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Abstract. We suggest a critical look at the epistemic foundations of the porous
media upscaling problem that focuses on conceptual processes at work and not
merely on form manipulations. We explore the way in which critical aspects of
scientific methodology make their appearance in the upscaling context, thus
generating useful effective parameters in practice. The fons et origo of our
approach is a conceptual blending of knowledge states that requires the revision
of the traditional method of scientific argument underlying most upscaling
techniques. By contrast to previous techniques, the scientific reasoning of the
proposed upscaling approach is based on a stochastic model that involves
teleologic solutions and stochastic logic integration principles. The syllogistic
form of the approach has important advantages over the traditional reasoning
scheme of porous media upscaling, such as: it allows the rigorous derivation of
the joint probability distributions of hydraulic gradients and conductivities across
space; it imposes no restriction on the functional form of the effective parameters
or the shape of the probability laws governing the random media (non-Gaussian
distributions, multiple-point statistics and non-linear models are automatically
incorporated); it relies on sound methodological principles rather than being
ad hoc; and it offers the rational means for integrating the multifarious core
knowledge bases and uncertain site-specific information sources about the
subsurface system. Previous upscaling results are derived as special cases of the
proposed upscaling approach under limited conditions of porous media flow, a
fact that further demonstrates the generalization power of the approach. Our hope
is that looking at the upscaling problem in this novel way will direct further
attention to the methodological exploration of the problem at the length and the
detail that it deserves.
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1
Introduction
A commonly encountered hierarchy in physical sciences is that of natural scales,
from the microscopic scale of particles and elementary volumes to the macro-
scopic scale of everyday life. Theoretical laws may be assumed at a microscopic
level, whereas phenomenological laws are implemented at the control cell level of
a geographical information system. Viewed from this angle, many physical
entities are not absolute but rather obtain their meaning within the context of the
specified hierarchical level. Such a multi-scale consideration of Nature has far-
reaching implications for our knowledge of it and, thus, a strong epistemic
component.

Porous media investigations often involve a change-of-scale technique which
relates a physical parameter at different scales. Flow and transport in heteroge-
neous porous media, e.g., are represented by a set of primitive equations relating
subsurface parameters at a small spatial scale. However, for various reasons
(acquisition of reliable knowledge through experimentation or numerical simu-
lation) flow and transport dynamics need to be considered at a large scale using
effective parameters, like effective hydraulic conductivity (EHC) or equivalent
hydraulic conductivity (EqHC). The relation between small scale measurements
and effective parameters is assessed quantitatively by means of an upscaling
procedure.

In hydrogeologic research and development we should distinguish between, (i)
investigation techniques (such as solving a physical equation, constructing a
simulation model, or designing an experimental procedure), and (ii) conceptual
reasoning frameworks (such as developing a methodology for applying the laws of
logic to hydrologic situations, building hypotheses, or integrating physical
knolwedge bases). As regards (i) above, in the upscaling literature we find various
upscaling techniques often based on different interpretations of upscaled con-
ductivity (e.g., Cushman et al., 2002). Two of the most common groups of such
techniques are as follows:

a. The group of analytical techniques leading to the EHC interpretation. This
group seeks to express EHC as function of conductivity statistics and most of
its techniques are of a stochastic nature (Gelhar and Axness, 1983; Cushman,
1986; Dagan, 1989; Neuman et al., 1992; Neuman and Orr, 1993; Christakos
et al., 1993, 1995; Hristopulos and Christakos, 1997a, b, 1999).

b. The group of numerical techniques leading to the EqHC interpretation of an
upscaled conductivity. The flow equations apply in a controlled and self-
contained part of the porous media whole in isolation of the rest. In this case,
one often distinguishes between two sub-groups of techniques below:

b1. one sub-group generates solutions of the primitive flow equation at the
fine scale in terms of flux and hydraulic gradient distributions, and then
derives the EqHC at the coarse scale in terms of some rule involving
these distributions (e.g., Rubin and Gomez-Hernandez, 1990; Kitanidis,
1990; Durlofsky, 1991); and

b2. another sub-group uses empirical power-averaging to calculate EqHC at
the coarse scale without any explicit consideration of the flow conditions
(e.g., Deutsch, 1989; Desbarat, 1992; Scheibe and Yabusaki, 1998).

While these techniques have offered valuable insight into certain aspects of the
upscaling problem, their application in practice has been met with rather limited
success for a number of reasons listed in the relevant literatue, including
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restrictive assumptions (like homogeneity), infinite flow domains and uniform
hydraulic gradient, and low-order perturbation approximations.

As a matter of fact, all the investigations of the upscaling problem (groups a
and b above) have focused mostly on form manipulations (analytical and com-
putational aspects of the problem) and no much attention has been given to the
underlying conceptual issues (e.g., inferences drawn in accordance with laws of
logic, integration of upscaling within a broader framework of assumptions about
the subsurface environment, scales that are connected in a phenomenological
manner vs. a conceptual manner, and physical knowledge blending). Methodo-
logically induced conceptual issues, however, can raise strong doubts about the
problem solving efficacy of a wide range of formal techniques. Ergo, it is
appropriate to revisit the fundamentals of the upscaling problem, viz., the critical
reasoning concepts and methodological credentials underlying the upscaling
techniques. This is a goal of the present work.

At this point, we should recall that the effective parameters obtained by the two
major groups of techniques above are based on the traditional reasoning scheme
of hydrologic science. In accordance with this scheme, one generally starts with a
limited set of conductivity measurements at the fine scale and the models of the
relevant low-order statistics (spatial mean and covariance or variogram) are
generated. Then, by means of induction global validity of the statistics models is
assumed, in which case two possible paths of action emerge:

A. The models are used in the context of a stochastically formulated equation of
flow and specific solutions (usually approximate) for the EHC are sought by
conventional means (see, also, group a above). In some cases, solutions in
terms of statistical moments are conditioned to hard measurements at
selected points in space.

B. The models are used to generate conductivity realizations at the fine scale by
means of, e.g., geostatistical kriging. The realizations are then inserted:

(B1) either in the flow equations that are solved at the fine scale to obtain
the flux and gradient distributions over the domain, which in turn are
used to obtain estimates of the EqHC by means of an upscaling rule
(sub-group b1 above);

(B2) or in a power-averaging rule to produce EqHC estimates (sub-group
b2).

We would like to cast doubt on any idea that we can take the preceding upscaling
techniques as givens that are in no way in need of methodological interpretation or
critique. Instead, as already mentioned most of these techniques have significant
limitations. It is worth-noticing, e.g., that no reliable procedure has been developed
on the basis of the traditional reasoning scheme above to compute the joint
probability distributions of hydraulic gradients and conductivity fields (SP Neuman
Personal Communication). In this work, a different methodological scheme is
considered which can eliminate such limitations. We focus on an epistemic treat-
ment of upscaling, which is a return to the problem basics that can considerably
expand the possible solutions. This treatment acknowledges the fact that the
upscaling affair is not merely an assemblage of data and formal techniques. Instead,
there is a logic to thinking in the upscaling context, which leads us to study the
nature of the frame of thought by means of a number of epistemic concepts
(blending, uncertainty, teleologic, information etc.) and their relations. A theoret-
ical framework of upscaling is introduced which involves the integration of dif-
ferent input states such as core knowledge, incompletely known input parameters,
site-specific uncertain influences and interdependencies to create new emergent

278



structures, techniques, and ways of thinking. This is a knowledge synthesis ap-
proach which has a metacognitive character (it involves thinking about our
thinking) and recognizes that behind form manipulation is human power to con-
struct meaning by conceptual blending. By properly organizing physical concepts
and logical processes underlying the porous media situation, knowledge synthesis
can avoid limitations of previous upscaling techniques based on restrictive flow
conditions, small heterogeneity assumptions, bounded domains, low-order per-
turbations, inadequate flow simulators or transfer functions, arbitrary upscaling
transformations, and neural networks with unrealistic training datasets.

2
Stochastic formulation of knowledge bases
Due to uncertainty, the physical laws and mechanisms underlying a realistic
hydrogeologic situation, even when they are known, manifest themselves in a
complex manner which can be described only in stochastic terms. Stochastically
formulated geologic media properties and physical laws account for the uncer-
tainties generated when they are considered in a real-world environment and
provide the range of possible values together with the probabilities of their
occurrence across space. Stochastic formulation of the upscaling situation starts
with the representation of the hydrologic parameters involved in terms of random
fields across space and proceeds with the definition of a knowledge base (KB) as a
collection of uncertain information sources relevant to the problem at hand which
are invoked by a reasoning process aimed at solving the problem. Then, an effi-
cient classification of KB can be established as follows.

2.1
General KB
The general KB G includes core knowledge and theoretical models developed for
well-defined conceptual environments (fundamental laws of flow, primitive
equations, etc.). Thus, G-KB is often associated with science seeking to deepen
insight at a fundamental level, in which case the physical laws of the KB give to
the upscaling approach a nomological character (in the sense of Hempel).

For the purposes of the present study, the G-KB includes the following.
Consider a situation of effective flow in a porous domain which is sufficiently
characterized by the local mean value law ði ¼ 1; . . . ; n; a ¼ 1; . . . ;N)

KaJa;i ¼ Keff ;a;iJa;i ð1Þ

in some coordinate system s ¼ ðs1; . . . ; snÞ, where the bar denotes stochastic
expectation, Ka is the random conductivity field KðsÞ at point sa; Ja;i, is the mean
hydraulic gradient in the i direction expressed in terms of boundary conditions
(BC) and conductivity statistics, and the Keff ;a;i are the EHC components sought.
Depending on the situation, Eq. (1) can be associated with different BC. Equa-
tion (1) is a local law. Nonlocal laws may be considered as well (e.g., for non-
homogeneous situations), but this is beyond the methodological scope of the
present work.

In addition to the physical Eq. (1), in most hydrogeologic situations the G-KB
can include theoretical models for 1-, 2- and multiple-point conductivity statistics
of the general form

bðqÞa ¼ K
q1
a1 K

q2
a2 � � �K

qq
aq ; ð2Þ
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where a ¼ ða1; . . . ; aqÞ, a1; . . . ; aq ¼ 1; . . . ;N , q ¼ ðq1; . . . ; qqÞ and
q1; . . . ; qq 2 R. Multiple-point nonlinear statistics provide information about the
spatial variation of hydraulic conductivity that cannot be obtained from the 1-
and 2-point statistics assumed by the conventional upscaling techniques. The
Keff ;a;i field in Eq. (1) refers to one (large) scale, whereas the Ka field in Eq. (2) to
another (small) scale. In the following, an issue of considerable methodological
interest will be how knowledge contained in Eqs. (1) and (2) can be integrated
within a broader framework of assumptions and models about the subsurface
environment.

2.2
Specificatory KB
This KB includes site-specific details of the real subsurface environment in the
form of hard data, secondary information sources and uncertain measurements
(Christakos et al., 2002). In a sense, S-KB states factual conditions (facts that
make the laws of the G-KB apply etc.). The S-KB may include: an updated
assessment of the site-specific conductivity domain, Ij, at each spatial location;
and/or the associated probability density function (pdf) of the conductivity field
at some points across space, i.e.,

fSðjÞ ¼ Pdf ½KðsÞ� ; ð3Þ

and/or an estimate of the pdf of the hydraulic gradient field at a set of points
across space, i.e.,

fSðfÞ ¼ Pdf ½JðsÞ� ; ð4Þ

where j and f are conductivity and hydraulic gradient realizations, respectively.
The pdf (3), (4) can have any shape and domains Ij, If. The pdf are constructed
on the basis of the ad rem conductivity measurements, physical intuition, etc.
Other types of site-specific data bases are possible, including secondary infor-
mation in the form of geophysical and geologic data (Serre and Christakos, 1999).
The available hydraulic conductivity measurements could be of different scales
(core scale, slug and packer tests, short- and long-term pumping tests, etc.). The
S-KB usually refers to science as a basis of action (aiming at predictive pre-
diction of open systems, etc.). When the physical laws in G-KB are considered in
the context of an open system, to have practical meaning certain aspects have to
be clarified, like the domain of application of the laws, the error boundaries
within which the laws predictions are acceptable, and consistency with the data in
S-KB.

3
Upscaling as knowledge synthesis
Efficient EHC computations rely on the development of a sound methodology of
upscaling. As was mentioned in Sect. 1 above, our approach to the upscaling
problem involves an epistemic framework (i.e., it refers to processes by which
knowledge and understanding are achieved, communicated and integrated within
the scientific reasoning context). In this framework a distinction should be made
between the term ‘‘method’’ and the term ‘‘methodology.’’ While the former term
more commonly implies an orderly, step-by-step, prescriptive process with a
predictable outcome, the latter term is indicative of a process that is based more
on a set of general guiding principles, concepts and reasoning rules than a series
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of steps. In upscaling situations an adequate methodology can provide answers to
important questions like ‘‘How can one make rigorous inference in view of
general and site-specific KB?’’

3.1
The basic methodological framework
In a real world study one often seeks the rational means to integrate core scientific
knowledge, background experience and site-specific uncertain data into a unique
methodological framework for upscaling purposes. Knowledge synthesis (KS)
refers to the conceptual blending and processing of physical KB to obtain a
realistic representation of the phenomenon across space, assess important
uncertainty sources, evaluate relevant risks, and make science-based decisions.
The credenda of the KS framework of porous media upscaling proposed in this
work includes the integration of the G-KB (abstract representation, pure thought
and critical argument) with the S-KB (appearance, limited experience and
common sense) in order to generate a realistic and informative probability model
linking the conductivity and flow gradient fields across space.

The KS reasoning assumes four stages of knowledge acquisition, blending, and
processing, as shown in Table 1 (Christakos, 2000, 2002a). A comparison of the
KS approach with the traditional reasoning scheme discussed in section 1 ante
reveals certain important differences between the two. The KS methodology in-
volves a stochastic logico-nomological model, in which objectivity refers to an
ability to accept statements about the subsurface environment on the basis of
scientific reasoning and empirical evidence. To improve epistemic objectivity and
create a more realistic representation of the situation the KS methodology
requires that one ‘‘looks’’ at the upscaling situation in two different ways: one
with the help of the G-KB, thus creating a first picture of the situation (model fG);
and another one with the help of the S-KB, thus creating a second picture of the
situation (e.g., in terms of fS). Both pictures are necessary for the full under-
standing of the upscaling situation. Model fG is obtained by means of an epi-
stemically motivated teleologic rule (i.e., a purpose-oriented criterion involving
an action principle) rather than by a direct solution of the stochastic flow
equations by conventional means. While in most well-known action principles
(including Aristotle’s principle of minimum potential energy, Fermat’s principle
of least time, and Hamilton’s principle of stationary principal function) the action

Table 1. The four stages of KS-based upscaling

Stochastic formulation of general knowledge:
The general KB representing structural aspects of the subsurface environment is
formulated stochastically in terms of a set of so-called G-equations.

Model generation:
A teleologic solution of the G-equations is sought by means of an epistemic action
principle (maximum expected information), thus leading to the pdf model, fG,
of conductivity and flow gradients across space.

Site-specific knowledge formulation:
The specificatory KB is transformed into a set of S-operators representing the manifold
case-specific aspects of the subsurface environment.

Revised model generation:
The results of the previous stages are integrated to yield an updated pdf model, fK, of
the conductivity and flow gradient fields (K ¼ G [S denotes total KB). The EHC can
be then expressed in terms of the porous media flow statistics calculated
from the model fK.
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sought refers to ontologic concepts (like energy and time), in the teleologic stage
of Table 1 the action refers to an epistemic concept (information) that may be
expressed mathematically in terms of the Shannon, the Fisher etc. information
measures across space (Christakos et al., 2002). The two previous pictures are
then blended by means of a logic integration rule to generate the final picture
(model fK). The KS organon is very general allowing the use of different systems
to yield an updated pdf model fK, including statistical inductive and stochastic
deductive inferences (the choice of a system over another depends on the par-
ticular features of the porous media application considered). In a sense, the whole
point of the methodological rules (i.e., teleologic and integration) is to offer
norms for scientific behavior; to provide guidance in order to achieve the goal of
the study, namely, the derivation of a richer theory of upscaling than previous
techniques have allowed. In the following we examine these rules in some detail.

3.2
Teleologic solution and logic integration system
As was mentioned above, the teleologic pdf model fG of the joint conductivity j
and hydraulic gradient f distributions across space is derived by means of the
epistemologically motivated action principle of maximum informativeness. In
this novel context, whereas before the goal was to solve the flow equations in the
conventional sense, this problem has no longer, strictly speaking, any signifi-
cance. If the Shannon information concept is used in terms of the random fields
across space, the teleologic model has the functional form (mathematical deri-
vations are presented in Christakos, 2000)

fGðj; fÞ ¼ elTg ; ð5Þ

where g ¼ fga; a ¼ 0; 1; . . . ;Ng is a vector of ga-functions of the gradient and
conductivity fields properly chosen to express the physical G-KB considered. E.g.,
as is shown in Appendix A the ga-functions corresponding to Eqs. (A.1) are
expressed by jafa;i; f

k
a;i and Pq

i¼1j
qi
ai . The vector l ¼ flag consists of coefficients

associated with g (the coefficients la are unknown, at this point, but are com-
puted at a later KS stage, as is discussed in Sect. 3.3 below and in Appendix A).
Generally, the la are functions of the spatial coordinates and their initial values
depend on the BC associated with the flow law (e.g., Kolovos et al., 2002).

Subsequent integration of site-specific information into upscaling yields an
update of the teleologic model (5) by means of either of two groups of approaches
(Christakos, 2000, 2002a): (i) operational Bayesian conditionalization (bc); and
(ii) deductive inference. Group (i) is based on inductively strong standards,
whereas group (ii) relies on deductively sound principles (the basic mathematical
theory of deductive random fields is presented in Christakos, 2002b). The choice
of an adequate integration approach is primarily a conceptual modelling affair
supported by the physical and logical features of the situation. Operational bc is a
powerful and versatile approach that uses knowledge-based probability operators
to improve the teleologic model (5), thus leading to the following general model of
the joint pdf of conductivity and hydraulic gradient across space,

f bc
Kðj; fÞ ¼ HSfGðj; fÞ ; ð6Þ

where the operator HS depends on the kind of the S-KB used. If, e.g., the S-KB
involves the site-specific probabilities (3) across space, then HS ¼ A�1fSðjÞ,
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where A is a normalization coefficient. Equation (6) incorporates information
about the flow variables into the upscaling procedure without the need to solve
any inverse problem.

In some cases, a deductive logic-based conditionalization may provide a better
description of the relationship suggested by the laws of nature than a bc based on
explicitly statistical reasoning or inductively strong standards. Deductive random
field theory considers various shades of such a relationship across space and
yields efficient rules that establish causal relevance in a physical sense. A useful
deductive rule is material biconditionalization (mb), in which case the corre-
sponding mb model of the joint pdf, f mb

K , of conductivity and hydraulic gradient
fields is (Christakos, 2002a, b)

f mb
K ðj; fÞ ¼

1

2A� 1
½2AHS � 1�fGðj; fÞ : ð7Þ

Probability models of the form of Eqs. (6) and (7) are generated at each point,
thus providing a stochastically complete characterization of the upscaling situa-
tion across space rather than a single realization. Part of the methodological
framework leading to these models consisted in treating the logic of upscaling as a
theory of the operation of the faculty of reason, a faculty that acted to synthesize
concepts and knowledge bases.

3.3
Operational expressions of effective hydraulic conductivity
The methodology briefly discussed above can have a decisive influence on the
formulation of the upscaling problem itself, as well as on the nature of any
possible solution to it. In order to obtain useful mathematical EHC formulae
we need to continue expressing methodological arguments in terms of
equations. Accordingly, after the probability model (fK ¼ f bc

K or ¼ f mb
K ) of the

joint distribution of conductivity and flow gradient across space has been
derived from Eqs. (6) and (7), the relevant porous media flow statistics can be
calculated and used to obtain an expression for EHC. Hence, the next
important step is the calculation of the vector l. In light of the KS method-
ology (Sects. 3.1, 3.2) and given the G- and S-KB (Sect. 2), we define the
operators

KK½�� ¼
R

Ij
dj
R

If
dfHKelTg½��

DK½�� ¼
R

dj
R

df�
R

Ij
dj
R

If
dfHK

� �
elTg½��

9
=

;
: ð8Þ

As is shown in Appendix A, the vector l is the solution of the system of equations

DK½jafa;i� ¼ 0; DK½fk
a;i� ¼ 0

DK½jq1
a1 j

q2
a2 � � � j

qq
aq � ¼ 0; DK½1� ¼ 0; KK½1� ¼ 1

)

ð9Þ

for all i, a ¼ ða1; . . . ; aqÞ, k ¼ 1; . . . ; L, and q ¼ ðq1; . . . ; qqÞ; the parameter HK is
given by

HK ¼
HS; if bc is assumed

1
2A�1 ½2AHS � 1�; if mb is assumed

�

: ð10Þ
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Finally, the EHC expression is given in terms of operators (8) as follows
(Appendix A)

Keff ;a;i ¼ KK½jafa;i�K�1
K ½fa;i� : ð11Þ

From a methodological viewpoint, Eq. (11) provides a conceptually revised def-
inition of the EHC as a quantity that satisfies the teleologic and integration rules
of the KS framework. Ergo, Eq. (11) is based on the integration of general laws
and multiple-point statistics with uncertain site-specific data. The KS framework
leading to Eq. (11) can rigorously account for hydraulic conductivity and flow
gradient statistics across space in an implicit manner, which does not require the
explicit involvement of these statistics. On the other hand, the choice of the initial
l-values in the numerical solution of Eqs. (9) is optimized by using information
about the flow BC and conductivity statistics.

In a rather laconic manner, Table 2 presents the step-by-step KS treatment of the
upscaling problem in practice. KS leads to a very general upscaling approach which,
in principle, can produce EHC values for a congeries of flow conditions (spatially
non-homogeneous fields, bounded domains, strongly heterogeneous media, etc.)
and uncertain site-specific information sources (soft conductivity measurements,
flow data, etc.). This approach has significant advantages over previous upscaling
technique. A well-known group of stochastic techniques relies on perturbation
approximations of the KaJa;i terms involving conductivity statistics. The KS
approach follows a different path that formulates the upscaling problem in a way
that there is no need for perturbation approximations, which is another significant
advantage of the KS reasoning. Moreover, some stochastic hydrology techniques
combine the averaged flow model with hard measurements at selected points
through forward and/or inverse conditioning (FIC) of the former on the latter,
coupled with what is often characterized as a ‘‘good measure of subjective
reasoning’’ – although it is not always clear what this characterization implies. The
methodological standards underlying the FIC approach are fundamentally different
than those of the KS approach. KS relies on conceptual blending principles (seeking
complete probability models with high information content to express a wide range
of core knowledge bases and critical reasoning tools to assimilate the manifold site-
specific data sources that extend well beyond hard measurements) rather than on
the form manipulations of FIC (limited to low-order moment conditionalization by
approximate spatial estimation techniques such as kriging, etc.). Furthermore, KS
provides solutions to methodological issues of considerable interest such as, e.g.,
how can Eq. (1) be integrated within the broader framework of models and as-
sumptions about the subsurface environment (G- and S-KB, etc.).

3.4
Some numerical illustrations
Any combination of core and application-specific KB can be included in the KS-
based upscaling methodology, at the expense of having to solve a larger system of

Table 2. Step-by-step KS approach to the upscaling problem in practice

i. Evaluate the relevant G-KB and S-KB available, and derive the associated vector g and
operator HK.
ii. Formulate the corresponding system of Eqs. (9), and solve it with respect to coefficients
vector l.
iii. Use the l-values obtained above to compute the operators KK½fa;j� and KK½ja; fa;j�.
iv. Substitute the last two operators in Eq. (11) to compute the EHC-values, Keff ;a;i.
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equations. It is worth-noticing that KS upscaling derives previous stochastic
upscaling results as its special cases under limiting conditions on the information
and modelling assumptions used – a fact that demonstrates the generalization
power of the KS approach. Below we examine two numerical examples: Example 1
assumes a homogeneous spatial variation of conductivity and offers a simple
numerical demonstration of the theoretical fact that the KS approach applies
in situations where many traditional upscaling techniques do not. Example 2
considers a non-homogeneous conductivity variation across space.

Example 1: Consider the simple case of unidirectional flow in a spatial domain
which has been studied, e.g., by Bakr et al. (1978). The spatial conductivity field
KðsÞ follows a log-normal law so that ln KðsÞ ¼ UðsÞ ¼ UðsÞ þ uðsÞ, where
UðsÞ ¼ �UU is the known mean of the random log-conductivity field and uðsÞ is its
spatially homogeneous fluctuation with known variance r2

u. The flow BC Jð0Þ ¼ J0

is random (with known mean J0 and variance r2
J ¼ J0

2½expðr2
uÞ � 1�Þ and the flow

flux q is deterministic. Under these rather limiting conditions, the traditional
stochastic approach yields the following EHC,

Kta
eff ¼ exp½�UU� 1

2
r2

u� ð12Þ

(the superscript ‘‘ta’’ means ‘‘traditional approach’’). For numerical illustration,
let K ¼ 2:7871 and r2

K ¼ 0:3983, in which case Kta
eff ¼ 2:6512. In view of the flow

BC and conductivity statistics available the KS approach yields

lTg ¼ l0 þ l1jþ l2j
2 þ l3fþ l4f

2 þ l5jf ; ð13Þ

where the li-coefficients ði ¼ 0; 1; . . . ; 5Þ are the solutions of the corresponding
system of Eqs. (9), which in this case reduces to the system

DK½jf� ¼ 0; DK½j� ¼ 0; DK½j2� ¼ 0
DK½f� ¼ 0; DK½f2� ¼ 0; DK½1� ¼ 0; KK½1� ¼ 1

�

; ð14Þ

and HK ¼ HS. Note that some reformulation of the KS equations can be made
when the physical circumstance makes it necessary to replace the conductivity
field in Eq. (13) with the corresponding log-conductivity field. On the basis of
Equations. (13) and (14), a number of numerical experiments were performed
and interesting conclusions were drawn, as follows:

a. In the first numerical experiment we assumed that a case-specific datum in the
form of the pdf fSðjÞ is available for the conductivity field (say, a uniform law
with mean 1 and variance 0.333). As we saw in Sect. 3.2, the KS approach is
based on a conceptual structure that can go well beyond the limits of the
traditional upscaling techniques and can blend different states of core
knowledge and uncertain information sources. In this case, KS yielded
Kks

eff ¼ 2:7723 (the superscript ‘‘ks’’ denotes KS), which differs from the Kta
eff by

4.6%. This is expected, since KS processed case-specific information that the
traditional technique did not. The difference in EHC values is rather small,
since the case-specific information does not differ much from core knowledge
about conductivity (larger differences are expected when case-specific infor-
mation differs considerably from core knowledge). Fig. 1 shows that an error
in our knowledge of flow BC has no effect on the Kks

eff estimate, since the new
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information did not concern the flow BC. On the other hand, a plot of possible
errors in our knowledge of the conductivity statistics (%) vs. the resulting
errors in the Kks

eff estimates (also shown in Fig. 1) reveals that the latter in-
crease proportionally to the former. In the same figure a plot of the errors in
our knowledge of the conductivity statistics (%) vs. the corresponding K ta

eff
errors is shown for comparison. The error variation in the calculation of the
Kta

eff -values is consistently different from the error variation in the calculation
of the Kks

eff -values.
b. To compare the K ta

eff -value above with the EHC obtained from the KS up-
scaling approach under the same flow conditions, we assumed that no S-KB
is available and, thus, it is not necessary to revise the initial probabilistic
description of flow. Accordingly, the initial values for the li-coefficients are
selected so that they are consistent with the same flow BC and conductivity
statistics as the traditional method. In this case, it is found that Kks

eff ¼ 2:6511,
i.e. the same result as the EHC value obtained by the traditional stochastic
technique, as should be expected. Hence, the KS approach exactly reproduces
the EHC value of the traditional technique under the same conditions. As
Fig. 2 depicts, an error in the flow BC has no effect on the resulting Kks

eff -value.
In other words, even when our knowledge of the flow BC is incomplete, the
Kks

eff still produces the theoretical EHC result. This situation is in agreement
with the fact that the analytical expression of the K ta

eff is, in this case, inde-
pendent of the flow BC [see, Eq. (12)]. Moreover, if our knowledge of the
conductivity statistics includes some error, the resulting Kks

eff value should also
include an error. For numerical illustration, a plot of the possible errors in our
knowledge of the conductivity statistics (%) vs. the resulting errors in the Kks

eff
estimates is also depicted in Fig. 2 (the plot shows a rather linear variation).
In the same figure the corresponding errors in the K ta

eff calculation are plotted
for comparison. Obviously, the error Kta

eff variation is in close agreement with
the error variation in the Kks

eff calculation above.

Fig. 1. Plots of error in the KS-based EHC estimate, Kks
eff , due to errors in flow BC (low part

dashed line) and in conductivity statistics (continuous line). The error in the traditional
EHC estimate, Kta

eff , vs. the error in conductivity statistics (circles) is also plotted for
comparison. A S-KB is assumed available in the form of fSðjÞ
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Example 2: The flow and conductivity BC, Jð0Þ ¼ J0 and Kð0Þ ¼ K0, as well as the
flow flux q are all deterministic. The random log-conductivity fluctuation field uðsÞ
has a space-dependent variance of the form r2

uðsÞ ¼ c½1þ erfðsÞ�, where c is a
constant and ‘‘erf ’’ denotes the error-function. Note that fixing uðsÞ at s ¼ 0 has
made it a conditioning point and, as a result, the spatial homogeneity hypothesis of
Example 1 has been violated. Under these conditions, the traditional stochastic
EHC expression is a function of the spatial coordinate s (Oliver and Christakos,
1996),

Kta
effðsÞ ¼ exp UðsÞ � 1

2
r2

uðsÞ
� �

: ð15Þ

For numerical illustration we select the values UðsÞ ¼ �UU ¼ 1 and c ¼ 0:05. Then,
the coefficients in Eq. (13) are functions of space, i.e. liðsÞ, and the estimated
Kta

eff ðsÞ is plotted in Fig. 3 vs. the spatial coordinate s. The KS-based EHC esti-
mates across space, Kks

eff ðsÞ, are plotted in the same figure for comparison. Clearly,
the Kta

eff ðsÞ and Kks
eff ðsÞ plots are in very good agreement with each other (the

maximum difference between the two plots is less than 1% and is rather due to
numerical error).

The examples above offer valuable insight into the workings of the KS
upscaling approach, although considerable work remains to be done in order
to test the applicability of KS upscaling in more complex real-world applica-
tions. KS may be viewed as a general and flexible upscaling approach that
produces complete probability distributions of porous media flow processes
using conceptual blending principles, the choice of which depends on the
logical and physical features of the situation. These principles establish
a dialectic between site-specific data and theory leading to useful EHC
estimates.

Fig. 2. Plots of error in the KS-based EHC estimate, Kks
eff , due to errors in flow BC (low part

dashed line) and in conductivity statistics (continuous line). The error in the traditional
EHC estimate, K ta

eff , vs. the error in conductivity statistics (dashed-dotted line with circles)
is also plotted for comparison. No S-KB is assumed available
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4
Conclusions
One can find in the literature several upscaling techniques that are based on
empirical investigations and formal analysis. A brief review of the various groups
of techniques developed over the last few decades was given. The EHC solutions
obtained by these groups are based on form approaches and traditional reason-
ing. The form approaches often do not improve our understanding of the con-
ceptual blending processes at work, whereas conceptual difficulties are, in general,
more serious than empirical anomalies. In many cases the problem statement
itself dictates the upscaling solution, which makes it hard to expand the possible
solutions. The present work emphasizes the decisive role which epistemic argu-
ments enjoy in the rational development of hydrologic sciences, in general, and of
the upscaling problem, in particular. The proposed KS-based methodology is an
attempt to depart from the traditional way of banausic, formal reasoning
underlying many of the existing upscaling techniques. By revising the upscaling
fundamentals in the light of the conceptual blending desiderata, one can con-
siderably expand the possible solutions and make finding a solution more
interesting. By way of a coda, among the main theoretical and practical advan-
tages of the KS-based upscaling approach over the traditional techniques are the
following: (1) It is more open, i.e., it assimilates several types of KB and uncertain
information sources relevant to porous media and flow conditions. (2) It is more
flexible, e.g., it accounts for conductivity and gradient statistics in a way that does
not require an explicit involvement of the statistics in the KS equations. (3) It is
more general, i.e., is avoids restrictive model assumptions (e.g., uniformity,
lognormality, unbounded domain, uniform flow) and low-order approximations.
(4) It is more informative, i.e., it generates complete probability distributions of
conductivity-hydraulic gradient across space, instead of single realizations. (5) It
is more nested, i.e., it derives many previous results as special cases under limited
conditions of porous media flow within the more general KS framework. We
conclude by expressing the hope that the present work will direct further

Fig. 3. Plots of traditional EHC K ta
eff ðsÞ (circles) and KS-based EHC Kks

eff ðsÞ (continuous line)
as functions of space
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attention to the methodological exploration of the upscaling problem at the length
and the detail that it deserves. In the end, a researcher only proposes but it is
reality that disposes.
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Appendix A
A main function of stochastic porous media upscaling is the calculation of the
flow statistics, i.e. the conductivity-gradient cross-covariance KaJa;i, in a way that
accounts for the G- and S-KB (Sect. 2). In the KS context, the assimilation of
G-KB leads to the G-equations (also called, teleologic equations)

Keff ;a;i Ja;i
�
�
G
¼
R

dj
R

dfjafa;i fGðj; fÞ; Jk
a;i

�
�
�
�
G

¼
R

dj
R

dffk
a;ifGðj; fÞ

bðqÞa ¼
R

dj
R

dfjq1
a1 j

q2
a2 � � � j

qq
aq fGðj; fÞ; 1 ¼

R
dj
R

dffGðj; fÞ

9
=

;

ðA:1Þ

(for all i; k; a; q), where fGðj; fÞ has the form of Eqs. (5) so that the vectors l and g
are consistent with mean flow law (1), associated BC, and conductivity statistics.
In light of S-KB, an updated system of upscaling equations is derived in the
integration stage:

Keff ;a;i Ja;i
�
�
K
¼
R

Ij
dj
R

If
dfjafa;i fKðj; fÞ; Jk

a;i

�
�
�
�
K

¼
R

Ij
dj
R

If
dffk

a;i fKðj; fÞ

bðqÞa

�
�
�
�
K

¼
R

Ij
dj
R

If
dfjq1

a1
jq2

a2
� � �jqq

aq fKðj; fÞ; 1 ¼
R

Ij
dj
R

If
df fKðj; fÞ

9
>>=

>>;

ðA:2Þ

(for all i; k; a; q), where fK ¼ f bc
K or f mb

K is the pdf of Eqs. (6) or (7). By combining
Eqs. (A.1) and (A.2) and in view of Eqs. (8) and (10) we obtain Eqs. (9) which can
be solved for la [as already mentioned, the BC assumed for law (1) can affect the
initial la-values]. Subsequently, the Keff ;a;i values are obtained from Eq. (11).
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