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Abstract Planning of water resources systems is often
associated with many uncertain parameters and their
interrelationships are complicated. Stochastic planning
of water resources systems is vital under changing climate
and increasing water scarcity. This study proposes an
interval-parameter two-stage optimization model
(ITOM) for water resources planning in an agricultural
system under uncertainty. Compared with other opti-
mization techniques, the proposed modeling approach
offers two advantages: first, it provides a linkage to pre-
defined water policies, and; second, it reflects uncertain-
ties expressed as probability distributions and discrete
intervals. The ITOM is applied to a case study of irri-
gation planning. Reasonable solutions are obtained, and
a variety of decision alternatives are generated under
different combinations of water shortages. It provides
desired water-allocation patterns with respect to maxi-
mum system benefits and highest feasibility. Moreover,
the modeling results indicate that an optimistic water
policy corresponding to higher agricultural income may
be subject to a higher risk of system-failure penalties;
while, a too conservative policy may lead to wastage of
irrigation supplies.

Keywords Irrigation Æ Optimization Æ Planning Æ
Policy Æ Uncertainty Æ Water resources

Introduction

Inadequate supplies of fresh water are threatening
human health, impairing prospects for agriculture and

industry, and jeopardizing survival of ecosystems
(CDDC 2004). Agricultural sector being one of the
major water users is also facing water scarcity challenges
associated with increasing pollution and changing cli-
mate. Efficient water allocations are vital for the plan-
ning and management of irrigated agriculture due to the
competing needs of crops for limited supplies and cost of
water. However, irrigation planning is coupled with
many uncertain parameters. For instance, spatial and
temporal variations exist in stream flows, and system
costs and benefits are related to a number of uncertain
impact factors. Moreover, irrigation policies in terms of
water-allocation targets may comprise uncertainties and
lead to economic implications. In addition, these com-
plexities may be further increased by interactions among
the uncertain parameters. Therefore, it is desired that
parameter uncertainties and predefined policies be
incorporated within irrigation planning problems so that
water could efficiently be allocated among cropping
farms to bring maximum possible benefits to the local
economy.

Previously, several system analysis approaches were
proposed to support decision-making in water resources
planning under uncertainty (Rohde and Naparaxawong
1981; Gupta and Paudyal 1990; Eiger and Shamir 1991;
Wagner et al. 1994; Russell and Campbell 1997;
Mylopoulos et al. 1999; Teegavarapu and Simonovic
1999; Van Duc and Gupta 2000; Guo et al. 2001; Sahoo
et al. 2001; Seifi and Hipel 2001; Carey and Zilberman
2002). For example, Mobasheri and Harboe (1970)
developed a two-stage optimization model for the design
and operation of a multi-purpose reservoir system. On-
farm design and water management planning through a
two-stage programming approach was undertaken by
Sritharan et al. (1988). Paudyal and Gupta (1990)
studied irrigation management by multilevel optimiza-
tion. Abrishamchi (1991) carried out reservoir planning
for irrigation districts using a chance-constrained opti-
mization model. Recently, Bender and Simonovic (2000)
proposed a fuzzy compromise approach for water
resource systems planning. A robust modeling approach
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for water resources system planning under uncertainty
was presented by Escudero (2000). Huang and Loucks
(2000) introduced inexact two-stage stochastic pro-
gramming for water resources management. Jairaj and
Vedula (2000) performed optimization of a multireser-
voir system using fuzzy programming.

The above literature review reveals that the previous
inexact modeling approaches for water resources plan-
ning were based on chance-constraint programming
(CCP), fuzzy programming (FP), interval-parameter
programming (IPP), or two-stage stochastic program-
ming (TSP) techniques. However, CPP and FP methods
cannot handle independent uncertainties of the model’s
left-hand sides and cost coefficients; moreover, they are
lack of linkage to economic consequences of violating
system constraints that are essential for the related
policy analyses. In contrast to CCP and FP, IPP can
deal with uncertainties of the model’s left- and right-
hand sides, and TSP can effectively reflect pre-defined
policies and probability distributions. Thus, one poten-
tial approach for better accounting for policies as well as
uncertainties is to incorporate IPP within a TSP frame.
This leads to an interval-parameter two-stage optimi-
zation model (ITOM). The ITOM can directly incor-
porate uncertainties expressed as probability density
functions and discrete intervals. More importantly, it
can be employed for quantitatively analyzing a variety
of policy scenarios that are associated with different
levels of economic penalties when the promised policy
targets are violated. No previous study has been re-
ported on the application of ITOM to irrigation plan-
ning.

As an extension of the previous efforts, the objective
of this study is to develop an ITOM and apply it to a
case study of irrigation planning within an agricultural
system under uncertainty. This study will help develop
efficient water allocation plans under predefined policies
and extensive uncertainties. A variety of decision alter-
natives will be generated and post-optimality analysis
will be performed under different combinations of water
shortages through a factorial design approach. These
alternatives will be useful for the decision makers to
adjust the allocation plan when they are not satisfied
with the recommended alternatives. Moreover, eco-
nomic impacts due to variations in water supply and
demand will be investigated, and the performance of the

proposed modeling approach will be compared with the
conventional TSP method.

Inexact optimization techniques

For many practical problems, the data cannot be known
accurately for a variety of reasons. This could be due to
simple measurement error or data represent information
about the future (e.g., stream flows, costs, and benefits)
and simply cannot be known with certainty (Li 2003;
Wang et al. 2003; Hoppe et al. 2004). To tackle such
uncertainties, inexact optimization techniques can be
employed. These inexact techniques try to determine the
best solution under uncertainties while considering all
options, actions, economics, and consequences. These
can be classified into three main types including sto-
chastic programming (SP), fuzzy programming (FP),
and interval-parameter programming (IPP). Table 1
summarizes a comparison among inexact optimization
techniques with details being presented in the following
subsections.

SP deals with situations when some random param-
eters or variables appear in the modeling formulation of
a program. Such random parameters are expressed as
probability density functions. This implies that SP
technique can be employed when the quality of uncer-
tain information is comprehensive. The results can be
interpreted under different level of probabilities (or
risks). However, SP have higher computational efforts.
This is because stochastic linear program need to be
converted into an equivalent deterministic problem at
the expense of increasing the size of the problem. SP can
be further divided into its two well know types: (1)
multistage stochastic programming (or two-stage sto-
chastic programming known as TSP) or stochastic pro-
gramming with resource, and (2) chance-constraint
programming (CCP).

Two-stage stochastic programming proves effective
for the analysis of medium- to long-term planning
problems in which the system data is characterized by
uncertainties and an examination of policy scenarios is
desired. In TSP, such uncertain data are represented as
probability density functions. For example, when TSP is
employed for water resources planning problems, river
and/or reservoir flows being stochastic parameters can

Table 1 Comparison of inexact optimization approaches

Comparison criterion Stochastic programming Fuzzy programming Interval-parameter programming

Uncertainty type Random information.
Data with probability
distributions

Imprecise information.
Data with no clear-cut boundaries

Interval information.
Data with known boundaries
but unknown distributions

Data quality Best Between best and worst Worst
Solution method Hardest Between hardest and easiest Easiest
Computational requirement Higher Higher Lower
Result interpretation Easier Harder Easier
Application Harder Harder Easier
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be expressed as probability distributions. Thus, TSP can
handle stochastic planning problems. In addition, TSP
can help develop a sustainable development policy.
Different policies for water resources management can
be reflected though variations in the first-stage decision
variables. Solutions under various policy scenarios can
represent different options for trading off among system
benefit and system-failure risk. Thus, TSP can also help
analyze and develop sustainable policies.

The fundamental idea behind TSP is the concept of
recourse, which refers to the ability to take corrective
action after a random event has taken place. In TSP,
an initial decision is made based on uncertain future
events. When these future uncertainties are later re-
solved, a recourse or corrective action is taken. The
initial decision is called the first-stage decision, and the
corrective action is called the second-stage decision.
The first-stage decisions are generally associated with
planning issues, while the second stage decisions are
often related to operating decisions. The objective
function for such a two-stage recourse example would
be to minimize (or maximize) the expected costs (or
benefits) of all applicable decisions taken over the two
periods.

The CCP can incorporate uncertainties in terms of
probabilities, while FP is effective in handling imprecise
information. Both FP and CCP methods cannot be
effectively linked to the economic consequences of vio-
lating predefined system constraints, which is an essen-
tial feature for related policy analyses. Moreover, while
CCP and FP can effectively express the stochastic as-
pects of a model’s right-hand-sides; however, they can-
not capture independent uncertainties in the parameters
of either the left-hand-sides or the cost coefficients.

In comparison, IPP deals with uncertain parameters
with a known upper and lower bound but with unknown
distribution information. IPP proves to be an effective
procedure to deal with uncertainties in a model’s left-
hand-sides, but encounters difficulties when the right-
hand-sides are highly uncertain. IPP has a number of
advantages such as (a) direct incorporation of uncer-
tainties, (b) flexibility of results interpretation, (c) gen-
eration of decision alternatives, (d) reasonable
computational requirements, (e) reflection of different
uncertainties in solution outputs, and (f) application to
practical problems (Huang 1996).

In short, each technique has advantages as well as
shortcomings in terms of handling uncertainties. How-
ever, selection of a desired technique for a given problem
depends on a number of factors. These factors may in-
clude (a) type of uncertain information accessible, (b)
quality of information available, (c) complexity of
solution method, (d) requirement of computational ef-
forts, (e) flexibility of results interpretation, and (f)
applicability to real-world problems. Moreover, selec-
tion of a suitable optimization modeling technique is
highly associated with a modeler’s knowledge about the
particular technique and ease to successfully apply this
approach.

Modeling formulation

Water scarcity is one of many problems in agricultural
irrigation facing today and will be a critical issue in the
future. Growing population and economy associated
with rising demand for water has led to increased com-
petition of water resources. In a multicrop environment,
competition for water exists among crops when available
water is less than the demands. In such circumstances, it
is wise to ensure that farmers know where they stand by
providing foreseen information that is needed to make
decisions for various activities and investments. For
example, farmers’ knowledge about the fact that it is
unwise to make a major investment in irrigation infra-
structure for a small chance of receiving sufficient water
in a dry season might happen all the time. Under inad-
equate water supplies, if the promised water is not
delivered, farmers may not be able to conduct irrigation
as planned. They will have to either obtain water from
more expensive sources or curtail their development
plans. In either case, this will result in decreased benefits
(because of reduced crop yield) or increased costs (due to
increased water price) leading to a decline in agricultural
production (i.e., decreased benefits). It is thus desired
that the available irrigation-water be effectively allo-
cated to minimize possible penalties.

The problem can be formulated as maximizing the
expected value of net system benefit using the inexact
two-stage programming optimization model. Based on
the local water management policies, a prescribed
quantity of water can be defined to each crop. If this
quantity is delivered, it will result in net benefits; how-
ever, if not delivered, the system will then be subject to
penalties. Since the quantity of stream flows are uncer-
tain, and uncertainties may also exist in system benefits
and costs, as well as water policies need to be incorpo-
rated; thus, the problem under consideration can be
formulated as an ITOM as follows (Loucks et al. 1981):

Max f� ¼
Xm

i¼1
B�i W �

i �
Xm

i¼1

Xn

j¼1
pjC�i S�ij ð1aÞ

Xm

i¼1
W �

i � S�ij
� �

6q�j ; 8j ð1bÞ

S�ij6W �
i 6W �

imax; 8j ð1cÞ

S�ij>0; 8i; j ð1dÞ

where f± is net system benefit ($/m3); Bi
± is net benefit to

farm i per m3 of water allocated ($);Wi
± represents water

policy in terms of fixed allocation amount of water that
is promised to farm i (m3), (first stage decision variable);
Wimax

± is maximum allowable allocation amount for
farm i (m3); Ci

± is loss to farm i per m3 of water not
delivered, Ci > Bi ($);Sij

± is shortage of water, which is
the amount by which Wi is not met when the seasonal
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flow is qj (m
3) (second stage decision variable); qj

± is
reservoir flow quantity with probability pjof occurrence
under flow level j (m3); pj is probability of occurrence of
flow level j (%); i is cropping farm index; i=1, 2, 3 where
i=1 represents alfalfa farm, 2 represents wheat farm,
and 3 represents potato farm; j is flow level index, j=1,
2, ..., 5 where j=1 for very low flows, 2 for low flows, 3
for medium flows, 4 for high flows, and 5 for very high
flows; m is total number of farms; n is total number of
flow levels. In model (1), the superscripts ‘‘±’’ represent
lower and upper bounds of the parameters and vari-
ables. For example, Bi

± are interval-parameters where
Bi
±=[Bi

�, Bi+]; here, Bi
� and Bi+ correspond to lower

and upper bounds of benefit. The model (1) can deal
with uncertainties described as not only intervals but
also probability distributions, as well as reflect water
management policies.

Model (1) is an ITOM. In ITOM, a decision of water
allocation target (Wi

±) needs to be made at the begin-
ning facing future uncertainties of river flow (qj

±); at a
future time, when the uncertainties of water flow are
quantified, a recourse action can then be taken (Sij

±).
Thus, decision of water allocation made at the beginning
is called the first-stage decision (Wi

±), and the recourse
decision is called the second-stage decision (Sij

±). This
leads to two-stage optimization model.

Solution method

The solution of ITOM cannot be obtained when Wi
±

are considered as uncertain inputs in model (1) because
the existing methods for solving linear programming
problems cannot be used directly (Huang 1996).
However, an optimized set of target values can be
obtained by having zi in model (1) as decision vari-
ables. Let Wi

±=Wi
�+DWi zi have a deterministic va-

lue, where DWi=Wi+� Wi
� and zi2[0, 1] (Huang and

Loucks 2000). When Wi
± approach their upper bounds

(i.e. when zi=1), the system benefit will be the highest
as long as the water demands are well satisfied; how-
ever, this is associated with a higher risk of penalty
when the promised amount is not delivered. Con-
versely, when Wi

± reach their lower bounds (i.e. when
zi=0), the system may have a lower benefit; however,
at the same time, the system may have a lower risk of
violating the promised amounts and thus lower risk of
system-failure penalties. Therefore, it is difficult to
determine whether Wi+ or Wi

� will correspond to the
desired lower bound of system benefit. Thus, by
incorporating values of Wi

±, Df, DWi max, and Dqj±
within the model (1), we have:

Max f� ¼
Xm

i¼1
B�i W �

i þ DWizi
� �

�
Xm

i¼1

Xn

j¼1
pjC�i S�ij ð2aÞ

Xm

i¼1
W �

i þ DWizi � S�ij
� �

6q�j ; 8j ð2bÞ

W �
i þ DWizi6W þ

i max; 8j ð2cÞ

�DWizi þ S�ij6W �
i ; 8i; j ð2dÞ

S�ij>0; 8i; j ð2eÞ

06zi61; 8i ð2fÞ

Model (2) can be transformed into two sets of
deterministic submodels, which correspond to the lower
and upper bounds of the desired objective. This
transformation process is based on an interactive
algorithm, which is different from normal interval
analysis and best/worst case analysis (Huang et al.
1994). The resulting solutions provide stable intervals
for the objective function and decision variables with
different levels of risk in violating the constraints. They
can be easily interpreted for generating decision alter-
natives. Since the objective is to maximize net system
benefit, the objective-function value corresponding to
f+ is desired first. A combination of the upper bounds
for benefit coefficients and decision variables and the
lower bounds for cost terms would correspond to f+.
The submodel corresponding to f+ is (Huang 1996,
1998):

Max fþ ¼
Xm

i¼1
Bþi W �

i þ DWizi
� �

�
Xm

i¼1

Xn

j¼1
pjC�i S�ij ð3aÞ

Xm

i¼1
DWizi � S�ij
� �

6qþj �
Xm

i¼1
W �

i ; 8j ð3bÞ

DWizi6W þ
imax � W �

i ; 8i ð3cÞ

�DWizi þ S�ij6W �
i ; 8i; j ð3dÞ

S�ij>0; 8i; j ð3eÞ

06zi61; 8i ð3fÞ

where Sij
� and zi are decision variables. Let Sij opt

� and
zi opt be the solutions of model (3). The optimized water-
allocation can be performed by calculating Wi opt

± =
Wi
�+DWi zi opt, which corresponds to the extreme upper

bound of system benefit under uncertain inputs of water-
allocation amounts. According to Huang (1996, 1998),
the submodel corresponding to f� can be formulated as
follows:

Max f� ¼
Xm

i¼1
B�i W �

i þ DWizi opt
� �

�
Xm

i¼1

Xn

j¼1
pjCþi Sþij

ð4aÞ

Xm

i¼1
DWizi opt � Sþij
� �

6q�j �
Xm

i¼1
W �

i ; 8j ð4bÞ

�DWizi opt þ Sþij6W �
i ; 8i; j ð4cÞ
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Sþij>S�ij opt; 8i; j ð4dÞ

where Sij+ are decision variables. Submodels (3) and (4)
are deterministic linear programs. Thus, solutions for
model (2) under the optimized water-allocation are
(Huang 1996):

f�opt ¼ ½f�opt; fþopt� ð5Þ

S�ij opt ¼ ½S�ij opt; Sþij opt� ; 8 i; j ð6Þ

where fopt
+ and Sij opt

� are from solution of submodel
(3), and fopt

� and Sij opt
+ are from submodel (4). Thus,

the optimum allocation of water to the given farms is:

A�ij opt ¼ W �
i opt � S�ij opt; 8 i; j ð7Þ

Case study

Overview of the study system

The proposed modeling approach is applied to a hypo-
thetical case study of water resources allocation plan-
ning among a set of end-users within an agricultural
sector. Consider an agricultural system in which a water
manager is responsible for allocating water in a dry
season from a reservoir to three farms cropped with
alfalfa, wheat, and potato (Fig. 1). Allowable water-
allocations and the related economic data are presented

in Table 2. It is shown that the water allocation targets
and the associated benefits and penalties vary among the
farms. Table 3 provides reservoir flows and their asso-
ciated probabilities of occurrence. In this case study, the
‘‘pre-defined water policies’’ are reflected though water-
allocation targets (Table 2). These targets are prescribed
quantities of water those have been promised to each
end-user in advance before the outcomes of actual flows
in the reservoir are known. Thus, if the promised water
is delivered, it will result in net benefits to the agricul-
tural economy owing to suitable water-allocation poli-
cies; and if not, it will lead to penalties to the agricultural
system due to improper water-allocation policies.

Therefore, the problems under consideration are (a)
how to effectively allocate the limited water supplies to
the three farms in order to achieve maximum benefit,
and (b) how to incorporate policies in terms of regulated
water supplies within this planning problem with the
least risk of system disruption. Since uncertainties exist

Fig. 1 Schematic of water-
allocation to multiple farms

Table 2 Allowable water-
allocations (106 m3) and related
economic data ($/ m3)

Activity/Farm Alfalfa (i=1) Wheat (i=2) Potato (i=3)

Max. allowable allocation (Wimax
± ) 8 6 4

Water allocation target (Wi
±) [4, 8] [2, 5] [1, 3]

Benefit when water demand is satisfied (Bi
±) [25, 30] [48, 50] [115, 120]

Loss when water demand is not delivered (Ci
±) [60, 80] [70, 100] [200, 250]

Table 3 Reservoir flow distribution (106 m3) and the associated
probabilities (%)

Flow level Quantity (qj
±) Probability (pj)

Very low (j=1) [1, 3] 10
Low (j=2) [5, 7] 20
Medium (j=3) [9, 13] 40
High (j=4) [15, 19] 20
Very high (j=5) [21, 26] 10
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in terms of intervals and probability distributions, and a
link to a predefined policy is desired, the ITOM is con-
sidered to be a feasible approach for addressing this type
of planning problem.

Result analysis

Table 4 shows results obtained through the ITOM. It is
indicated that solutions for the objective-function value
and of the non-zero decision variables related to the
alfalfa, wheat, and potato farms are combinations of
deterministic values and intervals. In case of insufficient
water, allocation should be decreased firstly to the al-
falfa farm, secondly to the wheat farm, and lastly to the
potato farm. This is because the potato farm brings the
highest benefit when water demand is satisfied and,
likewise, is subject to the highest penalty if the promised
water is not delivered. In comparison, the alfalfa and
wheat farms correspond to lower benefits and penalties.

Figure 2 and Table 4 present optimized water flow
pattern and the associated allocation targets. The solu-
tions of S11

± = S12
±=5 · S13

±=[0, 4]·106, and
S14
±=S15

±=0 m3 indicate that, for alfalfa farm, some

water shortages of 5·106 and [0, 4]·106 m3 may exist (in
reference to the optimized water-allocation target of
5·106 m3) under very low to medium flows, with the
probability of occurrence being 10 to 40%; however,
there will be no shortages of water under high to very
high flows. Similarly, the results of S21

±=5·106, S22
±=[1,

3]·106, and S23
±=S24

±=S25
±=0 m3 show that, for wheat

farm, some shortages of 5·106 and [1, 3]·106 m3 may
exist (in reference to the optimized water-allocation
target of 5·106 m3) under very low to low flows, with the
probability of occurrence being 10 to 20%; however,
there will be zero shortages of water under medium to
very high flows. Likewise, the solutions of S31

±=[0,
2]·106 and S32

±=S33
±=S34

±=S35
±=0 m3 indicate that, for

potato farm, there may be zero shortage of water under
low to very high flows, and thus water will be fully
allocated to the potato farm. However, under very low
flow conditions the situation is more ambiguous for
potato farm. There may be no water shortage under
advantageous conditions when the other farms do not
consume the full amounts of the allocated demands and/
or the actual q1

± value approaches its upper level;
however, under demanding conditions, the shortage
may become as high as 2·106 m3 (in reference to the

Fig. 2 Optimized water-
allocation patterns under very
low (VL), low (L), medium (M),
high (H) and very high (VH)
flow levels

Table 4 Solution of the ITOM
under optimized water-
allocation targets (106 m3)

Activity/Farm Probability Alfalfa (i=1) Wheat (i=2) Potato (i=3)

Target (Wi opt
± ) – 5 5 3

Shortage (Sij opt
± ) under a flow level of:

Very low (j=1) 0.1 5 5 [0, 2]
Low (j=2) 0.2 5 [1, 3] 0
Medium (j=3) 0.4 [0, 4] 0 0
High (j=4) 0.2 0 0 0
Very high (j=5) 0.1 0 0 0
Allocation (Aij opt

± ) under a flow level of:
Very low (j=1) 0.1 0 0 [1, 3]
Low (j=2) 0.2 0 [2, 4] 3
Medium (j=3) 0.4 [1, 5] 5 3
High (j=4) 0.2 5 5 3
Very high (j=5) 0.1 5 5 3
Net benefit ($106) f opt

± = [302, 621]
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optimized water-allocation target of 3·106 m3) with a
probability of 10%.

Alternatives evaluation and post-optimality analysis

Table 5 presents eight decision alternatives generated
under different combinations of water shortages using a
23 (two levels with three factors) factorial design ap-
proach. The alternatives were produced by adjusting the
shortage values and thus allocation values between the
upper and lower bounds of non-zero Sij opt

± . The inter-
vals for Sij opt

± are useful for decision makers to justify
the generated alternatives directly, or to adjust the
allocation scheme when they are not satisfied with the
recommended alternatives. Despite variations in S31

± and
S22
±, alternatives 1 to 4 (where S13

±=S13
� ) will lead to

significantly higher system benefits than alternatives 5 to
8 (where S13

±=S13
+). The individual effects of S31

±, S22
±,

and S13
± are �45, �34, �112, respectively; and the

combined effects of S31
± S22

±, S31
±S13

±, S22
±S13

±, and
S31
±S22

±S13
± are zero. It means that S13

± (i.e. water-shortage
to the alfalfa farm under medium flows) have a more
significant effect on the system benefit than S31

± (i.e.
water-shortage to the potato farm under very low flows),
S22
± (i.e. water-shortage to the wheat farm under low

flows), S31
±S22

± (i.e. combined shortage to the potato and
wheat farms under very low to low flows), S31

±S13
± (i.e.

combined shortage to the potato and alfalfa farms under
very low to medium flows), S22

±S13
± (i.e. combined

shortage to the wheat and alfalfa farms under low to
medium flows), and S31

±S22
±S13

± (i.e. combined shortage to
the potato, wheat, and alfalfa farms under very low to
medium flows). The negative sign for S31

±, S22
±S13

± indi-
cates that the system benefit will decrease as the water-
shortage increases. Therefore, effective planning for
water allocation to the alfalfa farm at medium seasonal
flow is more important for improving the system’s per-
formance than that of the wheat and potato farms.
Similar post-optimality analyses can also be conducted
for solutions under other scenarios of water-allocation
targets.

Economic impacts of variations in water supply and
demand are also determined by letting Wi

± reach their
upper bounds (Table 5). Generally, for each ITOM
solution under a given scenario of water-allocation tar-
gets, lower shortage values correspond to more advan-

tageous conditions. For example, alternative 1 (where
S31
±=S31

� , S22
±=S22

� , and S13
±=S13

� ) corresponds to a
condition when water shortage values reach their lower
bounds, which is advantageous (with the upper bound
system benefit). In comparison, alternative 8 (where
S31

±=S31+, S22
±=S22+, and S13

±=S13+) is based on
a more demanding condition under which water
shortage values reach their upper bounds, leading to a
lower-bound system benefit. These alternatives reflect
relationships between economic consideration and
resources availability.

Policy analysis

Solutions of the ITOM provide desired water alloca-
tion patterns with maximized system benefit and fea-
sibility. The complexities associated with the water-
allocation amounts are mainly due to limited supply
and increasing demand. Therefore, variations in the
values of Wi

± could reflect different policies for water
resources management. An optimistic policy corre-
sponding to the upper-bound system benefit may be
subject to a high risk of system-failure penalties; while
a too conservative policy may lead to waste of re-
sources. Solutions under other policy scenarios can
also be obtained by having Wi

± equal different
deterministic values. They represent different options
for trading off among system benefit, reliability, and
safety.

Comparison with the conventional TSP method

Model (1) can also be solved through a conventional
TSP method by making all interval parameters be equal
to their mean values. The obtained solution is a set of
deterministic values and is indeed one of many alterna-
tives from the ITOM. Although further sensitivity
analysis can be undertaken, each TSP solution can only
provide an individual response to variations of the
uncertain inputs. Therefore, sensitivity analysis can
hardly reflect interactions among various uncertainties
(Huang and Loucks 2000; Lou et al. 2003 ).

The proposed modeling approach has an advantage
in providing an effective linkage between the pre-defined
water policies and the associated economic implications.

Table 5 Alternatives generated
from the ITOM solutions using
a factorial design approach

* fopt
(mid)=( fopt

� +fopt+)/2

Alternative S31
± S22

± S13
± fopt

± f opt
(mid)* Effect Identification

1 � � � [411, 573] 492 397 Average
2 + � � [361, 533] 447 �45 S31

±

3 � + � [371, 545] 458 �34 S22
±

4 + + � [321, 505] 413 0 S22
±

5 � � + [283, 477] 380 �112 S13
±

6 + � + [233, 437] 335 0 S13
±

7 � + + [243, 449] 346 0 S13
±

8 + + + [193, 409] 301 0 S13
±
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Besides, the quality of information available for system
modeling is often not good enough to be presented as
either deterministic numbers or probability distribu-
tions. Instead, some uncertainties can only be quantified
as intervals. The ITOM can handle various uncertainties
described as probability distributions as well as discrete
intervals.

The ITOM can directly incorporate uncertainties
within its optimization framework. Its solutions are
presented by combinations of deterministic values,
intervals, and distributions; thus, offer flexibility in re-
sult interpretation and decision-alternative generation.
Outputs of the ITOM can reflect fluctuations in system
benefit (or cost) due to implementing different water-
management policies. Moreover, its solutions contain
information of system-failure risk under varying water-
management conditions. Thus, ITOM solutions can
provide bases for selecting desired irrigation-manage-
ment policies and plans with reasonable benefits and
minimized risk levels.

The proposed technique could also be applied to
other areas of systems planning with pre-defined policies
associated with uncertainties in related parameters. For
example, in water-quality management, uncertainties
and policies in pollutant loading associated with random
river flows could be reflected through ITOM.

Conclusions

An ITOM was developed for irrigation planning of an
agricultural system under uncertainty. Through this
modeling study, a number of water allocation plans
under predefined policies and extensive uncertainties
were developed though a factorial design approach.
The obtained solutions were reasonable and provided
desired water-allocation patterns with maximized sys-
tem benefits and feasibility. Further post-optimality
analyses revealed that an optimistic water policy cor-
responding to higher agricultural income may be
subject to a higher risk of system-failure penalties;
while, a too conservative policy may lead to wastage
of irrigation supplies.

The proposed model improves the existing two-stage
stochastic and interval-parameter programming ap-
proaches. The ITOM allows predefined policies as well
as uncertainties presented as random distributions and
discrete intervals to be effectively incorporated within
the optimization frame. An optimal allocation process
was incorporated within the ITOM to determine the
irrigation supplies to the cropping farms when a com-
petition for water existed among them.

Although this study is the first attempt at the plan-
ning of an irrigated agricultural system through the
ITOM, the results suggest that this hybrid technique is
applicable and can be extended to other problems that
involve policies with multi-objective and multi-stage
concerns, as well as uncertainties that present in different
formats.

Appendix

List of symbols

The following symbols are used in this paper:

f± Net system benefit ($/m3)
fopt
± Optimized net system benefit ($/m3)
Bi
± Net benefit to farm i per m3 of water allocated

($)
Wi

± Water policy in terms of fixed allocation amount
of water that is promised to farm i (m3)

Wi-

max
±

Maximum allowable allocation amount for farm
i (m3)

Ci
± Loss to farm i per m3 of water not delivered, Ci

> Bi ($)
Sij
± Decision variable representing shortage of water,

which is the amount by which Wi is not met
when the seasonal flow is qj (m

3)
Sij opt
± Optimized solution of Sij

± decision variable
qj
± Reservoir flow quantity with probability pjof

occurrence under flow level j (m3)
pj Probability of occurrence of flow level j (%)
i Cropping farm index; i=1, 2, 3 where i=1 rep-

resents alfalfa farm, 2 represents wheat farm, and
3 represents potato farm

j Flow level index, j = 1, 2, ..., 5 where j = 1 for
very low flows, 2 for low flows, 3 for medium
flows, 4 for high flows, and 5 for very high flows

m Total number of farms
n Total number of flow levels
zi Binary decision variable
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