
Stochastic conditional inverse modeling
of subsurface mass transport: A brief review
and the self-calibrating method
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Abstract. Conditioning transmissivity realizations to state variable data is
complex due to the non-linear dependence of transmissivity (or any univariate
transform of it) and piezometric heads, concentrations or velocities. A review of
the literature shows these complexities. The self-calibrating algorithm combines
standard geostatistics and non-linear optimization in a way that allows the
generation of multiple realizations of logtransmissivity, which are conditioned
not only to logtransmissivity measurements but also to piezometric head and
concentration data. The self-calibrating method is demonstrated in a two-
dimensional synthetic exercise in which the trade-offs between transmissivity,
piezometric head and concentration data are analyzed.
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Introduction
Notwithstanding the very important, and almost always disregarded, problem of
conceptual model uncertainty, the reliability of groundwater flow and mass
transport in the subsurface depends very much on the characterization of the
spatial variability of the parameters controlling the two state equations: the dif-
fusion equation for flow and the advection-dispersion equation for transport,
which in 2D, for vertically averaged quantities are:
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where T is the transmissivity tensor, S is storage coefficient, W represents external
actions (extractions or recharges), / is porosity, q represents sinks or sources of
solute; h is piezometric head, and c is concentration; D is the hydrodynamic
dispersion tensor, which depends on dispersivities and velocities, and v is the
pore velocity vector (D and v couple the two equations), and finally, t is time. The
partial derivatives with respect to the space coordinates (u) are embedded in the
gradient (�) and divergence (�Æ) operators.

These two equations with appropriate boundary and initial conditions provide
the state of the system, which is given by h(u, t) and c(u, t). All parameters
intervening in the equation could be spatially and/or temporally variable. Of all of
them, we will focus on the spatially varying transmissivity.

Parameters and state variables are only known at a few locations; however, the
state equation relates parameters and state variables over the entire domain of
interest. If parameter values and external actions were known deterministically
over the entire aquifer domain, we could obtain a deterministic description of the
state of the system. In such a case, and barring conceptual model uncertainty, the
reliability of the model would depend exclusively in the approximations taken to
solve, analytically or numerically, the partial differential equations.

Unfortunately, parameter values display a large spatial variability that makes
them impossible to predict at unsampled locations without uncertainty. There-
fore, improving the characterization of the spatial variability of the parameters
will render more reliable models. The steps to build a reliable model would
commence by: (i) characterizing statistically the spatial variability of the
parameter, e.g., transmissivity; this implies to compute statistics such as mean,
variance or spatial correlation functions, and (ii) collecting whatever data about
the parameter there are, which should include both direct measurements (i.e.,
from boreholes, well tests) and indirect data (i.e., from geology, geophysics).
Neither the statistical constraints nor the data collected are enough to determine
unequivocally the parameter values at each location in space: there are many
alternative equally likely representations that would be consistent with this
information. The next step towards a reliable model is to collect data about the
state variables (i.e., piezometric heads, solute concentrations) and use them,
through some type of inverse procedure, to condition the parameter spatial
variability. Each datum, of any kind, is a constraint to be met by the parameter
spatial distribution; as the number of conditioning data increases, the alternative
realizations of parameters are more alike, and thus, the model is more reliable.

The paper is an extension of the paper by Gómez-Hernández et al. (2003), it
contains a brief, non-exhaustive literature review on inverse modeling of trans-
port, leading to the extension of the self-calibrating method (Sahuquillo et al.,
1992; Gómez-Hernández et al., 1997; Capilla et al., 1997). The paper ends with an
example demonstrating how incorporating aquifer state information about pie-
zometric heads and concentrations improves the characterization of the spatial
variability of transmissivities.

Review on inverse modeling of transport

Propagating and updating ensemble moments
One of the first works on inverse transport modeling is by Graham and
McLaughlin (1989a, b). In their first paper, they derive the non-conditional
moments of concentration for a given random function model of transmissivity
and boundary and initial conditions. The stochastic equations in which (1) and
(2) transform, once transmissivity is considered a space random function, are
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used to obtain a linearized expression of velocity and concentration about their
spatially variable expected values. This expression, which is valid for small var-
iance of transmissivity, is then used to derive the cross-covariance between
velocity and concentration, the velocity covariance and the concentration
covariance. They finally obtain a set of coupled partial differential equations that
describe the propagation in time of the first and second moments of velocities and
concentrations. Although the solution for these moments provide information
about uncertainties or the behavior of mean values, Graham and McLaughlin
recognize that they are not useful in practice, since they are non-conditional, thus
they cannot be applied to specific sites.

In their second paper, Graham and McLaughlin derive the conditional moment
equations. A Kalman filter approach is used together with the propagation
equations derived for the non-conditional moments, to update the first and
second moments at each time step at which data are available. The updating was
CPU-intensive, and it was decided that, assuming a weak correlation between
concentrations and piezometric heads, the concentration moments could be made
conditional to concentration data only, and the velocity moments could be made
conditional to head and transmissivity data.

After testing the method on a synthetic study, they applied it to the simulation
of chloride evolution at the Borden site. This was one of the first case studies in
which concentration data are used together with transmissivity and hydraulic
head data to calibrate the results of contaminant transport simulations. Half of
the concentration measurements were used in the calibration and the other half
for validation. The unconditional moment predictions show that peak concen-
tration and spreading are predicted reasonably. However, there is significant
uncertainty associated with these predictions. Conditioning to chloride concen-
trations results in the prediction of a more irregular plume, which fits better the
observed values. The prediction uncertainty is smaller than in the non-condi-
tional case, and the error predictions of the concentration measurements retained
for validation is closer to zero.

The method presented by Graham and McLaughlin achieves its objectives and
is capable of characterizing the conditional first and second moments (in space
and time) of concentrations and fluid velocities. However, its application has not
spread out. Some limitations of the method are: (i) the transmissivity field, which
is the main source of uncertainty, is not updated as new measurements of
hydraulic head and concentration are obtained; (ii) the method is limited to
formations that are moderately heterogeneous in transmissivity, since it is based
on a first-order perturbation approach; (iii) the method assumes that the random
function model of transmissivity is multilognormal; (iv) the Kalman filter
approach is very CPU-intensive, and (v) it is not clear how to account for
uncertainties in the boundary conditions.

Semi-analytical Lagrangian approach
Rubin (1991a, b) formulates the conditioning of transport results on concentra-
tion measurements in a Lagrangian framework. In his first paper (Rubin, 1991a),
he discusses how to condition on hydraulic head, transmissivity and velocity
measurements. Similarly to Graham and McLaughlin (1989a, b), Rubin postulates
a random space function model for transmissivity, which is multilognormal,
stationary in mean and covariance, and with small variance. Then, he linearizes
the groundwater flow equation for steady-state flow in an infinite domain without
recharge to obtain linear expressions of hydraulic heads and velocities as a
function of logtransmissivities. From the multinormality of logtransmissivity, it
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follows that both hydraulic heads and concentrations are also multinormal, and
therefore, the three variables, logtransmissivity, piezometric head and velocity,
are jointly multinormal and fully characterized by their expected values and auto-
and cross-covariances. These are derived taking advantage of the linearized
expressions. Next, Rubin (1991a) proceeds to analyze advective transport from a
continuous source by analyzing the trajectories followed by infinitesimal particles
of solute mass. Due to the multinormality of velocities, it follows that particle
trajectories can be characterized also by a multinormal distribution, characterized
by a displacement mean, and a displacement covariance tensor. Finally, thanks to
the congeniality of the multivariate multinormal distribution, it is immediate to
extend all these expression to the conditional case, with measurements of
transmissivity, piezometric head or velocity.

In his second paper, Rubin (1991b) extended the previous approach to
incorporate concentration measurements. For a given discretization of the
aquifer, the concentration of a given cell can be computed by adding up the mass
carried out by the advected particles that are within the cell at a given time. By
working with the one-particle trajectory probability distribution that can be
obtained after tracking a sufficiently large number of particles on a conditional
velocity field, and working with the two-particle trajectory probability distribu-
tion, which can be computed similarly, the concentration spatio-temporal
covariances can also be computed. These covariances are then used in a cokriging
formulation to get an estimate of the expected values of concentrations.

Some of the conclusions from the papers by Rubin are: (i) concentrations
display a correlation function that is anisotropic, non-stationary and non-sym-
metrical, with a larger correlation between concentrations along the axis parallel
to the flow direction than perpendicular to it; (ii) the correlation between con-
centrations at any two fix points in a Lagrangian co-ordinate system increases
with time; (iii) the correlation between concentrations gets negative values before
approaching zero for large distances; (iv) concentration variances are finite; (v)
concentration data obtained at early time steps near the center of the plume are
the most valuable for reducing prediction uncertainty.

The method discussed by Rubin (1991a, b) achieves its objective of deter-
mining conditional first and second moments of concentrations (in space and
time), and has the same limitations as that of Graham and McLaughlin (1989a, b)
except that it is much less computationally intensive, and therefore operative.

Maximum likelihood approach
The maximum likelihood approach was first introduced in the context of
inverse modeling of groundwater flow by Carrera and Neuman (1986a, b, c) and
it was extended to the inverse modeling of transport by Medina and others
(Medina et al., 1990; Medina, 1993; Medina and Carrera, 1996). Although this
method also aims at determining an ‘‘optimal’’ estimate of the spatial distri-
bution of concentrations, and possibly an uncertainty estimate (similar to the
conditional expectation and conditional covariance, respectively, of the methods
described previously), the two most important advantages of this method are
that during the inverse procedure the initial estimates of the parameters that
control flow and transport are updated, especially transmissivities; and that the
state equations (1) and (2) are used, for given initial and boundary conditions,
without resorting to any linearization. Thus, the method recognizes that
knowledge of the state of the system can improve our initial understanding
of the spatial patterns of transmissivity, and it is not limited to moderately
heterogeneous transmissivity fields.
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The steps in the maximum likelihood approach applied to inverse transport
modeling as described by Medina (1993) are the following: (i) the aquifer is
discretized by finite elements, and initial estimates of the flow and transport
parameters are made; these estimates are constant by user-defined zones in order
to limit the number of parameter values that have to be estimated during the
inversion procedure, and make the process stable; (ii) the groundwater flow and
mass transport equations are solved numerically; (iii) an objective value is cal-
culated with contributions from the mismatch between predicted and measured
heads, from the mismatch between predicted and measured concentrations, and
with the departure of the ‘‘optimal’’ estimates of the parameter values, such as
transmissivities from their initial estimates; each one of these contributions is
weighted by their covariance matrices; (iv) a minimization of the objective
function is carried out by the Marquardt method, and the parameter values are
updated. Steps (ii) to (iv) are repeated until the objective function is sufficiently
small.

The maximum likelihood method is clearly superior to the two methods
described previously for the reasons explained earlier. The two main drawbacks
of the method in its original implementation are that the number of zones in
which the aquifer is partitioned limits the degree of heterogeneity that can handle,
and that uncertainty estimates are obtained through an estimation covariance
which is derived after a linearization of the flow equation, thus is only approxi-
mate. It has been later recognized that alternative approaches to the parameter-
ization of the heterogeneity of transmissivity can be accommodated by the
maximum likelihood approach as powerful as those used by the self-calibrating
approach described later.

An interesting application of the maximum likelihood method to the inverse
modeling of transport can be found in the paper by Iribar et al. (1997). The
authors state that this is the first calibration of a regional groundwater flow model
with the help of both transient head data and concentration data. The problem
addressed is that of seawater intrusion in the Llobregat delta aquifer, a few
kilometers southwest of Barcelona, Spain. In this model, concentration data
served to modify the conceptualization of the aquifer. The final model identified
some zones of high transmissivity, corresponding to paleochannels, which were
consistent with the geology of the site; the model was able to explain some
features of the spatial distribution of chloride that could not be explained by
previous models.

Sonnenborg et al. (1996) use a modified version of the maximum likelihood
approach to invert not only for the parameters of the flow and transport equa-
tions, but also for the estimation of the mass release from the contamination
source.

Mayer and Huang (1999) use a smooth estimate of transmissivity obtained by
kriging as initial estimate for the spatial distribution of transmissivities, instead of
an estimate by zones, and aimed to calibrate the values of the variogram
parameters, instead of the parameter values directly.

The self-calibrating approach
All methods described above do not aim at the generation of multiple equally
likely realizations of transmissivity fields conditional to transmissivity, piezo-
metric head and concentration data. Instead, they seek estimates of transmis-
sivities, piezometric heads and concentrations in some ‘‘optimal’’ sense; along
with a covariance estimate for their uncertainty. The self-calibrating approach
(Sahuquillo et al., 1992; Gómez-Hernández et al., 1997; Capilla et al., 1997, 1998)
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was the first method developed with the aim of generating transmissivity real-
izations conditional to piezometric head data. It was extended for the condi-
tioning to concentration data by Sahuquillo et al. (1999) and fully developed in
the doctoral thesis of Hendricks Franssen (2001).

In the self-calibrating approach, multiple realizations of transmissivity are
generated conditioned to both transmissivity data and state variable infor-
mation. The process is sequential: first, a realization is generated conditioned
only to transmissivity data, then this initial guess, or seed field, is modified
through an optimization procedure until the state variable data is reproduced
by the solution of the flow and transport equations in the updated field.
Generating the seed field is simple using any of the available geostatistical
techniques for conditional simulation of random fields. The key aspect of the
method is the updating of the guess field in a way that does not destroy
the conditioning to transmissivity data and maintains realistic patterns of
spatial variability. The details of how the perturbation is computed are
discribed next.

Let {T} ¼ {Ti, i ¼ 1,...,N} represent a realization of transmissivity over the N
numerical cells discretizing the volume of study. This realization is conditional,
by construction, to (nT) data values, represented by {Tm} ¼ {Tim, i˛(nT)}. Let
{h} ¼ {hi, i ¼ 1,...,N}, and {c} ¼ {ci, i ¼ 1,...,N}, be the numerical solution of the
groundwater flow and mass transport equations on this realization, {hm} ¼ {him,
i˛(nh)}, be the set of (nh) head measurements, and {cm} ¼ {cim, i˛(nc)}, be the set
of (nc) concentration measurements to which we wish to condition {T}. The
penalty function F ¼

P
i2ðnhÞðhi � himÞ2 þ a

P
i2ðncÞðci � cimÞ2 will not, in prin-

ciple, be close to zero, indicating that measured heads and measured concen-
trations are not reproduced by the flow and transport simulations in the given
transmissivity field. In such case, a perturbation {DT} ¼ {DTi, i ¼ 1,...,N} is added
to {T} so that the head and concentration solution in the updated field {T + DT}
results in a penalty function close to zero. The perturbation {DT} is parameterized
as a linear function of the perturbations at a few selected master locations (m)
uniformly distributed over the volume of interest. A rule of thumb to select the
master locations is to have 1 or 2 master locations per correlation length. The
perturbation at any cell i is given by

dTi ¼
X

j2ðmÞ
kjdTj

with kj computed by ordinary kriging with the same variogram used for the
generation of {T}. To ensure that conditioning to transmissivity is not destroyed
by the perturbation, the set of master locations includes the transmissivity data
locations, i.e., (m) � (nT) and the perturbation at the transmissivity data loca-
tions is set constant to zero, DTi ¼ 0, i˛(nT). A non-linear optimization proce-
dure determines the perturbations DTi, i˛(m) that reduces the penalty function F,
close to zero.

Including concentration data in the conditioning process is, from a formal
point of view, identical to how piezometric data are included in the self-
calibrating approach as described by Gómez-Hernández et al. (1997). However,
from a practical point of view, it has represented a very importance challenge due
to the complexity of the problem: the non-linear optimization step, which
requires computing the sensitivity of the objective function to changes of trans-
missivity at the master locations is cumbersome and specific algorithms for this
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purpose had to be developed. The reader interested in the specifics of the self-
calibrating approach for concentration conditioning is referred to Sahuquillo et
al. (1999) and, especially, to Hendricks Franssen (2001).

Example application
The extended self-calibrating algorithm has been applied under controlled
conditions to a synthetic aquifer. In the synthetic aquifer, the exact response to
flow and transport of the aquifer is known. The aquifer of 500 m by 500 m
extent is discretized into 50 by 50 cells, with heterogeneous log-transmissivities
of mean )6 (log10 m2/s), standard deviation of 0.5 (log10 m2/s), and isotropic
variogram with range of 125 m. The flow regime is at steady state with a linear
average head gradient. A contamination event was simulated resembling a spill
over a rectangular area of 10 m by 100 m near one of the edges of the aquifer.
The numerical solution of the groundwater flow and mass transport equations
was obtained; then, the fields were sampled for a few data values of the
parameters and the state variables, more precisely 20 log transmissivity data
(Y), 20 piezometric head data (h) and 13 concentration data (c) at a time step in
which half of the plume had already past the concentration control locations.
The scenarios described in Table 1 were considered as with regard to condi-
tioning data combinations.

For each scenario, 100 realizations conditioned to the corresponding com-
bination of data were generated. The resulting ensemble of realizations is a
stochastic conditional model of the aquifer. The reliability of the model was
analyzed by measuring the average departure, at each of the 2500-discretization
cells between the average of the 100 realizations and the reference fields
(AAE(Æ)), and the average local standard deviation of the 100 realizations
(AASD(Æ)):

AAEðXÞ ¼ 1

NNODES

XNNODES

i¼1

XSIM;i � XREF;i

� �

AESDðXÞ ¼ 1

NNODES

XNNODES

i¼1

rXi

where AAE is average absolute error, AESD average ensemble standard devia-
tion, NNODES the number of discretization grid cells, and i is a grid cell index,
X represents either decimal log transmissivity, steady-state hydraulic head or
mass concentration at a certain time step, the overbar indicates ensemble

Table 1. List of scenarios

Conditioning 20 Y data 20 h data 13 c data

Scenario 1 NO NO NO
Scenario 2 YES NO NO
Scenario 3 NO YES NO
Scenario 4 YES YES NO
Scenario 5 NO NO YES
Scenario 6 YES NO YES
Scenario 7 NO YES YES
Scenario 8 YES YES YES
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average, the subscript SIM refers to the realizations, and the subscript REF to
the reference values; finally, rXi is the ensemble standard deviation of X at a
given node. The average absolute error measures how closely, on average, the
ensemble mean of the 100 realizations predicts the reference field, and the
average standard deviation measures how much uncertainty there is about the
ensemble mean, the combination of both values is a good measure of the
reliability of the model.

Tables 2 and 3 show the average values AAE and AESD for the different
scenarios and for log-transmissivity, piezometric head and concentration. For
comparison purposes, all values have been standardized with respect to the
unconditional scenario, thus allowing easy comparison of the relative gain that
introducing a given combination of conditioning data brings.

The tables indicate clearly how the use of conditioning data improves both the
average absolute error and the average standard deviation. With the exception of
scenario number 5, for which only concentration data is used, and for which the
average standard deviation is larger than for the unconditional case, (although the
predictions improve, they are more uncertain) the influence that the different
data types have in the characterization/prediction of transmissivity and piezo-
metric head and concentration is noticeable (and expectable). When each data
type is used alone, the best prediction occurs for that specific variable, and when
different data types are used, their combined effect multiplies the reliability of the
model.

Table 2. Standardized average absolute error (scenario 1 = 100) for the characterization of
the transmissivity, steady-state head, and concentration (averaged over 20 time steps)
fields. (The letter Y or N indicates whether the data type was used for conditioning.)

AAE(Y) AAE(h) AAE(c)

Scenario 1 100 N 100 N 100 N
Scenario 2 92 Y 93 N 68 N
Scenario 3 91 N 49 Y 97 N
Scenario 4 81 Y 34 Y 70 Y
Scenario 5 96 N 92 N 54 Y
Scenario 6 91 Y 90 N 58 Y
Scenario 7 88 N 52 Y 43 Y
Scenario 8 79 Y 35 Y 37 Y

Table 3. Standardized average ensemble standard deviation (scenario 1 = 100) for the
characterization of the transmissivity, steady-state head and, concentration (averaged over
20 time steps) fields. (The letter Y or N indicates whether the data type was used for
conditioning.)

AESD(Y) AESD(h) AESD(c)

Scenario 1 100 N 100 N 100 N
Scenario 2 85 Y 79 N 95 N
Scenario 3 96 N 59 Y 97 N
Scenario 4 81 Y 51 Y 82 N
Scenario 5 107 N 105 N 108 Y
Scenario 6 88 Y 82 N 90 Y
Scenario 7 98 N 61 Y 84 Y
Scenario 8 81 Y 50 Y 69 Y
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Conclusions
The self-calibrating algorithm for conditioning transmissivity realizations is a
valuable tool for building ensembles of realizations conditioned to different data
types. Post-processing of these ensembles of realizations provide different model
reliability measures. In the 2-D synthetic example discussed here, the existence of
a reference field permits evaluating prediction bias (average departure between
realizations and reference) besides uncertainty (average local standard deviation).
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