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Abstract. The need for high resolution rainfall data at temporal scales varying
from daily to hourly or even minutes is a very important problem in hydrology.
For many locations of the world, rainfall data quality is very poor and reliable
measurements are only available at a coarse time resolution such as monthly.
The purpose of this work is to apply a stochastic disaggregation method of
monthly to daily precipitation in two steps: 1. Initialization of the daily rainfall
series by using the truncated normal model as a reference distribution.
2. Restructuring of the series according to various time series statistics
(autocorrelation function, scaling properties, seasonality) by using a Markov
chain Monte Carlo based algorithm. The method was applied to a data set from
a rainfall network of the central plains of Venezuela, in where rainfall is highly
seasonal and data availability at a daily time scale or even higher temporal
resolution is very limited. A detailed analysis was carried out to study the
seasonal and spatial variability of many properties of the daily rainfall as scaling
properties and autocorrelation function in order to incorporate the selected
statistics and their annual cycle into an objective function to be minimized in
the simulation procedure. Comparisons between the observed and simulated
data suggest the adequacy of the technique in providing rainfall sequences with
consistent statistical properties at a daily time scale given the monthly totals.
The methodology, although highly computationally intensive, needs a moderate
number of statistical properties of the daily rainfall. Regionalization of these
statistical properties is an important next step for the application of this
technique to regions in where daily data is not available.
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A. Bárdossy
Institut für Wasserbau, Universität Stuttgart
D-70569, Germany

Substantial parts of this work were carried out while the first
author was on sabbatical at the University of New Hampshire
(USA) at the Complex Systems Research Center, Institute for the
Study of the Earth, Oceans, and Space. We give thanks to Charles
Vörösmarthy from the University of New Hampshire (USA) and to
Michael Hutchinson from the Australian National University
(Australia) for useful discussions. We also give thanks to an
anonymous referee for constructive comments.

188



Keywords: Rainfall disaggregation, Seasonal rainfall, Simulated annealing,
Truncated normal model, Rainfall models

1
Introduction
One of the main problems with hydrological times series is that measured values
are usually given at a time scale coarser than the one needed. For example, daily
rainfall values are usually measured at many rainfall recording stations. But
hourly values are usually required for drainage systems design or many other
applications in hydrology and environmental sciences.

For many parts of the world, rainfall data quality is poor and raingauge net-
works are very sparse, which poses a limitation in the estimation of spatially
continuous rainfields, especially at a short time scale (Guenni et al., 1997). More
reliable data is available, for example, at a monthly time step than at a daily time
step. Also many of the global gridded data sets are available at a monthly scale
(New et al., 2000).

Since a disaggregated series is a realization from the original aggregated time
series, stochastic approaches are necessary in order to reproduce the right sta-
tistical characteristics of the data at the required time scale. According to Torfs,
1997, a disagregation technique must be a statistical simulation technique, since a
deterministic approach is impossible in practical terms. The reason for this is that
the original process which is normally unknown is reconstructed from the ag-
gregated process.

A significant amount of contributions on disaggregation methods give support
to the importance of this technique to solve this data limitation problem
(Valencia and Schaake, 1972; Curry and Bras, 1978; Brass and Rodriguez-Iturbe,
1985; Grygier and Stedinger, 1988; Hershenhorn and Woolhiser, 1992; Santos and
Salas, 1992). More recent contributions are presented by Glasbey et al. (1995),
Maheepala and Perera (1996), Torfs (1997), Bürger (1997), Lebel et al. (1998),
Tarboton et al. (1998), Connolly et al. (1998), Gyasi-Agyei (1999), Burian et al.
(2000). In many of the techniques a distributional assumption about the disag-
gregated series is required which is usually the normality assumption. Since the
most common hydrological variables, rainfall and streamflow, are usually non-
normal, a normalizing transformation is required (Maheepala and Perera, 1996;
Bürger, 1997). Tarboton et al. (1998) propose a non-parametric approach where
the joint probability density function is estimated directly from the historical data
using kernel density estimates. Burian et al. (2000) used artificial neural networks
to disaggregate hourly rainfall at a single location. The required joint probability
density function is f (X, Z), where X is the vector of disaggregated variables (e.g.
monthly rainfall, hourly streamflows) and Z is the aggregated variable (annual
rainfall, daily streamflows). Given the aggregated variable Z the problem can be
posed as a sampling from the conditional probability density function:

f ðXjZÞ ¼ f ðX;ZÞR
f ðX;ZÞdX

ð1Þ

Most of the existing methodologies are used for the disaggregation of rainfall time
series at a single location. Recently Lebel et al. (1998), presented a space-time
disaggregation approach for areal storm depth which deals separately the spatial
and temporal variabilities. The spatial disaggregation is based on the turning
bands method (TBM) (Matheron, 1982) and the temporal disaggregation is
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achieved by imposing a standard hyetogram at each location of the spatial di-
saggregation domain. The methodology used as input data the mean areal rainfall
depth as estimated from a dense recording raingauge network for the mesoscale
convective complexes occurred in a Niger region. Gyasi-Agyei (1999), used a
point process based model to demonstrate how the parameters of this model
could be regionalized for hourly disaggregation.

Due to the intermitence characteristics of the rainfall process and the lack of
gaussianity, rainfall still poses the most challenging problems in the disaggregation
methods. To illustrate the disaggregation problem with rainfall data we present in
Fig. 1 aggregated time series of rainfall data from one location at the central plains
of Venezuela in Guárico State. In this figure, the daily, monthly, quarterly and
annual rainfall intensities in units of mm/day are shown. It is clear from this figure
that the rainfall process at a shorter time scale is by far more complex that the
rainfall process at a much coarse time scale. Infinite realizations of the process at a
daily time scale would result in the same process at a larger time scale.

If the monthly values are available for a particular location, the purpose of the
disaggregation procedure is to reproduce a time series that ‘‘looks like’’ the
original daily series. There are a number of desirable characteristics that should
be preserved from the original time series. As a first step, the proportion of dry
periods within the aggregated period should be reproduced. Serial dependence,
simple scaling properties, probability distribution are some of the many char-
acteristics that could be considered.

For non-stationary series with a strong seasonal component, many of the de-
sirable characteristics that should be preserved are also non-stationary and
usually seasonal. This is the case of the data set that will be analyzed in this work.
The simulated annealing technique is applied such that an objective function with
prescribed characteristics of the observed daily series is minimized in the sim-
ulation procedure. A similar approach was presented in Bárdossy (1998), where
the technique was applied to selected stations in the Ruhr catchment, Germany, to
simulate hourly and 5 min rainfall.

The paper is organized as follows: the data set is described in Sect. 2. In Sect. 3
the computational disaggregation methodology is explained. The results and
validation of the methodology are presented in Sect. 4. Finally the discussion and
conclusions indicating possible extensions of the technique are presented.

2
Data set
In order to apply the disaggregation method, we need to investigate the statistical
properties of the daily rainfall series that will be preserved by the proposed
technique. Daily rainfall data from fourteen stations of Guárico state, located at
the Central Plains of Venezuela were used for this purpose. A diagram of the
position of the selected locations is shown in Fig. 2. The stations are located in an
area of 250 � 150 km2 approximately and the southern limits are roughly in the
same direction as the Orinoco river.

These locations were selected among a number of 120 stations available be-
cause of their better data quality and larger number of records. Data from 1967 to
1991 were used. Rainfall at these locations is strongly seasonal with a dry season
from November to April, and a rainy season from May to October. A boxplot
diagram for each month is shown in Fig. 3 for two selected locations, which
clearly shows the seasonal pattern of the data.

The high seasonality in the data suggests that the probability distribution
parameters and the serial and temporal scaling characteristics might change with
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time of the year. This assumption was investigated from the observed data and
subsequently used in the disaggregation procedure.

3
Methodology

3.1
Computational disaggregation procedure
Let

Zi
j ¼

Xnj

k¼1

zi
jðkÞ ð2Þ

where Zi
j is the rainfall amount on month j and year i; zi

jðkÞ is the daily amount
on day k of month j and year i and nj is the number of days of month j.

In general, it is reasonable to assume that if the number of wet days increases
the monthly rainfall amount Zi

j will increase. Similar attempts to relate the number
of wet days with the rainfall amounts have been presented by other authors. For
example, New et al. (2000) use a power function to relate the wet day frequency
with the monthly amounts in order to produce global maps of this variable con-
ditioned on the monthly rainfall values. A similar strategy is used here to estimate
the proportion of wet days conditioned on the observed monthly amounts.

Fig. 1. Precipitation time series for different aggregation (annual, quarterly, monthly
and daily) time periods in mm/day
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The relationship between the probability of having a wet day p
j
w and the

rainfall amount Zi
j was investigated. Different nonlinear models, including the

power function model proposed by New et al. (2000) and the exponential model
proposed by Vörösmarty et al. (1998) were fitted to the observed data for separate
seasons (wet and dry season) and different locations. The best fit was found by
using a nonlinear model of the form:

p j
w ¼ b0ð1 � expð�b1 � ZjÞÞ þ e

where the parameters b0 and b1 are estimated by conventional nonlinear least
square and e is assumed a normally distributed variable with zero mean and
variance r2.

The observed values and fitted models are shown in Fig. 4 by combining all
months of the dry season (November–April) and all months of the wet season
(May–October) for locations 1 and 5.

The disaggregation procedure is then carried out in two steps:

	 Generate an initial sequence of rainfall values with an initial estimate of the
proportion of wet or dry sub-periods conditioned on the monthly value and an
appropriate reference probability distribution.

	 Re-order iteratively the arbitrary sequence of sub-period values until conver-
gence is reached to a new series with similar serial dependence and similar
temporal scaling characteristics to some prescribed values.

These two steps are described in more detail as follows:

1. Generating a daily rainfall sequence by using the truncated normal model
as a reference distribution
Let zjðkÞ the daily rainfall amount for month j and day k. An initial assumption is
that the zjðkÞ are independent and identically distributed random variables. It is
assumed that each zjðkÞ is a sample of a random variable that has been raised to
an appropiate positive power and truncated for values of the random variable
below a given threshold t. Following Stidd (1973), Hutchinson et al. (1993) and
Henze and Klar (1993), the truncated normal model (TNM) can be written as:

Fig. 2. Position for the 14 stations used in the analysis
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zjðkÞ ¼
wb

j ðkÞ if wjðkÞ > t1=b

0 if wjðkÞ 
 t1=b

(
ð3Þ

such that wjðkÞ has a normal distribution Nðlj; r
2
j Þ with parameters lj and r2

j

and b which is a positive value to be estimated. The subscript j indicates that
these parameters might change on a monthly basis. A typical value of b is 3 as
suggested by Stidd (1973). Hutchinson et al. (1993), using ground based data
across the contiguous US estimated a value of b around 1.82. He found that
smooth surfaces as function of location could be fitted to the b values as estimated
from point data by using maximum likelihood.

Typically the parameters l, r2 and b are estimated by maximum likelihood
(Henze and Klar, 1993; Hutchinson et al., 1993) or by using a Bayesian approach
(Sansó and Guenni, 1998; Sansó and Guenni, 1999). Maximization of the the log
likelihood function can be achieved by calculating the derivatives of the log
likelihood function with respect to l, r2 and b and by solving the resulting set of
nonlinear equations. A recurrence relationship is obtained in terms of beta
(Hutchinson et al., 1993) and 10–20 iterations are usually enough to reach con-
vergence. The availability of daily data is essential to be able to estimate all the
model parameters with this approach.

Envisioning the application of this methodology under data restrictive con-
ditions, in where daily data might not be available, a different approach for the
estimation of the model parameters was attempted. The number of wet days and
the monthly amounts are more readily available for many locations than the daily
values. By assuming a constant value of b the parameters l and r can be esti-
mated by the method of moments with previous knowledge of the proportion of
wet days in a given month and the monthly rainfall for the month.

From Eq. (3), the probability of rainfall falling below a threshold value t is
given by:

Pdry ¼ U
t1=b � l

r

� �

Fig. 3. Monthly boxplots of rainfall amounts at two locations
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where U is the standard normal cumulative distribution function. Let a ¼ 1=b.
Assuming that a is known and Pdry can be estimated from a previously known
relationship between the aggregated rainfall amounts and the number of wet days
(Pdry ¼ 1 � nw=n, where nw is the number of wet days and n is the total number
of days in the period or month), the quantile, ðta � lÞ=r corresponding to the
value of Pdry can be estimated as U�1ðPdryÞ.

Assuming the model described in Eq. (3) holds, the expected value of the daily
rainfall z can be calculated as:

EðzÞ ¼
Z1
ta

wbffiffiffiffiffi
2p

p
r

exp � w � l
r

� 	2



2

� �
dw ð4Þ

This equation can be re-written as:

EðzÞ ¼ rb
Z1

ta�l
r

ðx þ l=rÞb/ðxÞdx ð5Þ

where x ¼ ðw � lÞ=r and /ðxÞ is the standard normal density function.
By solving the integral of the previous equation by numerical integration and

by equating the left hand side of this equation to the sample estimate of EðzÞ, it is
possible to get an estimate of r and therefore, an estimate of l (Hutchinson,
2001).

Fig. 4. Relationship between the probability of a wet day and the monthly rainfall amount
for the dry season (November–April) and the wet season (May–October) at locations 1
and 5
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By fitting the model with the above methodology, and by sequentially changing
the values of b from 0.8 to 20, it was observed that increasing values of b resulted
in increasing values of l during the dry months, while increasing values of b
resulted in decreasing values of l during the wet months. These results are
consistent with the results found by Hernandez (1998) about the correlation
between l and b. By using monthly data from the same locations and the max-
imum likelihood method, Hernandez (1998) also found that the values of b tend
to be lower during the dry months than during the wet months. This means that
the normalizing power a ¼ 1=b tend to be higher during the dry season than
during the wet season. This is consistent with the more clear observed departure
from normality of the rainfall data during the dry season than during the wet
season. Therefore it is expected that because of the significant correlation among
all the parameters, the values of l and r will change accordingly with the value of
b. A constant value of b ¼ 2:5 was used in this analysis. Theoretical results
suggests, that the probability density function of a random variable following a
truncated normal model has Gumbel distribution which is independent of b.
(Sansó and Hernandez, personal communication), therefore it is expected, from
the point of view of the extremes, that the arbitrary choice of b ¼ 2:5 will not
affect the extreme behaviour of the resulting disaggregated series.

After l and r are estimated, a sequence of nj values zjð1Þ; zjð2Þ; . . . ; zjðnjÞ are
sampled from the model described by Eq. (3) as the initial daily rainfall sequence.

2. Re-ordering of the daily rainfall amounts within a month by simulating
annealing
At this stage we have found a sequence of daily rainfall values
zjð1Þ; zjð2Þ; . . . ; zjðnjÞ for a given month j which are not following any particular
time structure according to the autocorrelation properties of the original time
series. There are other charateristics of the daily time series as the probability
distributions of dry and wet runs and the simple scaling properties as described
by Burlando and Rosso (1996), that will not be preserved by the unstructured
series.

A computational intensive procedure based on the Metropolis-Hastings algo-
rithm, a powerful markov chain Monte Carlo (MCMC) simulation method, is used
to generate a sequence of irreducible Markov chains with a stationary distribution
/ð:Þ. This stationary distribution is precisely the multivariate probability distri-
bution of interest pð:Þ. A more detailed description of the Metropolis-Hastings
algorithm can be found in Chib and Greenberg (1995). Given an initial time series
f1, a new candidate series f2 is selected from a proposed distribution qð:=f1Þ.

The new candidate is accepted with probability aðf1; f2Þ, where:

aðfi; fjÞ ¼ min 1;
pðfjÞqðfi=fjÞ
pðfiÞqðfj=fiÞ

 !

In the Metropolis algorithm, qð:=f1Þ is selected such that qðfi=fjÞ ¼ qðfj=fiÞ.
Therefore, aðfi; fjÞ only depends on the ratio pðfjÞ=pðfiÞ.

The limiting distribution pð:Þ is defined with the help of an objective function
O. This approach uses the ‘‘annealing theorem’’ combined with the Metropolis-
Hastings algorithm to produce time series corresponding to the minima of O
sampled from the limiting distribution:

pðfÞ ¼ K expð�OðfÞÞ ð6Þ
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where OðfÞ is the objective function for a given time series f and K is a constant to
ensure that pðfÞ is a probability distribution function. Since the algorithm only
requires the ratio pðfjÞ=pðfiÞ, the value of K does not need to be calculated.

A similar description of this approach is found in Bárdossy (1998). Smaller
values of the objective function OðfÞ are attained when the time series f fulfills the
prescribed properties of the observed precipitation series. In order to avoid local
minima when searching for a candidate for a global optimum, a new parameter
called the ‘‘temperature’’ T is introduced such that the limiting distribution is
now a function of T:

pTðfÞ ¼ KðTÞ exp �OðfÞ
T

� �
ð7Þ

T is a control parameter which guarantees convergence of the objective function
to the global minima and it is reduced gradually (generally T ! 0) according to a
user-specified schedule. Note that for realizations f with OðfÞ > 0 the probabil-
ities decrease with decreasing T and for realizations f with OðfÞ ¼ 0 the proba-
bilities increase with decreasing T.

The following procedure is described to reorder the data. Giving an initial value
of the temperature control parameter sl for l ¼ 0, repeat M times the following steps:

1. Select the precipitation amount for month j, Zj > 0, at random.
2. Select two indices i1 and i2 from the set 1; 2; . . . ; nj at random such that zjði1Þ

and zjði2Þ are not both equal to zero.
3. Calculate the value of an objective function for the case the values of zjði1Þ and

zjði2Þ are swaped (Os) and for the case the values of zjði1Þ and zjði2Þ are un-
swaped (Ou).

4. If Os 
 Ou the values of zjði1Þ and zjði2Þ are swaped since the objective function
decreases. If Os > Ou the values of zjði1Þ and zjði2Þ are swaped with probability:

P ¼ exp
Ou � Os

sl

� �
ð8Þ

The process is repeated from step 2. The lower the value of sl, the less likely is the
probability of performing a swap that does not decrease the objective function.

After M iterations, index l is increased by 1 and we set slþ1 < sl. Steps 2–4 are
again repeated M times. The whole process is repeated until sj < scrit .

3.2
Definition of the objective function
The limiting distribution of the disaggregated series will converge asymptotically
to the distribution of the original series which is described in terms of an ob-
jective function that we want to minimize. The objective function can be for-
mulated by including different properties of the rainfall sequences that one wants
to preserve, as for example, autocorrelation function, scaling properties, wet and
dry duration distributions, etc.

For example, for the autocorrelation function, an objective function can be
formulated as the squared difference between a prescribed autocorrelation
function q�ðkÞ and a simulated autocorrelation function qðkÞ:

O1 ¼
XK

k¼1

ðq�ðkÞ � qðkÞÞ2 ð9Þ
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where K is the number of lags used in the calculations.
If the serial dependence of the rainfall occurrences wants to be preserved, an

objective function could be defined as:

O2 ¼
XK

k¼1

ðq�
I ðkÞ � qIðkÞÞ2 ð10Þ

qIðkÞ stands for the ‘‘indicator autocorrelation function’’ which is applied to the
transformed rainfall data through the indicator function:

IðzðtÞÞ ¼ 1 if zðtÞ > d
0 if zðtÞ 
 d



ð11Þ

where d is a rainfall threshold representing a small rainfall amount.
The ‘‘wide sense multiple scaling’’ property described by Burlando and

Rosso (1996) usually holds for the raw moments such that:

E½zlðkhÞ� ¼ kwl E½zlðhÞ� ð12Þ

where l is the order of the moment, E½:� is the expected value, zðhÞ is the accu-
mulated rainfall at duration h and zðkhÞ is the accumulated rainfall at duration kh
and wl is the exponent of the scaling relationship.

An objective function could be formulated in order to preserve the scaling
properties of rainfall as follows:

Fig. 5. Autocorrelation function for different months and all locations
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O3 ¼
X
k2K

XL

l¼1

ðw�
l � wlÞ

2 ð13Þ

where L is the number of moment orders considered and w�
l and wl are the

prescribed and simulated scaling exponents respectively.
All these objectives functions could be combined into a single objective

function as:

O ¼ c1O1 þ c2O2 þ c3O3 ð14Þ

where the c0is are positive weights. They can be arbitrary (e.g. ci ¼ 1=3 for
i ¼ 1; 2; 3Þ since different realizations will be generated such that O converges to
zero. Other aspects of the precipitation series could be incorporated into the
objective function as the distribution of the durations of wet and dry periods,
different distributions for varying atmospheric conditions as El Niño or La Niña
effects or different circulation patterns as considered by Bárdossy and Plate, 1992.

4
Application of the methodology
The different daily rainfall properties used in the annealing algorithm were cal-
culated for each month and each location in order to investigate their seasonal
and spatial variability. Twenty five years of daily data (1967 until 1991) were used
to estimate these properties. Boxplots of the autocorrelation and indicator
autocorrelation functions for four different months and all locations are shown in
Figs. 5 and 6. The horizontal white line within each box represents the median

Fig. 6. Indicator autocorrelation function for different months and all locations
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value for all locations at each lag, and the vertical extent of each box gives a
measure of the dispersion of the function values among the different locations.

It is evident from the above figures that differences among locations and
months are visible. The autocorrelation function is more variable during the dry
months than during the wet months. One can expect, for example, a stronger
serial dependence in the rainfall occurrence process for a wet month than for a
dry month. In fact, the lag-one indicator autocorrelation has a mean value of 0.4
in August (wet month) and a mean value of 0.2 in February (dry month) (see
Fig. 8). A higher autocorrelation in the occurrences than in the amounts it is
observed from these plots. A lot of scatter is however present in both functions. It
is important to mention that rainfall in the region is mainly of convective type
and rainfall amounts do not tend to be highly autocorrelated at a daily time scale.

The scaling exponents of Eq. (12) are shown in Fig. 7, where two character-
istics can be observed: Firstly, the exponents vary with time of the year being
higher during the rainy season than during the dry season. Secondly, a higher
dispersion is observed during the dry season, which is attributed to the large
number of zeroes in the dry months.

In Fig. 8 the relationships between different aggregation time periods and their
corresponding moments in a log-log scale are shown for March and August at
station 1. The relationships are presented for the first three moments and the
slopes of the linear regressions are fitted from the data. These slopes are the
scaling exponents of Eq. (12).

The previous characteristics of autocorrelation and scaling properties are used as
parameters to the disaggregation model and the annealing process is carried out by
specifying the objective function described in 14 for each month and each location.

Fig. 7. Scaling exponents for the first, second and third moments for all locations
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For a given temperature value, a maximum of 5000 swaps of the rainfall
amounts are intended in order to decrease the objective function. To save some
computational time, each evaluation is only performed for the part of the ob-
jective function which is affected by the swaped values. Then the temperature is
decreased until a critical value is reached. As an example, in Fig. 9 it is observed
how the objective function and the number of swaps decrease with temperature
when we disaggregate 22 years of August rainfall at location 1. Similar behaviour
was observed for different monthly values and different locations, which is an
indication of the convergence of the methodology.

An infinite number of realizations with different number of wet days can be
generated by sampling from the corresponding relationship between the proba-
bility of wet days and the monthly rainfall amount as the ones presented in Fig. 4.
This would allow an estimation of, for example, the 5%, 50% and 95% quantiles of
all possible realizations which provides a measurement of the uncertainty in the
simulated series.

In Figs. 10 and 11 a comparison between the observed daily values and one
possible realization of the disaggregated rainfall series is presented for locations 1
and 5. In all cases the years with missing values have been eliminated and con-
sequently at each location, a different number of annual replications for each
month have been disaggregated.

In Fig. 12 a quantile-quantile plot is presented to compare the probability
distributions between the observed values and the simulated values for a dry
month (March) and a wet month (August) at location 1.

Fig. 8. Log–log relationships between different aggregation periods and the rainfall mo-
ments for March and August at locations 1 and 5. The numbers represent the order of the
moment
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The quantiles for the simulated and observed series show a good agreement in
general. However, other characteristics of the rainfall series might be of interest,
as for example, the cumulative probability distribution of consecutive wet and dry
day durations. Such distributions were estimated and compared for the observed
and simulated values for location 1 in August. From Fig. 13 it is observed that dry
durations probabilities tend to be overestimated by the simulated values. Since
this rainfall property was not included in the optimization procedure, it will not
necessarily be preserved by the simulated data.

5
Discussion and Conclusions
The proposed methodology has certain advantages and limitations, both of which
are enumerated as follows:

1. The probability density function used as a reference distribution of the
disaggregated series is very simple and its parameters can be initialized from
readily available observations as the number of wet days and the monthly rainfall
amounts. This is an advantage over other disaggregation models in where more
complex distributional assumptions have been made, since these two quantities
are already available as interpolated monthly fields from the period 1990 until
1995 at a global scale (New et al., 2000).

2. Recent methodologies for rainfall disaggregation deal with the problem of
daily, hourly and sub-hourly time scales (Connolly et al., 1998; Burian et al., 2000;
Gyasi-Agyei, 1999). The proposed methodology could also be used at shorter time
scales, since the truncated normal model can be easily calibrated across different
scales and the general method of using simulated annealing to preserve pre-
scribed characteristics of the rainfall data could also be extended to other scales.

Fig. 9. Objective function vs. temperature and no. of swaps vs. temperature for August
at location 1
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3. Different rainfall attributes and occurrence rainfall dependence on the ag-
gregated amounts can be incorporated into the process in a parametric or non-
parametric form. In the parametric case the distributional characteristics of the
rainfall properties could be used in the definition of the objective function to
consider the inherent uncertainty in the estimated values. Another possibility is
by using a re-sampling procedure by which the rainfall properties being con-
sidered in the objective function are estimated from a sub-sample of the obser-
vations at each simulation step.

4. A relatively small number of attributes of the disaggregated series needs to
be used to simulate a time series at a finer time scale. This is an advantage
specially when considering the application of this methodology to multiple sites.
However, important properties of the observed time series as the probability
distributions of consecutive dry days, were not accurately reproduced by the
disaggregation model. One way to overcome this problem is by including this
property as part of the objective function to be minimized in the simulated
annealing algorithm, at the expense of more computational complexity and a
larger number of parameters.

5. The proposed methodology is computationally very intensive and care has
been taken in the re-calculation of the objective function after each swap in the
daily values, by modifying only the part of the function affected by the changed
values. By increasing the number of attributes we would increase considerably the
number of parameter estimates for the disaggregation procedure which would
make the algorithm difficult to apply in regions where point daily information is
not available. However, the flexibility of the methodology relies precisely in the

Fig. 10. Observed and disaggregated values for March and August at location 1
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simplicity about the rainfall distribution assumption and the different choices
about the rainfall properties that wished to be preserved in the simulated series.

6. Most of the analyzed properties show an annual cycle which is consistent
with the seasonal rainfall behaviour. This cycle is taken into account into the
modelling process by changing the rainfall properties with time of the year. It is
clear for example, that the scaling exponents show a strong seasonality. Instead of
using different monthly values, the annual cycle can be described in a parametric
or non-parametric form by using a Fourier or a spline representation respectively.
The parameter uncertainty can be incorporated with the methodologies men-
tioned above.

7. With a larger number of locations it is possible to study the spatial vari-
ability of the selected properties in more detail. This would require a more sys-
tematic analysis of the suggested rainfall properties. The analysed region does not
present strong contrasts in precipitation regimes and can be considered as a fairly
homogeneous region. However differences are observed from location to location
and they could be modeled by regionalizing the model parameters with standard
interpolation techniques. This approach would be very difficult to implement
within the context of other methodologies such as the disaggregation techniques
proposed by Burian et al. (2000) in where artificial neural networks are used as a
disaggregation tool. A final goal would be to use this methodology at a global
scale, by appliying this technique to the already existing global monthly data sets
as the one provided by New et al. (2000).

8. For the analysed daily data set, it was found that accumulated rainfall over
few days can usually be present at any day within the month, due to observational
problems in the rainfall network and the impossibility of recording rainfall

Fig. 11. Observed and disaggregated values for March and August at location 5
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Fig. 12. Quantile–quantile plots comparing observed and disaggregated probability
distributions for March and August at location 1

Fig. 13. Wet and dry duration probability distributions for August at location 1
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amounts over successive days. Although the methodology has not yet been tested
for this particular problem, it is feasible to apply this method for an aggregation
period shorter than a month with arbitrary duration. This extension of the
problem would provide a complete series of daily values making a extremely
useful tool to deal with this kind of data quality problems.
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