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AbstractWe present a procedure for the segmentation of
hydrological and environmental time series. The proce-
dure is based on the minimization of Hubert’s segmen-
tation cost or various generalizations of this cost. This is
achieved through a dynamic programming algorithm,
which is guaranteed to find the globally optimal seg-
mentations with K=1, 2, ..., Kmax segments. Various
enhancements can be used to speed up the basic dynamic
programming algorithm, for example recursive compu-
tation of segment errors and ‘‘block segmentation’’. The
‘‘true’’ value of K is selected through the use of the
Bayesian information criterion. We evaluate the seg-
mentation procedure with experiments which involve
artificial as well as temperature and river discharge time
series.
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Introduction

In this note we present a dynamic programming (DP)
solution to the following time series segmentation prob-
lem: divide a given time series into several segments (i.e.
blocks of contiguous data) so that each segment is
homogeneous, while contiguous segments are heteroge-
neous (homogeneity is defined in terms of appropriate
segment statistics).

The problem of time series segmentation appears
often in hydrology and environmetrics (some times it is
called change point detection and estimation). In a pre-
vious paper (Kehagias 2004) we have addressed the
problem using a hidden Markov model(HMM) formu-
lation. The reader can consult (Kehagias 2004) for a

review of the literature on hydrological time series seg-
mentation; here we simply mention that both the current
work and (Kehagias 2004) have been motivated by
Hubert’s segmentation procedure (Hubert 1997, 2000);
we also note the recent appearance of (Fortin et al. 2004,
2004) (where time series segmentation is treated using
the shifting-means model and Markov Chain Monte
Carlo methods) and (Chen 2002; Sveinsson et al. 2003).

A review of the statistical and engineering literature
on change point detection and estimation is beyond the
scope of this paper. We simply refer the reader to the
excellent book (Basseville and Nikiforov 1993) which
contains a great number of useful references.

We consider hydrological time series segmentation as
a computational problem and our main concern is with
fast and efficient implementation1. We follow (and gen-
eralize) Hubert’s formulation of segmentation as an
optimization problem. The HMM approach we have
proposed in (Kehagias 2004) is quite fast but is not
guaranteed to produce the globally optimal segmenta-
tion. We have noted in (Kehagias 2004) that the DP
solution yields the globally optimal segmentation at the
cost of longer execution time. Here we attempt to
streamline the DP approach so that it is computationally
viable for time series of several thousand observations.
Hence the DP approach can be seen as an improvement
of Hubert’s procedure for the segmentation of time
series with multiple change points.

Dynamic programming has often been used in the
past for the segmentation of curves (Bellman 1961) and
waveforms (Jackson 2005; Kay 1998; Kay and Han,
unpublished manuscript; Pavlidis and Horowitz 1974).
We are not aware of any work on DP segmentation of
hydrological time series. DP has been used in compu-
tational biology for segmentation of DNA sequences
(see for example (Akaike 1974; Braun and Mueller 1998;
Braun et al. 2000) which apply to discrete valued se-
quences some algorithms similar to the one presentedAth. Kehagias (&) Æ Ev. Nidelkou Æ V. Petridis
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here). Interest in time series segmentation problems has
recently increased in the literature of data mining (see
Himberg et al. 2001; Keogh 2001 and, especially, Keogh
et al. 2003 which presents a good survey of segmentation
methods appearing in the data mining literature). In
some of these works it is claimed that DP is not a
computationally viable approach. The current paper
may serve as a partial rebuttal of such claims.

This paper is organized as follows. In Sect. 2 we
present a formulation (which closely follows Hubert) of
time series segmentation as an optimization problem. In
Sect. 3 we present the segmentation procedure. Some
segmentation experiments are presented in Sect. 4. In
Sect. 5 our results are summarized. Some mathematical
details are presented in Appendices 1, 2 and 3

Segmentation as optimization

The formulation and notation introduced in this Section
is heavily based on (Hubert 1997, 2000). A segmentation
of the integers {1, 2, ..., T} is a sequence t = (t0, t1, ...,
tK) which satisfy 0 ¼ t0\t1\� � �\tK�1\tK ¼ T : The
intervals of integers [t0+1, t1], [t1+1, ..., t2], ..., [tK�1
+1, tK] are called segments, the times t0, t1, ..., tK are
called segment boundaries or breaks and K, the number
of segments, is called the order of the segmentation. We
will denote the set of all segmentations of {1, 2, ..., T} by
T and the set of all segmentations of order K by T K :
Clearly T ¼ [T

K¼1T K : Denoting by card (Æ) the number of

elements of a set, we have card T Kð Þ¼ T�1
K�1

� �
and

card Tð Þ ¼
PT

K¼1 card T Kð Þ ¼ 2T�1:
In many applications a time series x1, x2, ..., xT is

given and we seek a segmentation of {1, 2, ..., T} which
corresponds to changes of the behavior of x1, x2, ..., xT
(in this case segment boundaries are also called change
points). This can be formulated as an optimization
problem. We define the segmentation cost J(t) as follows:

JðtÞ ¼
XK

k¼1
dtk�1þ1;tk

; ð1Þ

where ds,t (for 0 £ s < t £ T) is the segment error
corresponding to segment [s,t]. The optimal segmenta-
tion, denoted as bt ¼ bt0;bt1; . . . ;btK

� �
is defined as

bt ¼ argmin
t2T

JðtÞ

and the optimal segmentation of order K, denoted by

bt Kð Þ ¼ bt Kð Þ
0 ;bt Kð Þ

1 ; . . . ;bt Kð Þ
K

� �
; is defined as

bt Kð Þ ¼ argmin
t2T K

JðtÞ:

Obviously, the segment error ds,t depends on the data x1,
x2, ..., xT. A variety of ds,t functions can be used in (1).
In Sect. 3 we will introduce several such functions, all of
which will have the form (for 0 £ s < t £ T)

ds;t ¼
Xt

s¼s

xs � bxsð Þ2; ð2Þ

where bxs will be some regression estimate of xs, obtained
from the within-segmentdata xs, xs+1, ..., xt. Hence ds,t is
the sample variance, over the segment [s,t], multiplied by
(t � s). The special case

x̂s ¼
Pt

s¼s xt

t � sþ 1

(here x̂t is the segment-mean and corresponds to
regression by a constant) is used by Hubert (1997, 2000)
and other authors.

Given a particular ds,t function, we can find the
optimal segmentation by exhaustive enumeration of all
possible segmentations. But this is not computationally
practical because the total number of segmentations
increases exponentially in T. Hubert uses a branch-and-
bound approach to search efficiently the set of all pos-
sible segmentations. In [15, p.299] is stated that this
approach ‘‘currently’’ (in 2000) can segment time series
with several tens of terms but is not able ‘‘... to tackle
series of much more than a hundred terms ...’’ because of
the combinatorial increase of computational burden. As
will be seen in Sect. 3, dynamic programming allows the
computation of the optimal segmentation in time O(T2)
and yields in a few seconds the optimal segmentation of
time series with over a thousand terms.

Dynamic programming segmentation

The segment error function

A complete definition of segmentation cost requires the
specification of segment error ds,t for every (s,t) pair such
that 0 £ s < t £ T. We use linear regression to
introduce a quite general family of segment error func-
tions. Suppose that the time series x1, x2, ..., xT is gen-
erated by a process of the form

xs ¼ a1u1s þ a2u2
s þ � � � þ aM uM

s þ es;

where us
1, us

2, ..., us
M are appropriate input variables, es is

zero-mean white noise and the model parameters a1,a2,
..., aM remain constant within each segment but change
between segments (examples will be given presently). In
other words, we assume that within the k-th segment the
time series satisfies the relation (for s=tk�1+1, tk�1+2,
..., tk)

xs ¼ a1ku1s þ a2
ku2

s þ � � � þ aM
k uM

s þ es;

and ak
m (for m=1, 2, ..., M) are appropriate coefficients.

We define ds,t to be the error of the regression model
fitted to the samples xs, xs+1, ..., xt. If we assume [s,t] to
be a segment, an estimate of xs for s2[s,t] is given by
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bxs ¼ ba1
s;tu

1
s þ ba2

s;tu
2
s þ � � � þ baM

s;tu
M
s ; ð3Þ

where bam
s;t are the least squares estimates obtained from

xs+1, xs+2, ..., xt (hence bxs depends on s and t—this
dependence is suppressed in the interest of brevity).
Then the segment error is

ds;t ¼
Xt

s¼s

xs � bxsð Þ2; ð4Þ

where bxs is given by Eq. 3. Here are some specific
examples (many other choices of us

1, us
2, ..., us

M are pos-
sible).

1. Regression by constants: M=1, ut
1=1 and the model

is

xt ¼ a1k � 1þ et:

It is easy to check that in this case the optimal ba1
s;t is

given by ba1
s;t ¼

Pt
s¼s xs=ðt � sþ 1Þ; i.e. the empirical

mean; the corresponding segment cost is the within-
segment variance (multiplied by t�s).
2. Regression by linear functions: M=2, ut

1=1, ut
2=t

and the model is

xt ¼ a1k � 1þ a2k � t þ et: ð5Þ

3. Auto-regression: ut
1=xt�1, ut

2=xt�2, ..., ut
M=xt�M

and the model is

xt ¼ a1kxt�1 þ a2
kxt�2 þ . . .þ aM

k xt�M þ et:

When s and t are true segment boundaries, ds,t reflects
only data noise (for instance, if es were 0 for s=s, s+1,
..., t, then ds,t would also equal zero); when [s,t] straddles
two true segments, then ds,t also contains systematic
error (since we attempt to fit two regression relations
with one set of coefficients). Hence, smaller ds,t values
are associated with true segments.

What if [s,t] is a subset of a true segment? In general,
segmentation cost can always be reduced by splitting
true segments into sub-segments. In fact, we can make a
stronger statement. Denote by bJ Kð Þ the optimalseg-
mentation cost obtained by using segmentations with K
segments. In other words, we set

bJ Kð Þ ¼ min
t2T K

JðtÞ:

It is easily checked that K > K¢ impliesbJ Kð Þ � bJ K 0ð Þ [for every ds,t of the form (Eq. 4)]. As an
(extreme) example, note that bJ Tð Þ ¼ 0; this is obtained
from the trivial segmentation (0, 1, 2, ..., T), where every
segment contains a single sample. But this segmentation
does not convey any information about the structure of
the time series. Hence we must guard against using ‘‘too
many’’ segments. This is the problem of determining the
segmentation order, and it is a special case of model order
selection, a problem studied extensively in the statistical
literature. We will address this problem in Sect. 3.3.

We now present explicit formulas to compute ds,t for
all segments [s,t]. First, let us introduce some notation.
We write ut ¼ u1t u2

t . . . uM
t

� �
and

Xs;t ¼
xs

xsþ1
. . .t

2
4

3
5; bXs;t ¼

bxsbxsþ1
. . .bxt

2
664

3
775; Us;t ¼

us

usþ1
. . .
ut

2
664

3
775: ð6Þ

We also write As;t ¼ ba1
s;t ba2

s;t . . . baM
s;t

h i
: Finally,

when f is a vector, | f | is its Euclidean norm and we have

fj j ¼
ffiffiffiffiffi
f0f
p

(where ¢ denotes matrix transpose). Using the
above notation we have bxt¼utAs;t; bXs;t ¼ s;tAs;t and

ds;t ¼ Xs;t�bXs;t




 


2
¼ Xs;t�Us;tAs;t



 

2¼ Xs;t�Us;tAs;t
� �0

Xs;t�Us;tAs;t
� �

:

From the theory of least squares linear regression, we
know that

As;t ¼ U0s;tUs;t

� ��1
U0s;tXs;t: ð7Þ

The computation of ds,t for a particular segment [s,t]
requires the computation of the matrix products Us,t

¢
Us,t

and Us,t
¢
Xs,t; these require O(t�s) operations. Hence the

straightforward computation of ds,t for all possible seg-
ments [s,t] requires O(T3) computations.

However, we can reduce computation time. We now
present a recursive scheme which computes ds,t for all
possible [ s,t] in time O(T2). The correctness of this
scheme is proved in Appendix 1. We define

Qs;t ¼ U0s;tUs;t; Rs;t ¼ U0s;tXs;t: ð8Þ

Then we can rewrite Eq. 7 as

As;t ¼ Q�1s;t Rs;t: ð9Þ

We have (see Appendix 1)

Qs;tþ1 ¼ Qs;t þ u0tþ1utþ1; ð10Þ

Rs;tþ1 ¼ Rs;t þ u0tþ1xtþ1: ð11Þ

Furthermore, with dA=As,t+1�As,t, we have
(Appendix 1)

ds;tþ1 ¼ ds;t þ dA0Qs;tdA

þ xtþ1 � utþ1As;tþ1
� �0

xtþ1 � utþ1As;tþ1
� �

: ð12Þ

In short, we have the following algorithm, which
involves two loops and hence runs in O(T 2) time.

The dynamic programming algorithm

We now present the actual segmentation algorithm. The
motivation for this algorithm is the following. Consider
an optimal segmentation of x1 ,x2, ..., xt which contains
K segments and suppose its last segment is [s+1, t].
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Then the remaining K�1 segments form an optimal
segmentation of x1,x2, ..., xs. More specifically, if ct

(k) is
the minimum segmentation cost of x1,x2, ..., xt into k
segments, we have

c kð Þ
t ¼ c k�1ð Þ

s þ dsþ1;t:

This is a typical dynamic programming approach and
can be implemented by the following algorithm.

On termination, the algorithm has computed the

optimal segmentation cost cT ;K ¼ bJ ðKÞ ¼ mint2T K JðtÞ
and, by backtracking, the optimal segmentation

bt Kð Þ ¼ ðt Kð Þ
0 ; t Kð Þ

1 ; . . . ; t Kð Þ
K Þ; these quantities have been

computed for K=1, 2, ..., Kmax, in other words a se-
quence of minimization problems has been solved
recursively.

Selection of segmentation order

After having obtained the optimal segmentation for
every value of K, it remains to select the ‘‘correct’’ vaue
of K, i.e. the ‘‘true’’ number of segments. This is a dif-
ficult problem. It is a special case of the model selection
problem, which has been researched extensively and,
apparently, has not yet been solved satisfactorily (for
relatively recent reviews see (Chen and Gupta 1998;
Kearns et al. 1997)). Hubert’s solution to this problem
consists in testing, by the Scheffe criterion, the null
hypothesis that successive segments do not have signif-
icantly different means; he takes the true value K̂ to be
the largest K for which the null hypothesis can be re-
jected for segments k and k+1 (with k=1, 2, ..., K�1).
There are several difficulties with this approach. Some of
these are noted by Hubert (2000); in our opinion the
main difficulty is that successive samples are not inde-
pendent; also, it is not immediately obvious how to
generalize Scheffe’s criterion when the segment statistic
is not the mean.

We use a different approach, based on Schwarz’s
Bayesian information criterion (BIC). We define

eJ Kð Þ ¼ T log
bJ Kð Þ
T � 1

 !
þ RK log Tð Þ ð13Þ

(where RK is the number of parameters in the K-th
order model2) and take bK to be the value of K which
minimizes eJ Kð Þ: The general motivation for the use of
BIC can be found in (Schwarz 1978); a classical
application to change point problems appears in (Yao
1988). While BIC does not always yield a good esti-
mate of the true number of segments, in our experience
it performs much better than alternative criteria such as
Akaike’s (Auger and Lawrence 1989) and Ninomiya’s
(Ninomiya 2003); we discuss the issue further in
Sects. 4.5 and 5.

Segmentation experiments

In the following sections we present several experiments
to evaluate our algorithm.

In some of these experiments we use artificially
synthesized time series for which the correct segmen-
tation is known; hence we can form a very accurate
picture of the performance of our algorithm. More
specifically, when the correct segmentation of a time
series is known, the error of a hypothetical segmen-
tation can be evaluated using (among other measures)

Segment error computation
Input
The time series x1,x2, ..., xT;
the time series u1,u2, ..., uT.
Main
For s=1, 2, ..., T
Qs,s=us

¢
us

Rs,s=us
¢xs

As,s=Qs,s
�1
Rs,s

ds,s=0
For t=s,s+1, ..., T�1
Qs,t+1=Qs,t+ut+1

¢
ut+1

Rs,t+1=Rs,t+ut+1
¢ xt+1

As,t+1=Qs,t+1
�1

Rs,t+1

dA=As,t+1�As,t

ds,t+1=ds,t+dA¢Q s,tdA+| xt+1�ut+1A s,t+1|
2.

End
End

Dynamic programming segmentation
Input
The time series x1,x2, ..., xT;
the segment errors ds,t (0 £ s < t £ T);
the max number of segments Kmax.
Initialization
c0
(1)=0
For t=1, 2, ..., T
ct
(1)=d1, t
zt
(1)=0

End
Minimization
For K=2, ..., Kmax

c0
(K)=0
For s=1, 2, ..., T
For t=1, 2, ..., s�1
et,s=ct

(K-1)+dt+1,s

End
cs
(K)=min1 £ t £ s�1(et,s)
zs
(K)=arg min1 £ t £ s�1(et,s)

End
End
Backtracking
For K=1, 2, ..., Kmaxbt Kð Þ

K ¼ T
For k=K, K�1, ..., 1bt Kð Þ

k�1 ¼ z kð Þbt Kð Þ
kEnd

End

2For example, in the regression-by-constants model RK=2K (the
t1
(K), ..., tK�1

(K) , the parameters a1
(K), ..., a1

(K) and the standard deviationbr Kð Þ of et), in the regression-by-lines model RK=3K and so on.
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Beeferman’s segmentation metric Pk (Beeferman et al.
1999). A small value of Pk indicates low segmentation
error (Pk=0 indicates a perfect segmentation). Pk is
widely used for evaluation of text segmentation algo-
rithms but we believe it is a good measure for time
series segmentation as well. The definition of Pk is

given in Appendix 3; the interested reader can find
more details in (Beeferman et al. 1999).

In the remaining experiments we use some real-world
time series; while the correct segmentations are not
known for these cases, it is important to evaluate the
algorithm performance on realistic problems.

0 10 20 30 40 50 60 70 80 90 100
–0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
xt, sigma=0.0
xt, sigma=0.2

Fig. 1 A noiseless (r=0, dotted
line) and a noisy (r=0.2, solid
line) version of the synthetic
time series used in Sect. 4.1

0 0.05 0.1 0.15 0.2 0.25
0

0.05

0.1

0.15

0.2

0.25

Pk, regression–by–constants
Pk, regression–by–lines

sigma 

Pk 

Fig. 2 Plots of Pk values
averaged over the various r
values used in Sect. 4.1. The
solid line corresponds to
regression-by-constants and the
dotted line corresponds to
regression-by-lines
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Synthetic data: short time series

In the first group of experiments we start with a piece-
wise constant time series of length T=100, which

contains four segments. To this basic time series we
superimpose additive white noise with a Gaussian dis-
tribution of zero mean and standard deviation r; we use
r=0.00, 0.05, 0.10, ..., 0.25.

0 10 20 30 40 50 60 70 80 90 100

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
xt
piecewise constant approximation of xt

Fig. 3 A synthetic time series xt
(solid line) and its
approximation bxt (dotted line)
obtained from segmentation
with regression-by-constants
(r=0)

0 10 20 30 40 50 60 70 80 90 100
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
xt
piecewise constant approximation of xt

Fig. 4 A synthetic time series xt
(solid line) and its
approximation bxt (dotted line)
obtained from segmentation
with regression-by-constants
(r=0.15)
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For each r value we create 50 noisy versions of the
original (noiseless) time series. The original and a noisy
version are plotted in Fig. 1.

There is a total of 6·50=300 time series. We apply
our algorithm to each time series using regression-by-
constants:

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5
xt
piecewise constant approximation of xt

Fig. 5 A synthetic time series xt
(solid line) and its
approximation bxt (dotted line)
obtained from segmentation
with regression-by-constants
(r=0.25)

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4
xt
piecewise linear approximaiton of xt

Fig. 6 A synthetic time series xt
(solid line) and its
approximation bxt (dotted line)
obtained from segmentation
with regression-by-lines
(r=0.15)
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bxs ¼ a1 þ et: ð14Þ
We compute segmentations of orders K=1, 2, ..., 10 and
determine theoptimal order using theBIC.Hence for each
of the 300 time series we obtain a ‘‘best’’ segmentation and
compute the corresponding Pk value; we average Pk val-
ues obtained at the same r value and plot the average Pk

values against r in Fig. 2. Typical segmentations at three
noise levels appear in Figs. 3, 4 and 5. We create an
additional 300 time series (50 for each r value) and apply
our algorithm again, using regression-by-lines:

bxs ¼ a1t þ a2 þ et:

The average Pk values are plotted in Fig. 2. A typical
segmentation appears in Fig. 6.

It is clear that regression-by-constants performs bet-
ter than regression-by-lines. This is not surprising, since
a piecewise constant function conforms exactly to the

regression-by-constants equation 14. However, note
that regression-by-lines can also reproduce a piecewise
constant function by using slope coefficients a2 (nearly)
equal to zero. This effect can be seen in Fig. 6. In fact, if
we consider the resulting segmentation as a discontinu-
ous, noiseless representation of the original noisy time
series (see the dotted lines in Figs. 3, 4, 5, 6) then the
representation of Fig. 6 has a lower sum squared error
than the one of Fig. 4 (in both cases r=0.15). However,
note that the segmentation of Fig. 4 is just as accurate as
that of Fig. 6.

It can be seen from Fig. 2 that our algorithm yields
highly accurate segmentations even at the highest noise
levels. The average execution time for one segmentation
is 0.9 s for regression-by-constants and 1.17 s for
regression-by-lines (with a MATLAB implementation of
the segmentation algorithm on a Pentium III 1 GHz
personal computer).

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990
200

400

600

800

1000

1200

1400
Annual Senegal river discharge
Piecewise constant approximation

Fig. 7 Annual discharge of the
Senegal river (solid line) and its
regression-by-constants
approximation (dotted line)
obtained from the optimal
segmentation of order K=5

Table 1 Optimal segmentations of orders K=1, 2, ..., 10 for the Senegal river time series, as obtained from regression-by-constants

1 1902 1988
2 1902 1967 1988
3 1902 1949 1967 1988
4 1902 1938 1949 1967 1988
5 1902 1921 1936 1949 1967 1988
6 1902 1921 1936 1949 1967 1978 1988
7 1902 1909 1917 1934 1936 1949 1967 1988
8 1902 1909 1917 1934 1936 1949 1967 1978 1988
9 1902 1905 1906 1921 1934 1936 1949 1967 1978 1988
10 1902 1905 1906 1921 1924 1934 1936 1949 1967 1978 1988

The BIC selected segmentation is listed in bold. Note the re-appearance of ‘‘important’’ change points in segmentations of several orders
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Annual discharge of the Senegal river

In the second group of experiments we use the time
series of the Senegal river annual discharge data, mea-
sured at the Bakel station for the years 1903–1988. This
time series has been previously used in (Fortin et al.
2004; Hubert 1997, 2000; Kehagias 2004); it consists of
86 points and its graph appears in Fig. 7.

Since in this case the ‘‘true’’ segmentation is not
known, we cannot compute Pk values. Instead, for com-
parison purposes, we list the optimal segmentations of all
orders K=1, 2, ..., 10 as obtained from the regression-by-
constants (Table 1) and as obtained from regression-by-
lines (Table 2). In each table, the segmentation selected by
BIC is indicated by bold letters. In Fig. 7 we plot the ac-
tual time series and the optimal segmentation obtained
from regression-by-constants and the BIC.

It canbe seen that there is a certain consistency between
segmentations of different orders and also between tables;
for instance the years 1917–1921, 1934–1936, 1949 and
1967 appear in most segmentations of both tables. Hence
it appears likely that some hydrological change (which has
been detected by both models) occurred around years
1936, 1949 and 1967. A change also seems likely to have
occurred around the year 1921. The overall best segmen-
tation in Table 1 is (1902, 1921, 1936, 1949, 1967, 1988).
This is the same as the one obtained by Hubert’s branch-
and-bound procedure (Hubert 1997, 2000) andKehagias’
HMM (2004). In Table 2 the selected segmentation is
(1902, 1938, 1967, 1988).Regarding the discrepancyof the
two segmentations, the following remarks can be made.
From a computational point of view, each of the above
mentioned segmentations is optimal with respect to the
corresponding ds,t function. As remarked in (Kehagias

Table 2 Optimal segmentations of orders K=1, 2, ..., 10 for the Senegal river time series, as obtained from regression-by-lines

1 1902 1988
2 1902 1953 1988
3 1902 1938 1967 1988
4 1902 1906 1936 1967 1988
5 1902 1906 1936 1944 1967 1988
6 1902 1906 1936 1944 1949 1967 1988
7 1902 1906 1921 1934 1944 1949 1967 1988
8 1902 1906 1917 1921 1934 1944 1949 1967 1988
9 1902 1906 1917 1921 1934 1936 1944 1949 1967 1988
10 1902 1906 1917 1921 1934 1936 1944 1949 1953 1967 1988

The BIC selected segmentation is listed in bold. Note the re-appearance of ‘‘important’’ change points in segmentations of several orders.
Also compare with Table 1

1700 1750 1800 1850 1900 1950 2000
–0.4

–0.3

–0.2

–0.1

0

0.1

0.2

0.3
Annual mean global temperature
Piecewise autoregressive approximation

Fig. 8 Annual mean global
temperature (solid line) and its
autoreggression approximation
(dotted line) obtained from the
optimal segmentation of order
K=4
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2004), there is no a priori reason that the two segmenta-
tions should be the same; each one optimizes a different
function (i.e. a function obtained from a different ds,t
error).

Obtaining the sequence of ten segmentations with the
MATLAB implementation of the segmentation algo-
rithm required 0.76 s for Table 1 and 0.93 s for Table 2
(both on a Pentium III 1 GHz personal computer). For
comparison purposes, Hubert reports execution time
around 1 minute (but this is probably on a slower ma-
chine).

Annual mean global temperature

In this group of experiments we use the time series of
annual mean global temperature for the years
1700–1981; only the temperatures for the period 1902–
1981 come from actual measurements; the remaining
temperatures were reconstructed according to a proce-
dure described in (Mann et al. 1999) and also at the
Internet address http://www.ngdc.noaa.gov/paleo/ei/
ei_intro.html. This time series has been used in (Keha-
gias 2004). The time series consists of 282 points, its
graph appears in Fig. 8.

We apply the segmentation algorithm in conjunction
with regression-by-constants (Table 3) and a third-order
autoregression (Table 4) given by

bxs ¼ a1xt�1 þ a2xt�2 þ a3xt�3 þ et:

In each table, the correct segmentation (as obtained by
the BIC) is indicated by bold.

In Table 3 BIC selects the segmentation (1699, 1720,
1812, 1930, 1981); this is the same as the segmentation
obtained in (Kehagias 2004) using an HMM and
regression-by-constants. In Table 4 BIC selects the seg-
mentation (1699, 1832, 1923, 1931, 1981); this is similar
to the one obtained in (Kehagias 2004) using an HMM
and autoregression. In Fig. 8 we plot the actual time
series and the optimal segmentation obtained from
regression-by-constants and the BIC. Again, the two
segmentations are not identical; perusing Table. 3 and 4
hydrological changes appear likely around 1812 and
1930 and perhaps also in some year between 1720 and
1770. Obtaining the sequence of ten segmentations with
a MATLAB implementation of the segmentation algo-
rithm required 8.35 s for regression-by-constants and
11.04 s for autoregression.

Synthetic data: long time series

In this group of experiments we use artificial time series
with 1,200 samples each. When T=1,200, the compu-
tational load becomes excessive and some modification
of the original segmentation algorithm is necessary.
Hence in this case we use block segmentation, i.e. we
operate on blocks of samples, each block containing N
samples. This results in a modification of of the ds,t
function, but the DP algorithm remains the same. The
details are presented in Appendix 2.

Table 3 Optimal segmentations of orders K=1, 2, ..., 10 for the annual mean global temperature time series, as obtained from regression-
by-constants

1 1699 1981
2 1699 1930 1981
3 1699 1812 1930 1981
4 1699 1720 1812 1930 1981
5 1699 1720 1812 1926 1935 1981
6 1699 1720 1812 1926 1934 1977 1981
7 1699 1720 1812 1825 1835 1926 1935 1981
8 1699 1720 1812 1825 1835 1926 1934 1977 1981
9 1699 1720 1812 1825 1835 1926 1935 1949 1957 1981
10 1699 1718 1770 1777 1813 1825 1835 1926 1934 1977 1981

The BIC selected segmentation is listed in bold. Note the re-appearance of ‘‘important’’ change points in segmentations of several orders

Table 4 Optimal segmentations of orders K=1, 2, ..., 10 for the annual mean global temperature time series, as obtained from autore-
gression

1 1699 1981
2 1699 1923 1981
3 1699 1832 1920 1981
4 1699 1832 1923 1931 1981
5 1699 1832 1849 1923 1931 1981
6 1699 1832 1899 1910 1923 1931 1981
7 1699 1832 1849 1901 1910 1923 1931 1981
8 1699 1832 1849 1901 1910 1923 1931 1973 1981
9 1699 1745 1767 1774 1832 1899 1910 1923 1931 1981
10 1699 1745 1767 1774 1832 1849 1901 1910 1923 1931 1981

The BIC selected segmentation is listed in bold. Note the re-appearance of ‘‘important’’ change points in segmentations of several orders.
Also compare with Table 3
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Our time series is generated by the equations

zt ¼ aK
1 zt�1 þ aK

2 ; xt ¼ 1þ etð Þ � zt; ð15Þ
where et is white, zero mean Gaussian noise with stan-
dard deviation equal to r (again we use r=0.00, 0.05,
..., 0.25). The time series contains four segments. Two
typical time series (for r=0.00 and r=0.15) are plotted
in Fig. 9.

As can be seen, the noiseless series consists of con-
tinuously joined up- and down-sloping straight line
segments—this was achieved by appropriate selection of
the coefficients a1

k, a2
k (for k=1, 2, ..., K). Note that noise

is added multiplicativelyto the basic time series, hence
Eq. 15 is not the same as Eq. 5. This was a deliberate
choice, to check the performance of the algorithm when
using ‘‘misspecified’’ models.

The experimental procedure is the same as in
Sect. 4.1. We use regression-by-constants and regression-
by-lines and we take r=0.00, 0.05, ..., 0.25. For each
combination of regression function and noise level we
generate 50 time series to which we apply our algorithm.

Regression-by-constants generally yields segmenta-
tions which are not in good correspondence to the true
segmentation. On the other hand, our algorithm in
conjunction with regression-by-lines always discovers
the correct fourth order segmentation or a very close
approximation. However, the BIC criterion fails for this
long time series: eJ Kð Þ is decreasing with K in the range
K=1, 2,..., 25 (we have not tried values of K greater than
25). If we followed the BIC criterion we would assign
K=25 or higher and thus obtain incorrect segmenta-

tions. We have obtained similar results with other cri-
teria, such as Scheffe’s, Akaike’s and Ninomiya’s.

It must be stressed that the abovementioned prob-
lem is not a shortcoming of the computationalproce-
dure. The fourth order segmentations obtained by our
algorithm are very accurate, as can be seen in Fig. 11
(average Pk values for the fourth order segmentation,
plotted against r for regression-by-lines). On the other
hand, in Fig. 10 we see that Pk values for regression-
by-constants are not good. The reason for the differ-
ence between segmentation with constants and seg-
mentation with lines can be understood by looking at
two typical segmentations, in Figs. 12 and 13. Namely,
the segmentation by constants does not conform to the
piecewise linear structure of the time series. An addi-
tional fact which emerges from Fig. 11 is that the
segmentation results are quite similar for different
values of block size N; in other words the algorithm is
quite robust with respect to N.

The average execution time for one segmentation is
between 0.45 and 1.16 s for regression-by-constants and
between 0.55 and 1.90 s for regression-by-lines.

Annual minimum flow of the Nile

The final experiment uses the time series of annual
minimum level of the Nile river, for the years 622–1921.3
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xt, sigma=0.00
xt, sigma=0.15

Fig. 9 A noiseless (r=0, dotted
line) and a noisy (r=0.15, solid
line) version of the long
synthetic time series used in
Sect. 4.4

3This time series comes from the book (Hipel and McLeod 1994)
and can be found in the Web at http://www-personal.buseco.mo-
nash.edu.au/hyndman/TSDL/annual/minimum.dat.
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This time series consists of 1,298 points; its graph ap-
pears in Fig. 14. The straight line segments in the period
1471–1702 are probably imperfect recordings.

For this long time series we use block segmentation in
conjunction with regression-by-constants and regres-

sion-by-lines. To check robustness with respect to block
size N, we repeat each of the experiments using N=10,
15, 20 and compare the results.

Using the regression-by-constants, the optimal seg-
mentations of orders K=1, 2, ..., 10 are presented in
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Fig. 10 Plots of Pk values
averaged over the various r
values used in Sect. 4.4. All
curves were obtained with
regression-by-constants
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Fig. 11 Plots of Pk values
averaged over the various r
values used in Sect. 4.4. All
curves were obtained with
regression-by-lines
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Table. 5a–c (for N=10, 15, 20, respectively). It can be
seen that the three N values used give approximately the
same segmentations. Hence it appears that block-seg-
mentation does not depend critically on block size N.
Using the regression-by-lines, the optimal segmentations

of orders K=1, 2, ..., 10 are presented in Table. 6a–c
(for N=10, 15, 20, respectively). Again the three N
values used give approximately the same segmentations.
For all tables, the sequence of 10 segmentations is
computed in times ranging from 0.66 to 2.31 s.
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Fig. 12 A long synthetic time
series xt (solid line) and its
approximation bxt (dotted line)
obtained from segmentation
with regression-by-constants
(r=0.10, K=4)
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Fig. 13 A long synthetic time
series xt (solid line) and its
approximation bxt (dotted line)
obtained from segmentation
with regression-by-lines
(r=0.15, K=4)
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Fig. 14 Annual minimum level
of the Nile river (solid line) and
its regression-by-constants
approximation (dotted line)
(segmentation of order K=25)

Table 5 Optimal segmentations of orders K=1,2, ..., 10 for the annual Nile minimum level time series, as obtained from regression-by-
constants

N=10
1 622 1921
2 622 1852 1921
3 622 1522 1582 1921
4 622 1522 1582 1852 1921
5 622 1422 1522 1582 1852 1921
6 622 1012 1422 1522 1582 1852 1921
7 622 1092 1192 1422 1522 1582 1852 1921
8 622 1092 1192 1422 1522 1582 1832 1882 1921
9 622 722 802 1092 1192 1422 1522 1582 1852 1921
10 622 722 802 1092 1192 1422 1522 1582 1832 1882 1921

N=15
1 622 1921
2 622 1852 1921
3 622 1522 1582 1921
4 622 1522 1582 1852 1921
5 622 1417 1522 1582 1852 1921
6 622 1012 1432 1522 1582 1852 1921
7 622 1087 1192 1417 1522 1582 1852 1921
8 622 1087 1192 1417 1522 1582 1822 1882 1921
9 622 727 802 1087 1192 1417 1522 1582 1852 1921
10 622 727 802 1087 1192 1417 1522 1582 1822 1882 1921

N=20
1 622 1921
2 622 1842 1921
3 622 1522 1582 1921
4 622 1422 1522 1582 1921
5 622 1422 1522 1582 1842 1921
6 622 842 1422 1522 1582 1842 1921
7 622 1082 1182 1422 1522 1582 1842 1921
8 622 842 1082 1182 1422 1522 1582 1842 1921
9 622 722 802 1082 1182 1422 1522 1582 1842 1921
10 622 722 802 1082 1182 1422 1522 1582 1842 1882 1921

Note the re-appearance of some change points in segmentations for various K’s and N’s

90



There are two problems with the results presented in
Table. 5 and 6. First, there is considerable discrepancy
between the segmentations obtained with regression-by-
constants and the ones obtained with regression-by-lines.
Second, the BIC criterion fails by overestimating the
number of segments, in the same way as in Sect. 4.4.
However, from an intuitive point of view, Table. 5 and 6
yield some useful information regarding the structure of
the time series. Some years appear in the early segmen-
tations of all tables and persist all the way to high-order
segmentations. Such years are, for example, 1522 and
1582. Hence it appears likely that some kind of hydro-
logical change took place around these years, and it is
captured by both types of regression and all block sizes.
Other years appear in both types of regression but only in
high-order segmentations (e.g. 802). These are ‘‘some-
what’’ likely to be genuine hydrological change points.We
will further discuss this point in the next section.

Conclusion

We have presented a dynamic programming procedure
which can be used for the segmentation of hydrological
and environmental time series. Due to the use of recur-
sive computation and block segmentation, the procedure

can segment time series with over a thousand samples in
a few seconds.

To automatically determine the ‘‘correct’’ number of
segments, the procedure must be combined with a
segmentation order selection criterion, such as BIC or
Scheffe’s criterion. However, these criteria do not al-
ways give a reliable estimate of the number of seg-
ments. Hence the user’s judgment and knowledge of a
particular domain may be a more useful criterion for
the final selection of one of the optimal segmentations
obtained by our procedure. User judgment may also be
required to select an appropriate regression model (to
obtain the function ds,t).

Our DP procedure appears to be superior to Hubert’s
procedure in two respects. First, it is significantly faster
and scales up better to long time series. Second, because
of the fast execution, it is not necessary to employ
pruning; hence, unlike Hubert’s procedure, it is guar-
anteed to find the optimal segmentation (of every given
order!). This is an advantage of the DP procedure as
compared to the HMM procedure (Kehagias 2004) as
well, since the HMM procedure is only guaranteed to
find a locally optimal segmentation.

On the other hand, the HMM procedure has a ‘‘built-
in’’ criterion (namely maximization of likelihood) for
segmentation order selection. This is not the case for the

Table 6 Optimal segmentations of orders K=1, 2, ..., 10 for the annual Nile minimum level time series, as obtained from regression-by-
lines

N=10
1 622 1921
2 622 1522 1921
3 622 1522 1792 1921
4 622 1522 1582 1792 1921
5 622 1192 1522 1582 1792 1921
6 622 802 1192 1522 1582 1792 1921
7 622 802 1092 1192 1522 1582 1792 1921
8 622 802 1092 1192 1422 1522 1582 1792 1921
9 622 802 1092 1192 1342 1422 1522 1582 1792 1921
10 622 802 1092 1192 1282 1392 1432 1522 1582 1792 1921

N=15
1 622 1921
2 622 1522 1921
3 622 1522 1792 1921
4 622 1522 1582 1792 1921
5 622 1192 1522 1582 1792 1921
6 622 802 1192 1522 1582 1792 1921
7 622 802 1087 1312 1522 1582 1792 1921
8 622 802 1087 1192 1432 1522 1582 1792 1921
9 622 802 1087 1312 1387 1432 1522 1582 1792 1921
10 622 802 1087 1192 1282 1387 1432 1522 1582 1792 1921

N=20
1 622 1921
2 622 1522 1921
3 622 1522 1582 1921
4 622 1522 1582 1802 1921
5 622 802 1522 1582 1802 1921
6 622 802 1182 1522 1582 1802 1921
7 622 802 1082 1282 1522 1582 1802 1921
8 622 802 1082 1342 1422 1522 1582 1802 1921
9 622 802 1002 1122 1342 1422 1522 1582 1802 1921
10 622 802 842 1002 1122 1342 1422 1522 1582 1802 1921

Note the re-appearance of some change points in segmentations for various K’s and N’s. Also compare with Table 5
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currently proposed DP procedure: automatic selection
of segmentation order is a difficult problem for which we
do not have a general solution. Note that this is not a
problem with our procedure per se (for example, the
same problem must be resolved for Hubert’s procedure).
As remarked in (Hubert 1997, 2000), Scheffe’s criterion
or BIC can be used to support the user’s judgment.
Hence it may be more appropriate to consider our DP
procedure (as well as Hubert’s procedure) as exploratory
tools, which can be used to limit the set of candidate
segmentations from the exponentially large set of all
possible segmentations to the set of optimal segmenta-
tions (optimality being defined in terms of some precise
criterion). An additional possibility is to use the DP
procedure as an initialization step for the HMM pro-
cedure or for more sophisticated approaches, such as
Fortin’s Bayesian approach (Fortin et al. 2004).

Finally, it is worth emphasizing that our algorithm
can be used to obtain an optimal approximation of a
time series by a piecewise constant(or piecewise linear
etc.) function. This becomes apparent by looking at
Figs. 3, 4, 5, 6, 7, 8 etc. This is the point of view adopted
in the data mining literature. In this case the problem of
selecting the segmentation order becomes secondary.

Appendix 1

Recursive formulas for segment error

In this appendix we prove the validity of the recursive
formulas (Eqs. 8, 9, 10, 11, 12) for the computation of
segment error. Recall that Qs,t=Us,t

¢ Us,t,R s,t=Us,t
¢ Xs,t.

We have

Qs;tþ1 ¼ U0s;tþ1Us;tþ1 ¼ U0s;t j u0tþ1
� � U0s;t

��
utþ1

2
4

3
5

¼ U0s;tUs;t þ u0tþ1tþ1 ¼ Qs;t þ u0tþ1utþ1:

ð16Þ

Similarly, for Rs,t we obtain

Rs;tþ1 ¼ Rs;t þ u0tþ1xtþ1: ð17Þ

Furthermore, we have ds,t=| Xs,t�U s,tAs,t|
2 and

ds;tþ1 ¼ Xs;tþ1 �Us;tþ1As;tþ1


 

2

¼ Xs;t �Us;tAs;tþ1


 

2þ xtþ1 � utþ1As;tþ1



 

2: ð18Þ

Now

Xs;t�Us;tAs;tþ1


 

2¼ Xs;t�Us;tAs;tþUs;tAs;t�Us;tAs;tþ1



 

2
¼ Xs;t�Us;tAs;t



 

2þ Us;t As;t�As;tþ1
� �

 

2

þ2 Xs;t�Us;tAs;t
� �0

Us;t As;t�As;tþ1
� �

Setting

dA ¼ As;t � As;tþ1; ð19Þ
we have

Xs;t �Us;tAs;tþ1


 

2
¼ Xs;t �Us;tAs;t



 

2þ Us;tdA


 

2þ2 Xs;t �Us;tAs;t

� �0
Us;tdA:

ð20Þ
Also, we have

ds;t ¼ Xs;t �Us;tAs;t



 

2; ð21Þ

and

Us;tdA


 

2
¼ Us;tdA
� �0

Us;tdA ¼ dA0U0s;tUs;tdA ¼ dA0Qs;tdA;

ð22Þ
and

Xs;t�Us;tAs;t
� �0

Us;tdA¼ U0s;tXs;t�U0s;tUs;tAs;t

� �0
dA

¼
 
U0s;tXs;t�U0s;tUs;t U0s;tUs;t

� ��1
U0s;tXs;t

!0
dA¼ 0:

ð23Þ

Replacing Eqs. 21, 22, 23 in Eq. 20 we get

Xs;t �Us;tAs;tþ1


 

2¼ ds;t þ dA0Qs;tdA ð24Þ

and replacing Eq. 24 in Eq. 18 we get

ds;tþ1 ¼ ds;t þ dA0Qs;tdAþ xtþ1 � utþ1As;tþ1


 

2: ð25Þ

Equations 16, 17, 19, 25 constitute the recursion pre-
sented in Sect. 3.2. The initialization Qs,s=us

¢us,
Rs,s=us

¢xs, As,s= Qs,s
�1Rs,s follows from the definition

of Qs,t, Rs,t, As,t.

Appendix 2

Block segmentation

In this appendix we present the modifications necessary
for block segmentation. In block segmentation we as-
sume that segment boundaries can only appear at con-
stant multiples of a number N, which we call block
length. For example, if T=1,000 and N=10, the only
candidate boundaries are 0, 10, 20, ..., 1,000; this reduces
computation by a factor of 100, at the cost of obtaining
a ‘‘coarse’’ segmentation.

The definition of ds,t must be modified; now it is the
error of segment [(s�1)ÆN+1, tÆN]. As far as computa-
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tion is concerned, it is only required to change the input
and output regression variables; ut remains unchanged,
but we now define

Xs;t ¼

x s�1ð Þ�Nþ1

x s�1ð Þ�Nþ2

. . .

xt�N

2
6664

3
7775; bXs;t ¼

bx s�1ð Þ�Nþ1

bx s�1ð Þ�Nþ2

. . .

bxt�N

2
6664

3
7775;

Us;t ¼

u s�1ð Þ�Nþ1þ1

u s�1ð Þ�Nþ1þ2

. . .

ut�N

2
6664

3
7775;

ð26Þ

compare with Eq. 6. The formulas for ds,t and As,t also
remain unchanged:

ds;t ¼ Xs;t�Us;tAs;t
� �0

Xs;t�Us;tAs;t
� �

;

As;t ¼ U0s;tUs;t

� ��1
U0s;tXs;t:

Finally, the recursive formula for ds,t is modified as
follows

ds;tþ1 ¼ ds;t þ dA0Qs;tdAþ Xt;tþ1 �Ut;tþ1As;tþ1


 

2: ð27Þ

The segmentation algorithm of Sect. 3.2 remains un-
changed, but now uses as input the newly defined block
segment error ds,t.

Appendix 3

Beeferman’s segmentation metric Pk

Beeferman’s segmentation metric Pk(s, t) measures the
error of a proposed segmentation s=(0,s1 , ..., sK�1, t)
with respect to a ‘‘true’’ segmentation t=(0, t1 , ..., tL�1,
t). Pk first appeared in the text segmentation literature
(Beeferman et al. 1999) but it can be applied to any
segmentation problem. Here we will only give a short
intuitive discussion of Pk. The interested reader can find
more details in (Beeferman et al. 1999).

When is s identical to t? The following two conditions
are necessary and sufficient.

1. Each pair of integers (i, j) which is in the same seg-
ment under t is also in the same segment under s.

2. Each pair (i, j) in a different segment under t is also in
a different segment under s.

It follows that the difference between s and t (i.e. the
error of s with respect to t) is the amount by which the
above criteria are violated. This can happen in two ways:

1. Some pair (i, j) which is in the same segment under t,
is in a different segment under s;

2. Or some pair (i, j) which is in the same segment under
t, is in a different segment under s.

We can formalize the above description as follows.
Define a function ds(i, j) to be 1 when i and j are in the
same segment under s and 0 otherwise; define dt (i, j)
similarly. Then we are interested in the quantity

XT

i¼1

XT

j¼1
ds i; jð Þ � dt i; jð Þj j: ð28Þ

There are two problems with Eq. 28 and they both
have to do with the range of the summations. First,
considering all possible pairs (i, j) is too time con-
suming. Second, it yields an undiscriminating criterion,
because even a grossly wrong s will agree with t on
many pairs (for example most pairs (i, i+1) will be
placed in the same segment and most (i, j) pairs which
are very far apart will be placed in different segments).
Beeferman et al. propose to consider only pairs which
are k steps apart (i, i+k+1), where k is half the
average segment length. It has been empirically vali-
dated that this choice of k works well; in (Beeferman
et al. 1999) Beeferman et al. also discuss some theo-
retical justification for this choice. Hence Pk is defined
as follows

Pk s; tð Þ ¼
XT�k�1

i¼1
ds i; iþ k þ 1ð Þ � dt i; iþ k þ 1ð Þj j ð29Þ

and this is what we have used in Sect. 4.
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