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A comparison of two bivariate extreme value distributions

Abstract There are two distinct bivariate extreme value
distributions constructed from Gumbel marginals,
namely Gumbel mixed (GM) model and Gumbel logistic
(GL) model. These two models have completely different
structures and their dependence ranges are different. The
product-moment correlation coefficient for the former is
q 2 ½0; 2=3� and the latter is q 2 ½0; 1�. It is natural to ask
which one is more appropriate for representing the
joint probabilistic behavior of two correlated Gumbel-
distributed variables. This study compares these two
models by numerical experiments. The comparison is
based on that: (i) if the two distribution models are
identical, then the joint probability and the joint return
period computed by the GM model should be the same
as those by the GL model; and (ii) if a selected distri-
bution is the true distribution from which sample data
are drawn, then the probabilities computed by the the-
oretical model should provide a good fit to empirical
ones. Comparison results indicate that in the range of
correlation coefficient q 2 ½0; 2=3�, both models provide
identical joint probabilities and joint return periods, and
both indicate a good fit to empirical probabilities; while
for q 2 ð2=3; 1Þ, only the Gumbel logistic model can be
used.

Keywords Gumbel distribution Æ Bivariate extreme
value distribution Æ Gumbel mixed model Æ Gumbel
logistic model Æ Correlation

1 Introduction

The hydrological extreme events such as floods and
storms may appear to be multivariate events. To effec-
tively fulfill hydraulic structure design and management,
one needs to understand joint statistical properties of
these multivariate hydrological events. Multivariate
probability distributions can be implemented to repre-
sent joint statistical behavior of these events. The
Gumbel distribution or extreme value type I (EVI) dis-
tribution is one of most frequently adopted distribution
types for modeling hydrological extreme events such as
floods and storms (Gumbel 1958; Todorovic 1978; Ca-
stillo 1988; Stedinger et al., 1993). The study of the bi-
variate extreme value distribution will be of interest to
hydrological engineers for analyzing the joint probabi-
listic behavior of two correlated Gumbel distributed
hydrological events.

In the statistical literature, a few bivariate extreme
value distribution models have been developed and
studied (see for examples, Gumbel, 1960a, b, 1961;
Gumbel and Mustafi, 1967; Oliveria, 1975, 1982; Pick-
ands, 1981; Buishand, 1984; Raynal-Villasenor and
Salas, 1987; Tawn, 1988; Joe et al., 1992; and Coles and
Tawn, 1991, 1994). These distribution models have
mainly remained their theoretical development and have
seldom been applied to resolve practical problems in
multivariate frequency analyses in hydrological/envi-
ronmental science. The recent studies of Yue et al. (1999,
2000) and Yue (2000a, b, 2001a, b) provided practical
applications of two explicit bivariate extreme distribu-
tions, namely the Gumbel mixed (GM) model and the
Gumbel logistic (GL) model proposed by Gumbel
(1960a, b, 1961) to represent multivariate hydrological
and meteorological events. These two models are con-
structed from Gumbel marginals and are only two dif-
ferentiable bivariate extreme distribution models. As
both models have the same marginal distributions, it is
natural to ask which model is more appropriate for
representing joint probabilistic properties of extreme
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events. A referee of Yue (2001b) also suggested that the
comparison of these two models should be made. A
simple comparison between these two models was made
there using only one practical sample.

This study makes a detailed comparison of the suit-
ability of these two models for representing joint prop-
erties of two correlated Gumbel-distributed random
variables. As it is almost impossible to get a number of
combinations of two correlated Gumbel-distributed
random variables with expected correlation coefficients
in the practical world, Monte Carlo simulation are em-
ployed to generate sample data with the Gumbel dis-
tribution. Simulation can provide us various devised
combination scenarios of two random variables.

2 Comparison

The joint cumulative distribution functions of these two
models are presented in Appendix A. Both the GM
model and the GL model are constructed from the
Gumbel marginal distributions. To mimic this situation,
a number of Gumbel-distributed univariates X and Y are
generated first. Then, a number of combinations of X
and Y with certain dependence can be selected among
these generated data.

2.1 Generation of Gumbel distributed
random variables

A random variable Zð¼ X ; Y Þ is said to follow the
Gumbel distribution (or EVI distribution) if Eq. (A6)
(see Appendix A) can be used to represent the sample of
Z. The inverse form of the distribution is given by

z ¼ u� a lnð� ln FZÞ FZ 2 ½0; 1� ðz ¼ x; yÞ ð1Þ
The random variable FZ is uniformly distributed on the
interval [0, 1]. It was generated with sample size of 100
by the approach of Lewis et al. (1969). Then, by using
Eq. (1) with given location and scale parameters u and a,
the corresponding value of Z was obtained. A number of
samples of X and Y were generated by this approach,
respectively. Then six pairs of two variables, X and Y,
with Pearson’s product-moment correlation coefficient

(PPMCC) q ¼ 0:1; 0:3; 0:5; 0:6; 0:667ð2=3Þ; 0:9 were
selected among these generated sample data, respec-
tively. The means and standard deviations of X and Y
and parameters of the Gumbel distributions are pre-
sented in Table 1. The association parameters for the
GM and the GL models were computed using Eqs. (A3)
and (A4), respectively. They are given in Table 2.

2.2 Empirical and theoretical joint probabilities
of X and Y

Empirical joint non-exceedance probabilities were
computed using the approach proposed by Yue et al.
(1999). A two-dimensional table is first constructed in
which the variables X and Y are arranged in ascending
order. The element (nml) in row m and column l of the
table is the number of the concurrence of these two
variables. The joint cumulative frequency (non-excee-
dance joint probability) of the combinations of xi and yj
is then given as:

F ðx; yÞ ¼ PrðX � xi; Y � yjÞ ¼
Pi

m¼1
Pj

l¼1 nml � 0:44

N þ 0:12

ð2Þ
where N is the total number of sample size (N ¼ 100).

Theoretical joint probabilities of the real occurrence
combinations of xi and yj for the GM and GL were
estimated using Eqs. (A1) and (A2), respectively. Fig-
ures 1–5 displays the empirical and theoretical joint
probabilities of X and Y with correlation coefficients

Table 1 Statistics of X and Y and parameters of the Gumbel distributions

q X Y

Statistics Parameters Statistics Parameters

M S a u M S a u

0.1 16.43 11.89 9.27 11.08 17.53 9.02 7.03 13.47
0.3 13.19 5.71 4.45 10.62 25.55 13.27 10.35 19.58
0.5 13.09 6.29 4.90 10.26 27.28 14.79 11.53 20.62
0.6 10.00 6.11 4.77 7.24 29.94 14.64 11.42 23.35
2/3 16.35 9.03 7.04 12.29 23.37 11.27 8.79 18.30
0.9 22.99 9.11 7.10 18.89 15.64 7.79 6.07 12.14

Table 2 Association parameter between X and Y

q Association parameters between X and Y

Gumbel mixed
model

Gumbel logistic
model

h g

0.1 0.162 1.054
0.3 0.474 1.195
0.5 0.768 1.414
0.6 0.908 1.581
2/3 1.000 1.732
0.9 1.307 3.162
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q ¼ 0:10; 0:30; 0:50; 0:60, and 0:667ð2=3Þ, respectively.
In these diagrams, the dashed-line represents the theo-
retical joint probabilities computed by the GM model,
which are arranged in ascending order. The corre-
sponding joint probabilities calculated by the GL model
are illustrated by the solid-line. The corresponding em-
pirical joint probabilities are indicated by the plus sign.
The x-axis is the corresponding order number of a
combination of xi and yj. Figures 1–5 indicate that the
computed theoretical joint probabilities by the GM
model are almost the same as those computed by the
GL model. No significant differences can be detected
between the theoretical and empirical probabilities. To
test the goodness of fit of the theoretical distribution to

the empirical one, the Kolmogorov–Smirnov test (Kanji,
1993) was executed. All the above cases were accepted at
the significance level of 0.05. Thus, both models may be
appropriate for representing the joint distribution of two
correlated Gumbel-distributed random variables whose
PPMCC is: 0 � q � 2=3.

Theoretically, the range of the PPMCC of X and Y
of the GM model is: 0 � q � 2=3 (Oliveria, 1975;
1982). When q > 2=3, the GM model is not suitable
for representing the joint distribution of two corre-
lated Gumbel-distributed variables. To illustrate this
point, the 51� 41 matrixes with X ¼ 0 ð1Þ 50 and
Y ¼ 0 ð1Þ 40 were set up and the corresponding joint
pdfs of X and Y with q ¼ 0:9 were computed and

Fig. 1 Comparison of empirical and theoretical joint probabilities of
X and Y with q ¼ 0:1

Fig. 2 Comparison of empirical and theoretical joint probabilities of
X and Y with q ¼ 0:3

Fig. 3 Comparison of empirical and theoretical joint probabilities of
X and Y with q ¼ 0:5

Fig. 4 Comparison of empirical and theoretical joint probabilities of
X and Y with q ¼ 0:6
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were depicted in Fig. 6. It can be seen that in
some domains, the joint probability density function
(pdf) f ðx; yÞ < 0. The minimum of the joint pdf is:
min½f ðx; yÞ� ¼�0:000086. This violates the basic prin-
ciple as a pdf, i.e., f ðx; yÞ � 0.

The empirical and theoretical joint probabilities of X
and Y with q ¼ 0:9 for the GL model are displayed in
Fig. 7. There is no significant differences can be found
between empirical and theoretical probabilities.

In practice, a quantile corresponding to a given return
period is important for practitioners to do effective engi-
neering planning and design. The joint return periods of
these two models corresponding to the above PPMCCs
and the marginal distributions are also computed using
Eq. (A8). The joint return period contour lines are

displayed in Figs. 8–13, which correspond to the given
q ¼ 0:10; 0:30; 0:50; 0:60; 0:667ð2=3Þ, and 0.90, re-
spectively. In these diagrams, the solid lines represent the
joint return periods computed by theGLmodel, while the
dashed lines indicate the joint return periods by the GM
model.When q � 2=3, there are no differences in the joint
return periods computed by the two models, while for
q ¼ 0:90, the differences between the joint return periods
by the twomodels are evident. The joint return periods by
the GMmodel are smaller than by the GL model. This is
due to that in some domains, the joint pdf of the GM
model is negative and FGMðx; yÞ < FGLðx; yÞ. These results
further demonstrate the observations in the preceding
paragraphs, i.e., when q � 2=3, both models provide the
same results, while q > 2=3, the GM model is invalid.

Fig. 5 Comparison of empirical and theoretical joint probabilities of
X and Y with q ¼ 2=3

Fig. 6 Joint probability density function of X and Y by the GM
model

Fig. 7 Comparison of empirical and theoretical joint probabilities of
X and Y by the GL with q ¼ 0:9

Fig. 8 Comparison of joint return periods by the two models with
q ¼ 0:1
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3 Conclusion

This study presents the comparison of two bivariate
extreme value distributions, termed as the Gumbel
mixed (GM) model and the Gumbel logistic (GL)
model. The applicability of these two models for repre-
senting the joint distribution of two correlated Gumbel
distributed variables was examined by simulation ex-
periments. Comparison results demonstrate that within
the range of PPMCC: 0 � q � 2=3, both models provide
the same joint probabilities and joint return periods, and
both may be useful for representing the joint statistical
properties of the two random variables with Gumbel
marginals. When q > 2=3, only the Gumbel logistic
model can be applied to represent the joint distribution
of the two Gumbel-distributed random variables.

Appendix A

The cumulative distribution functions (cdfs) of the
Gumbel mixed (GM) model and the Gumbel logistic
(GL) model are respectively

FGMðx; yÞ ¼ FX ðxÞ � FY ðyÞ

� exp �h � 1

ln FX ðxÞ
þ 1

ln FY ðyÞ

� ��1
( )

ð0 � h � 1Þ

ðA1Þ

FGLðx;yÞ¼ exp � ð� ln FX ðxÞÞgþð� ln FY ðyÞÞg½ �
1
g

n o
ð1� gÞ

ðA2Þ

Fig. 9 Comparison of joint return periods by the two models with
q ¼ 0:3

Fig. 10 Comparison of joint return periods by the two models with
q ¼ 0:5

Fig. 11 Comparison of joint return periods by the two models with
q ¼ 0:6

Fig. 12 Comparison of joint return periods by the two models with
q ¼ 0:667

65



Their joint probability density functions can be derived by
differentiating the corresponding cdfs. In the two models,
h and g are the association parameters of the GM model
and the GL model, respectively, which describe the de-
pendence between two random variables and are pre-
sented by (see Gumbel 1960a, b, 1961; Gumbel and
Mustafi 1967; Johnson and Kotz 1972; Oliveria 1975,
1982)

h ¼ 2 � 1� cos p �
ffiffiffi
q
6

r� �� �

ð0 � q � 2=3Þ ðA3Þ

g ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� qÞ

p ð0 � q � 1Þ ðA4Þ

where q is the Pearson’s product moment correlation
coefficient (PPMCC):

q ¼ E ðX � lX ÞðY � lY Þ½ �
rX rY

ðA5Þ

in which (lX ; rX ) and (lY ; rY ) are the population mean
and standard deviation of X and Y, respectively. In
practice, the population mean and standard deviation
are often replaced by the sample mean (M) and standard
deviation (S), respectively. FX ðxÞ and FY ðyÞ are the
marginal distribution functions of X and Y, respectively.
They are given by

FZðzÞ ¼ exp � exp � z� uZ

aZ

� �� �

ðz ¼ x; yÞ ðA6Þ

where uZ and aZðZ ¼ X ; Y ) are the location and scale
parameters of Z. When the PPMCC q ¼ 2=3, the asso-
ciation parameter h of the Gumbel mixed model reaches
its upper limitation and is equal to 1. When the PPMCC
q ¼ 0, both models become

F ðx; yÞ ¼ FX ðxÞFY ðyÞ ðA7Þ
The joint return period of X and Y associated with the
event that either x or y or both is exceeded
(X > x; Y > y, or X > x and Y > y) can be given by

T ðx; yÞ ¼ 1

1� FBðx; yÞ
ðFBðx; yÞ ¼ FGMðx; yÞ; FGLðx; yÞÞ

ðA8Þ
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