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Abstract. Nonlocal moment equations allow one to render deterministically
optimum predictions of flow in randomly heterogeneous media and to assess
predictive uncertainty conditional on measured values of medium properties. We
present a geostatistical inverse algorithm for steady-state flow that makes it
possible to further condition such predictions and assessments on measured
values of hydraulic head (and/or flux). Our algorithm is based on recursive finite-
element approximations of exact first and second conditional moment equations.
Hydraulic conductivity is parameterized via universal kriging based on unknown
values at pilot points and (optionally) measured values at other discrete locations.
Optimum unbiased inverse estimates of natural log hydraulic conductivity, head
and flux are obtained by minimizing a residual criterion using the Levenberg-
Marquardt algorithm. We illustrate the method for superimposed mean uniform
and convergent flows in a bounded two-dimensional domain. Our examples
illustrate how conductivity and head data act separately or jointly to reduce
parameter estimation errors and model predictive uncertainty.
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Introduction
We consider steady-state flow of groundwater in a randomly nonuniform domain,
X. The flux qðxÞ and the hydraulic head hðxÞ obey the continuity equation and
Darcy’s law, subject to appropriate boundary conditions. All parameters and state
variables are defined on a consistent nonzero support volume, x, which is small
in comparison to X but sufficiently large for Darcy’s law to be locally valid. It has
been shown that it is theoretically possible (Neuman and Orr, 1993; Neuman
et al., 1996) and computationally feasible (Guadagnini and Neuman, 1999a, b) to
render optimum unbiased predictions of hðxÞ and qðxÞ under ubiquitously
nonuniform and uncertain field conditions by means of their first ensemble
(statistical) moments (expected or mean values), hhðxÞic and hqðxÞic, conditioned
on measurements of hydraulic conductivity KðxÞ. The predictors hhðxÞic and
hqðxÞic satisfy the equations

�r � hqðxÞic þ hf ðxÞi ¼ 0 ð1Þ

hqðxÞic ¼ �hKðxÞicrhhðxÞic þ rcðxÞ rcðxÞ ¼ �hK 0ðxÞrh0ðxÞic ð2Þ

in X subject to the boundary conditions

hhðxÞic ¼ hHðxÞi on CD �r � hqðxÞic � nðxÞ ¼ hQðxÞi on CN ð3Þ

where the subscript c implies ‘‘conditional’’; primed quantities represent random
fluctuations about (conditional) mean values; KðxÞ is a random field of scalar
hydraulic conductivities; rcðxÞ is a residual flux; hf ðxÞi; hHðxÞi; hQðxÞi are pre-
scribed unconditional first moments of the statistically independent random
source and boundary forcing terms f ðxÞ;HðxÞ;QðxÞ; and nðxÞ is a unit outward
normal to C ¼ CD [ CN where CD and CN are Dirichlet and Neumann bound-
aries, respectively. The residual flux rcðxÞ is given implicitly by (Neuman et al.,
1996)

rcðxÞ ¼
Z

X

acðy; xÞryhhðyÞicdy þ
Z

X

dcðy; xÞrcðyÞ dy ð4Þ

where the kernels

acðy; xÞ ¼ hK 0ðxÞK 0ðyÞrxrT
y Gðy; xÞic ð5Þ

dcðy; xÞ ¼ hK 0ðxÞrxrT
y Gðy; xÞic ð6Þ

form a symmetric and a non-symmetric tensor, respectively. Here Gðy; xÞ is a
random Green’s function, or solution of the random flow equations for the case
where f ðxÞ is a point source of unit strength at point y subject to homogeneous
boundary conditions HðxÞ � QðxÞ � 0.

Due to the integro-differential nature of rcðxÞ, the conditional moment equa-
tions include nonlocal parameters that depend on more than one point in space
(hence the equations are referred to as nonlocal). The traditional concept of an
REV (representative elementary volume) is neither necessary nor relevant for
their validity or application. The corresponding parameters are inherently non-
unique in that they depend not only on medium properties but also on the
information one has about these properties (scale, location, type, quantity, and
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quality of data). The flux predictor is generally nonlocal and non-Darcian,
depending on the residual flux rcðxÞ. The traditional notion of effective con-
ductivity looses meaning in the context of flow prediction by means of condi-
tional ensemble mean quantities.

Guadagnini and Neuman (1999a, b) have developed corresponding integro-
differential equations for the conditional variance-covariance of associated pre-
diction errors in head and flux, and have shown how to solve both sets of
equations by finite elements. Their solution entails expansion of the exact non-
local moment equations in terms of a small parameter, rY , representing a mea-
sure of the standard deviation of natural log conductivity, YðxÞ ¼ ln KðxÞ. The
second order approximation of the conditional covariance for heads, Chc, satisfies

rx � KGðxÞrxChcðx; yÞ þ ChKcðx; yÞrxhhð0ÞðxÞic
h i

þ
Z

X

hf 0ðxÞf 0ðzÞihGð0Þðz; yÞic dz ¼ 0 ð7Þ

in X subject to the boundary conditions

Chcðx; yÞ ¼ �
Z

CD

hH0ðxÞH0ðzÞi KGðzÞrzhGð0Þðz; yÞic þ 1
h i

� nðzÞ dz x 2 CD

ð8Þ

KGðxÞrxChcðx; yÞ þ ChKcðx; yÞrxhhð0ÞðxÞic
h i

� nðxÞ

¼
Z

CN

hQ0ðxÞQ0ðzÞihGð0Þðz; yÞic dz x 2 CN ð9Þ

where ChKc is a second order approximation of the cross covariance between
hydraulic head and conductivity,

ChKcðx; yÞ ¼ �KGðxÞ
Z

X

rT
z hhð0ÞðzÞicrzhGð0Þðz; yÞicKGðzÞhY 0ðzÞY 0ðxÞicdz

ð10Þ

KG is the conditional geometric mean of K; hhð0Þic is the solution of (1)–(3) with
rcðxÞ ¼ 0; hGðhÞic is zero-order approximation of the conditional mean Green’s
function; f 0;H0, and Q0 are zero-mean fluctuations of f ;H, and Q about their
corresponding means; and hY 0ðzÞY 0ðxÞic is second conditional moment of esti-
mation errors of Y .

Conditioning on state variables through model calibration
The recursive finite element algorithm of Guadagnini and Neuman (1999a,b) is
valid to second order in rY . It assumes that one has at his/her disposal two
functional parameters: a conditional unbiased estimate, hYðxÞic, of the randomly
varying log conductivity function and CYcðx; yÞ ¼ hY 0ðxÞY 0ðyÞic. When condi-
tioning is performed on the basis of existing x-scale measurements of Y at a set of
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discrete points, hYðxÞic and CYcðx; yÞ can be obtained (in principle) by means of
geostatistical methods (e.g., Deutsch and Journel, 1998; Chilès and Delfiner, 1999).

In this paper, we describe an inverse algorithm that allows one to estimate
hYðxÞic and CYcðx; yÞ not only (or not at all) on the basis of measured log con-
ductivity values, but also (or only) on the basis of measured state variables such
as head and flux. This is tantamount to conditioning the nonlocal mean flow
equations not only (or not at all) on log conductivity measurements but also (or
only) on measurements of head and flux. Log conductivity measurements (if
available) are treated as prior information in the manner of Carrera and Neuman
(1986).

To estimate hYðxÞic, we parameterize it as a weighted sum of precisely or
imprecisely known values ðYMÞ at discrete measurement points xiði ¼ 1; . . . ; IÞ
and unknown values ðYPÞ at discrete ‘‘pilot points’’ xp ðp ¼ 1; . . . ; PÞ in a way
reminiscent of de Marsily (1978) and de Marsily et al. (1984):

hYðxÞic ¼
XI

i¼1

xiðxÞYMðxiÞ þ
XP

p¼1

xpðxÞYPðxpÞ x 2 X ð11Þ

Both sets of values (YM and YP) are treated (the first optionally) as unknown
parameters to be estimated by inversion. The weights (xi) of the sum are eval-
uated through universal kriging (to allow dealing with statistically nonhomoge-
neous Y fields) considering the variance of Y measurement and/or interpretive
errors at actual data points (assumed to be uncorrelated), the covariance matrix Q
of parameter estimation errors at pilot points (set equal to the inverse Fisher
information matrix of the most recent iterate), and an estimate of the variogram
or autocovariance of Y . At least one measured conductivity or flux value is
needed to obtain a unique set of parameter estimates.

In our examples the number and positioning of pilot points are intuitive. Both
could be optimized in a manner proposed by Hernandez (2002).

Let h� be a vector of head measurements at discrete space locations; h and ĥh
the corresponding vectors of (unknown) true and conditional mean heads cal-
culated through (1)–(6), respectively; Sh a (diagonal) covariance matrix of head
measurement errors (assumed to be uncorrelated); Y� a vector of prior log
conductivity values consisting of imprecise measurements and corresponding
kriged values at pilot points; Y and ŶY the corresponding vectors of true values and
inverse estimates of hYðxÞic, respectively; and SY the covariance matrix of asso-
ciated prior (measurement and kriging) errors. If (a) the true measurement errors
(h� � hÞ and (Y� � Y) (if available) are approximated by residuals (h� � ĥhÞ and
(Y� � ŶYÞ, respectively; (b) each set of residuals is reasonably unbiased and
Gaussian; (c) head residuals are uncorrelated with Y residuals, Y; h, and them-
selves; and (d) Sh and/or SY are known up to a constant of multiplication; then the
parameters YP and, optionally, YM can be estimated jointly with these statistical
constants by the maximum likelihood method of Carrera and Neuman (1986).
This is accomplished by minimizing the generalized sum of squared residuals

F ¼ ĥh� h�
� �T

S�1
h ĥh� h�
� �

þ ŶY� Y�
� �T

S�1
Y ŶY� Y�
� �

ð12Þ

through an iterative procedure. Other statistical parameters entering into Sh

and/or SY , such as those defining the spatial correlation of the data, can also be
estimated. When the statistical parameters are known, the maximum likelihood
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approach reduces to nonlinear regression. We minimize F using the Levenberg–
Marquardt algorithm (Doherty, 2002).

By virtue of the maximum likelihood approach, the (iterative) inverse proce-
dure yields optimum unbiased posterior estimates of log conductivity, their
covariance matrix Q, as well as head and flux conditioned on all available data
utilized for this purpose through the nonlocal mean equations (1)–(6). Eigen-
analysis of the matrix Q is informative about parameter estimation uncertainty
and correlation. For example, parameters associated with eigenvectors charac-
terized by small eigenvalues are less uncertain than those associated with large
eigenvalues. Linear confidence intervals can also be used to assess estimation
uncertainty provided the residuals (of calibrated state variables and parameters)
are reasonably close to being univariate Gaussian and the model behaves linearly
near the estimates of hYðxÞic. We use the estimates to solve the second-order
conditional moment equations for posterior covariances of head and flux. The
latter provide measures of predictive uncertainty due to the combined effects of
stochastic averaging and parameter uncertainty (Neuman and Guadagnini, 2000).
In general, one expects joint conditioning on reliable parameter and head mea-
surements to yield smaller prediction errors than conditioning on only one such
set of data. When reliable prior information about the parameters is not available,
it may be better to ignore such information and rely exclusively on calibration
against head and flux data. In this case, the last term is excluded from F in (12).

Numerical examples
We illustrate our inverse methodology for the case of superimposed mean uni-
form and convergent flows in a rectangular domain of width 8 and length 18,
measured in arbitrary consistent units (Fig. 1a). The domain is subdivided into
40� 90 square elements in each of which log conductivity is uniform. Deter-
ministic head values of 10 and 0 are prescribed along the left and right bound-
aries, and deterministic no-flow conditions along the top and bottom boundaries,
respectively. A well at the domain center pumps at a constant deterministic rate of
1. Using the sequential Gaussian simulator SGSIM (Deutsch and Journel, 1998) we
have generated a single unconditional realization of log conductivity across the
grid by considering Y to be multivariate Gaussian, statistically homogeneous and
isotropic, with variance r2

Y ¼ 1, exponential autocovariance and spatial correla-
tion scale k ¼ 1 (Fig. 1b). We used a standard finite element algorithm to obtain a
corresponding distribution of heads and fluxes. These constitute our reference
(‘‘true’’) values of hydraulic conductivity, head and flux in the domain.

Fig. 1. a Two-dimensional domain and layout of measurements and pilot points; b
reference log hydraulic conductivity field
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For purposes of conditioning, we sampled the generated Y field at 16 evenly
spaced ‘‘measurement’’ points at element centers, indicated by x’s in Fig. 1a. We
sampled the generated head field at 36 ‘‘measurement’’ points, indicated by plus
signs, located randomly in the interiors of evenly spaced subdomains consisting
of 2� 2 elements each. For purposes of inversion, we designated arbitrarily 16
pilot points at locations indicated by PP in Fig. 1a.

Our calibration code couples the finite element conditional mean flow simu-
lator of Guadagnini and Neuman (1999a,b), a universal kriging package we wrote
for this purpose and the inverse code PEST-ASP of Doherty (2002). Numerical
performance of the flow simulator was significantly improved utilizing an efficient
(sparse) direct linear solver (Liu, 1987) that exploits the common structure of
finite element matrices at various iterations. Though PEST-ASP is designed to run
in parallel on multiple processors, we utilized only one processor on the Uni-
versity of Arizona SGI Origin 2000 supercomputer. Each calibration required
between 78 and 179 min of execution time. We compare below a forward solution
(i.e., a single run of the moment equations (1)–(10)) conditioned solely on log
conductivity data with inverse solutions conditioned on (A) head data alone and
(B) both log conductivity and head data. Our forward solution is also compared
with a corresponding ensemble mean of 2000 forward conditional Monte Carlo
flow simulations based on 2000 conditional log conductivity realizations gener-
ated using SGSIM. It would have been desirable to compare our results with
Monte Carlo simulations conditioned on both head and Y data using a method
such as that of Gómez-Hernández et al. (1997) but this would have required an
inordinate amount of computer time.

For example, Fig. 2 shows parameter estimates at pilot points and associated
covariance eigen-analysis for inverse solution (B). Values of YPðxpÞ and SY

considered in the calibration process were obtained by kriging noise-free mea-
surements YMðxiÞ at pilot points with known r2

Y , k and autocovariance of YðxÞ; Sh

was set equal to the identity matrix. All priors in Fig. 2a are within computed
confidence intervals of their corresponding parameter estimates. Eigenvalues in
Fig. 2b have similar orders of magnitude and indicate that the inversion is rel-
atively well posed. Fig. 2c shows that parameter estimates are weakly correlated.

Parameter estimates and log conductivity data are used to estimate geostatis-
tically the field YðxÞ and associated variance r2

YðxÞ in X as shown in Fig. 3. The
kriged field hYðxÞic in Fig. 3a is a smooth optimum unbiased estimate of YðxÞ
that is closest, in the mean, to all likely YðxÞ realizations, of which the reference
field is only one. Kriging variance is zero or close to it at conductivity and pilot
points, as depicted in the image (Fig. 3b) of r2

YðxÞ and its sections along (Fig. 3c)
and across (Fig. 3d) the domain. In general, conditioning on both head and log

Fig. 2. a Parameter estimates at pilot points with associated linear confidence intervals and
prior information. b Eigenvalues and c eigenvectors of the parameter estimation covar-
iance matrix. Inverse solution (B) is conditioned on both log conductivity and head data
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conductivity data through geostatistical inversion diminishes significantly the
estimation uncertainty of YðxÞ.

Figure 4 compares contours and sections of reference (true) heads with those
obtained by (1) Monte Carlo simulations conditioned on measured log conduc-
tivities and (2) inversion (A). A visual comparison of Fig. 4a–d suggests that the
inverse moment solution is closer to the true head field than is the forward Monte
Carlo solution. This is confirmed quantitatively by the normalized root mean
square (RMS) head residuals (differences between computed and ‘‘true’’ values at
all nodes) in Table 1.

Fig. 3. Images of a estimated log conductivity field and b associated estimation variance
(r2

y) conditioned on both head and log conductivity data, c longitudinal and d transverse
sections of r2

y

Fig. 4. Contours of reference (true) head compared with: a Monte Carlo results condi-
tioned on measured log conductivity, and b inverse results conditioned additionally on
measured head (A) c–d Sections of the same contours along section A-A¢ in Fig. 1a,
respectively
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Sections of flux in Fig. 5 allow comparing longitudinal and transverse com-
ponents of reference flux with those of conditional Monte Carlo and inverse (B)
solutions. Both mean fluxes compare equally well with the reference mean flux,
although the inverse mean flux reproduces the reference flux better than the
Monte Carlo mean flux near Y measurement points (see normalized RMS flux
residuals in Table 1).

Figure 6 suggests visually that the inverse (B) solution is associated with
smaller head and flux prediction variances than is the mean forward Monte Carlo
simulation. This is corroborated quantitatively by the normalized prediction
variances in Table 1, in which qx1 and qx2 represent longitudinal and transversal
fluxes, respectively.

Table 1 indicates that ignoring prior information about log conductivities
leads to closer fits between computed and ‘‘true’’ log conductivities, heads and

Table 1. Comparison of Monte Carlo and inverse moment solutions

Forward
Monte
Carlo

Inverse (A)
without
prior data

Inverse (B)
with prior
data

RMS of Y residuals in all elements 1.00 0.89 1.00
RMS of head residuals at all nodes 1.00 0.46 0.62
RMS of qx1 residuals at all nodes 1.00 0.88 0.96
RMS of qx2 residuals at all nodes 1.00 0.95 0.97
Average Y kriging estimation variance 1.00 0.93 0.88
Average head prediction variance 1.00 0.59 0.61
Average prediction variance of qx1 1.00 0.93 0.55
Average prediction variances of qx2 1.00 0.84 0.49
RMS of flux cross-variances Cqx1qx2

0.88 1.00 0.58

Note: Statistics are normalized by their largest values

Fig. 5. Section of a–b longitudinal and c–d transverse components of reference flux
compared with corresponding components of inverse (B) and Monte Carlo solutions.
Inverse solution is conditioned on both head and log conductivity measurements
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fluxes. This is so because absence of constraining prior information makes it
possible to fit the model more closely to the available head data. Yet taking prior
information into account leads to a significant reduction in the estimation vari-
ance of log conductivity and the predictive uncertainty of flux, while resulting in
only an insignificant increase in the predictive uncertainty of head. This confirms
that a good model fit does not necessarily insure superior predictive capabilities.

Table 2 lists the same statistics as Table 1 except that now the forward solution
is based on nonlocal moment equations rather than on Monte Carlo simulations.
We see that conditioning the moment equations on both log conductivity and
head data is generally better than conditioning them on only one of these data
sets. Conditioning on Y data alone leads to better estimates of Y and fluxes than
conditioning only on head, while conditioning only on head data results in better
estimates of h than in the opposite case. Figs. 3–6 indicate that head measure-
ments have an unnoticeable conditioning effect on the residuals and variances of
log conductivity, head, and flux.

Table 2. Comparison of forward and inverse moment solutions

Conditioned
on Y only
(Forward)

Conditioned
on head only
(Inverse (A))

Conditioned
on both Y
and head
(Inverse (B))

RMS of Y residuals in all elements 0.95 1.00 0.93
RMS of head residuals at all nodes 1.00 0.80 0.78
RMS of qx1 residuals at all nodes 0.72 1.00 0.72
RMS of qx2 residuals at all nodes 0.95 1.00 0.94
Average Y kriging estimation variance 0.70 1.00 0.59
Average head prediction variance 1.00 0.95 0.59
Average prediction variance of qx1 0.26 1.00 0.21
Average prediction variance of qx2 0.50 1.00 0.42
RMS of flux cross-variances Cqx1qx2 0.60 1.00 0.49

Note: Statistics are normalized by their largest values

Fig. 6. Variance of a head, b qx1, c qx2, and d cross-covariance (at zero lag) of qx1 and qx2

along section A-A¢ in Fig. 1a. Inverse (B) (—) and Monte Carlo (——) solutions
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Conclusions
It is possible and computationally feasible to condition nonlocal ensemble mo-
ment equations of steady-state flow jointly on measurements of log conductivity
and hydraulic head through geostatistical inversion. Our examples show that
whereas conditioning on conductivity or head data alone may lead to a closer
correspondence between these quantities and the model, conditioning on both
yields improved parameter estimates and predictions of head and flux.
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