribbean relates to
rainfall levels in Puerto Rico. The current estimation of
hazards in Puerto Rico (U.S. Department of Commerce
1961, Technical Paper No. 42 and its updates) still
mainly rests on the Gumbel model. However, on this
basis and using data prior to 1961, the 100-year return
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Fig. 4 Predictive return level
plots for the 2-seasonal and
r-seasonal models for Vargas,
Venezuela, both with and
without the 1999 event. The
2- and r-seasonal return levels
coincide almost exactly—the
two obvious curves correspond
to without (solid line) and with
the 1999 event respectively.
Points correspond to empirical
estimates

Table 3 Prior and posterior
model probabilities for number
of seasonal components

Model Number of seasons

1 2 3 4 5 6

Prior 0.368 0.368 0.184 0.061 0.015 0.003
Posterior excluding 1999 event 0.000 0.873 0.123 0.004 0.000 0.000
Posterior including 1999 event 0.000 0.584 0.381 0.034 0.002 0.000

Table 4 Return period estimates (years) for Vargas, Venezuela, of
410.4 mm using models with differing seasonal assumptions, both
including and excluding the 1999 event

Model Predictive return period of 410.4 mm

1999 Data excluded 1999 Data included

Homogeneous model 260.0 116.0
2 Season model 130.5 69.8
r Season model 129.6 69.6
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level maximum 24 h rainfall near the southern town of
Ponce, for example, was estimated in the range 12–14 in.
This falls excessively short of levels realized during the
rainstorms that caused the Barrio Mameyes landslide
disaster just northeast of the city. In particular, on 6–7
October 1985 over 22 in. of rainfall were recorded in one
24 h period. Just as with our previous examples, such
levels were regarded as virtually impossible by the
Gumbel analysis.

In a more illustrated example, Fig. 5 shows 35 years
of annual maxima of daily rainfall recorded at Luis
Muñoz Marin International Airport, San Juan, Puerto
Rico. These data form a subset of a much larger archive
of rainfall figures recorded at a number of locations
within the island by the local National Weather Service.
Although no exceptionally extreme rainfall or flooding

events are apparent in the airport location data set, the
island’s geographical location places it within a high risk
area for such events. Analyses similar to those of the
Lago de Managua data result in fitted return level plots
(Fig. 6) that again display wide variation in predictive
estimates of future extreme events. Modelling with the
generalized extreme value distribution in a Bayesian
framework again offers the shortest estimates for
recurrence of events of fixed magnitudes. Table 5 enu-
merates a number of predicted maximum rainfall esti-
mates for a range of return periods, for all models. Even
for return periods of 50 and 100 years, commonly used
as design parameters in engineering applications, the
predicted extreme rainfall levels vary considerably. Of
particular interest are estimates of the 100-year return
period, which is itself a standard infrastructure design
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Fig. 5 San Juan annual
maxima of daily rainfall.
Rainfall is measured in mm
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Fig. 6 Return levels for San
Juan annual maxima data using
both Gumbel and GEV
distributions. Both Bayesian
and maximum likelihood
estimates are shown
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parameter. In this case the Gumbel maximum likelihood
estimate is roughly half that of the Bayesian predictive
estimate based on the GEV.

It must be admitted that it is rather easy to adopt our
position of advocating the use of a Bayesian GEV
model, since this will generally tend to a more conser-
vative estimate than either maximum likelihood or
Gumbel model approaches. Practitioners with design
responsibility cannot always afford this luxury since the
cost of designing structures to overly conservative levels
may be unaffordable in practice. For example, the pre-
dictive 1000-year return level of around 1,700 mm for
daily rainfall might well be regarded as completely
unrealistic on physical grounds, and predicting beyond
this level may not make sense. This argument has been
strongly expressed to us by hydrologists (personal

communication). A comprehensive approach would be a
formal cost-based decision analysis, but this is beyond
the scope of this article. Instead, we explore the conse-
quences of imposing a predetermined physical limit on
the model.

One method is to restrict the GEV family to negative
values of n. However, whilst this would result in boun-
ded distributions, the upper tail of these distributions is
restrictively light. Moreover, this option would be rather
in opposite spirit to the approaches we have adopted
and advocated so far. An alternative, that we introduce
here is the use of a GEV model truncated at some
maximum process bound, m. That is, we propose a
distribution function of the form

G�ðzÞ ¼
Gðz;l;r;nÞ
Gðm;l;r;nÞ z\m

1 else;

�
ð11Þ

where G(Æ;l,r,n) is the GEV distribution defined by
Eq. 3. The dependence of the numerator and the nor-
malizing constant in the denominator upon the model
parameters is highlighted.

The advantage is that while bounded, the tails of the
distribution can be relatively heavy up to the upper limit.
Despite failure of the asymptotic support such a
departure from the GEV family implies, this model ap-
pears to provide a reasonable fit to the data, particularly
for truncation at levels well in excess of the realized data
observations. Parameter values for model Eq. 11 ob-
tained by maximum likelihood and from posterior
marginal means are displayed in Table 6, and the
resulting return levels in Fig. 7. Nonetheless, we main-
tain that this type of modelling should be used only with
extreme caution, when the physical limit of a process is
absolutely bounded by some known level. In situations
where it is believed that a process may be bounded, but
the level of such a bound is unknown, it is almost cer-
tainly better to work with the full GEV family which

Table 5 Expected rainfall (mm) for San Juan at 50, 100, 500 and
1000 year return levels for both Gumbel and GEV models, using
maximum likelihood and Bayesian frameworks

Model Return period (years)

50 100 500 1000

Gumbel MLE 208 232 288 312
Gumbel Bayes 221 249 315 343
GEV MLE 266 326 507 609
GEV Bayes 307 416 938 1,404

Table 6 Maximum likelihood estimates (MLE) and Bayesian pos-
terior means with standard errors for model parameters in standard
and truncated GEV models, for annual San Juan data

l r n

MLE 68.06 (6.40) 30.83 (5.30) 0.24 (0.20)
Truncated MLE 68.05 30.82 0.24
Bayes 68.67 (6.64) 34.26 (6.32) 0.27 (0.22)
Truncated Bayes 68.60 (6.77) 34.38 (6.60) 0.30 (0.25)
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Fig. 7 Return levels for San
Juan annual maxima data using
both standard and truncated
GEV distributions. Both
Bayesian and maximum
likelihood estimates are shown
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admits both the possibility that there is no such bound
and the uncertainty in the value of a bound even if it
exists.

6 Discussion

This article discusses models and inference methodolo-
gies for long-term risk assessment of hydrological haz-
ards in the Caribbean. We have presented analyses of
three sites in the Caribbean region, two of which have
witnessed major catastrophes in the form of Hurricane
Mitch in Nicaragua, and the Vargas Tragedy in Vene-
zuela, each regarded as virtually impossible events under
a standard analysis. Both of these environmental and
humanitarian disasters emphasize the need for a critical
examination of the standard methods used to generate
statistics upon which policy decisions are made. The
third site, Puerto Rico, experiences a similar meteorol-
ogy as the other locations, but in recent history has not
suffered a truly devastating hydrological event. It is
therefore of great concern that in this case the Bayesian
GEV model predicts precipitation events almost twice
that of the maximum likelihood Gumbel model at the
100-year return period level.

An essential part of our analysis is the adoption of a
Bayesian framework—a natural statistical approach
that enables the array of uncertainties involved in pre-
dictive inference to be probabilistically incorporated into
the analysis, as well as enabling the application of
models that are intractable under classical frameworks.
Previous quantitative precipitation studies in Puerto
Rico have proposed support for a Bayesian approach,
for example Caster et al. (2001), although in this case the
focus was not on extremes. Additionally, Krzysztofo-
wicz (1983) and Olson et al. (1995) both demonstrate
that the Bayesian approach can substantially outper-
form classical predictive methods in rainfall analyses.
Moreover, the bias that can result from extreme events
causing missing data is most easily handled within a
Bayesian analysis (Carter et al. 2001). This phenomenon
actually arose in the Venezuelan case study where one
extreme event broke the rainfall recording equipment,
and as a consequence the extreme event of the following
day was unrecorded (Coles et al. 2003).

We have also suggested that the reduction of model
complexity based on often unwarranted assumptions
can have profound effects on inference, especially in the
prediction of long-term risks. This situation arises both
with the adoption of the standard Gumbel distribution
over the generalized extreme value distribution, and the
case where an overly restrictive a priori seasonal struc-
ture is assumed in the case of non-stationary (e.g. daily)
data. Thus there is a clear challenge in the case of sys-
tems such as Puerto Rico and the Virgin Islands, where
the complex local meteorology may prohibit detailed
expert opinion on seasonal structure.

To summarize, in this article we hope to have high-
lighted via example serious shortcomings inherent in

procedures currently adopted for risk assessment of ex-
treme hydrological hazards in the Caribbean. We have
advocated more flexible inferential methods for the
analysis of the extremes of environmental processes,
which due to enhanced generality are less susceptible to
flawed inferences. However, there clearly remains an
urgent need for a detailed systematic and exhaustive
review of such standard procedures, particularly for
implementation in the Caribbean region.
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