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New anisotropic covariance models
and estimation of anisotropic parameters
based on the covariance tensor identity

D. T. Hristopulos

Abstract. Many heterogeneous media and environmental processes are
statistically anisotropic. In this paper we focus on range anisotropy, that is,
stochastic processes with variograms that have direction dependent correlation
lengths and direction independent sill. We distinguish between two classes of
anisotropic covariance models: Class (A) models are reducible to isotropic after
rotation and rescaling operations. Class (B) models can be separated into a
product of one-dimensional functions oriented along the principal axes. We
propose a new Class (A) model with multiscale properties that has applications in
subsurface hydrology. We also present a family of Class (B) models based on non-
Euclidean distance metrics that are generated by superellipsoidal functions. Next,
we propose a new method for determining the orientation of the principal axes
and the degree of anisotropy, i.e., the ratio(s) of the correlation lengths. This
information reduces the degrees of freedom of anisotropic variograms and thus
simplifies the estimation procedure. In particular, Class (A) models are reduced
to isotropic and Class (B) models to one-dimensional functions. Our method is
based on an explicit relation between the second-rank slope tensor (SRST), which
can be estimated from the data, and the covariance tensor. The procedure is
conceptually simple and numerically efficient. It is more accurate for regular
(on-grid) data distributions, but it can also be used for sparse (off-grid) spatial
distributions. In the case of non-differentiable random fields the method can be
extended using generalized derivatives. We illustrate its implementation with
numerical simulations.
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1

Introduction

A central operation in spatial statistics is the estimation of the variogram
(structure function) which quantifies the spatial dependence of geophysical and
environmental processes (e.g., Christakos, 1992). Estimation of the spatial
dependence is important in materials science as well, where it provides infor-
mation about the microscopic structure (e.g., Chaikin and Lubensky, 1995) of
nanostructured block copolymers (Jinnai et al., 2000a, b) microemulsions (Choy
and Chen, 2000), and paper (e.g., Provatas et al., 1996). Spatial dependence in
most natural and engineered materials shows various forms of anisotropy
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(e.g., Erikson and Siska, 2000). In this work we focus on range anisotropy,
which describes processes that have the same variogram sill in all directions but
different correlation lengths. We propose new covariance functions that include
a truncated power-law with multiscale properties, and separable covariance
functions based on superellipsoids. The truncated power-law covariance is
relevant for hydrological applications. The superellipsoidal functions can be
used to model anisotropic processes with non-Euclidean distance metrics
(Christakos et al., 2000).

In materials applications ensemble averages are calculated based on multiple
samples. In contrast, the variogram of environmental processes is de facto
estimated from the single available realization based on the ergodic principle
(e.g., Adler, 1981). Since ergodicity is an asymptotic property a large sample is
needed for good accuracy. Variogram estimation uses arbitrarily defined dis-
crete classes (bins), each containing a range of separations (lags). A minimum
number of data pairs (at least 30) are required to obtain a “good” approxi-
mation of the ensemble average. For isotropic processes the data are binned
according to their separation. In the anisotropic case a larger bin number is
required to account for both the magnitude and orientation of the separation
vector. This reduces the number of data pairs per bin and consequently the
precision of the estimate.

The estimation of anisotropic variograms is simplified in a coordinate system
that reduces the anisotropy. For range anisotropic processes, such a system is
obtained from the original by rotation and rescaling transformations. We propose
a new method for determining these transformations based on the second-rank
slope tensor (SRST) and the covariance tensor identity. The SRST method esti-
mates the orientation of the principal axes and d — 1 correlation aspect ratios
(d being the spatial dimension) from the data. The aspect ratios are defined
arbitrarily with respect to one of the correlation lengths. The orientation of the
principal axes is determined from d — 1 angles. The aspect ratios and the ori-
entation angles constitute the anisotropic parameters. After rotation and rescaling
of the coordinate system the variogram becomes isotropic for class (A) models or
a product of one-dimensional functions for class (B) models. The SRST method is
conceptually simple and numerically efficient, especially for data distributed on a
regular grid. Application of the method is illustrated with synthetic examples on
regular grids and sparse distributions.

The paper is structured as follows: In Sect. 2 we present the covariance
classification and the proposed models. In Sect. 3 we introduce the covariance
tensor identity and the formalism for the estimation of the anisotropic parame-
ters. Practical methods for the estimation of the anisotropic parameters on reg-
ular grids are presented in Sect. 4, and for sparse data in Sect. 5. Sect. 6 includes
conclusions and future directions.

2

Range anisotropic covariance functions

We will focus on statistically homogeneous, zero-mean Gaussian random fields
X(s). The centered covariance function is denoted by c,(h), where h is the sep-
aration vector. The limit of the covariance at zero separation is independent of the
direction in which the limit is approached. However, the covariance derivatives
depend on the direction due to the difference in the correlation lengths. In the
SRST method we use information from the derivatives to simplify variogram
estimation. Calculation of the SRST and the anisotropic parameters involves the
same steps for both class (A) and (B) models.



Class (A): Models reducible to isotropic

This class includes covariances that can be expressed as isotropic functions ¢, (7),
where 7 is the dimensionless separation in a coordinate system obtained by
rotation and rescaling of the original. Rotation leads to a coordinate system
aligned with the principal axes. The separation in the new system is denoted by
r = Uh, where U is the rotation matrix (for isotropic covariances h and r are
identical). In the new system the covariance is independent of cross products
ritj (i # j), but it is still anisotropic with correlation lengths &; in each direction. If
distances are rescaled by 7; = r;/&;, the covariance function becomes isotropic.
Conversely, an isotropic function c¢,(7) generates the anisotropic function ¢, (h) by
reversing the rescaling and rotation transformations. Class (A) includes the
standard geostatistical models (e.g., Abrahamsen, 1997): Gaussian, spherical,
cubic, rational quadratic, exponential, damped sine and cosine (with inverse
distance or exponential damping,) Bessel-function, and hole-effect models.

With the exception of the Bessel function models, the above covariances
involve one or two distinct length scales. Such covariances are commonly used
in groundwater hydrology (e.g., Gelhar, 1993) to model hydraulic conductivity
and flow velocity correlations. However, natural porous media are composed of
grains and pores of various sizes, and so subsurface hydrological processes
should involve multiple scales (e.g., Cushman, 1984, 1986). Multiscale correla-
tions are based on power-law functions (Mandelbrot, 1982; Feder, 1988) that
follow the general expression c,(r) o< r~' (where r = ||r|| is the Euclidean dis-
tance,) within a finite scaling range (e.g., Isichenko, 1992). These functions are
also called scaling, because under a change of distance the function is simply
multiplied with a constant scale factor, i.e., c,(Ar) = A7 "¢,(r). A major practical
difficulty in determining whether subsurface variables have scaling dependence
is the limited size of data sets. In contrast, scaling hypotheses have been
established for rainfall data (e.g., Schertzer and Lovejoy, 1987; Lovejoy and
Schertzer, 1995; Venezziano et al., 1996; Menadbe et al., 1999). In principle,
power-law correlations can be obtained by a superposition of monoscale fluc-
tuations with multiple scales (e.g., Koch and Brady, 1988). Experimental studies
of porous rock (Makse et al., 1996a) indicate power-law correlations in the
millimeter to meter range. In addition, certain analyses suggest scaling behavior
for the hydraulic conductivity at the field scale (Neuman, 1990, 1994), and
power-law covariances have been used to model flow and transport (e.g., Di
Federico and Neuman, 1997, 1998). The type of power-law dependence is related
to the degree of non-homogeneity of the hydraulic conductivity. The fractional
Gaussian noise (fGn) and the Lévy-stable distributions (LSD) (Painter, 1996; Liu
and Molz, 1997) are appropriate for homogeneous random fields. The fGn
model includes Gaussian random fields with a power-law covariance. The
probability densities of Lévy-stable random fields have non-Gaussian tails. For
non-homogeneous fields the fractional Brownian motion (fBm) (Mandelbrot and
Van Ness, 1968) and the fractional Lévy motion (fLm) (Molz et al., 1997) are
more appropriate. The log-conductivity increments are in this case homoge-
neous and have fGn and LSD statistics respectively. The reconstruction and
permeability of fBm porous media are investigated in (Kikkinides and
Burganos, 1999, 2000).

According to Bochner’s theorem (Bochner, 1959) well defined (permissible)
covariances have spectral densities that are non-negative and integrable. Power
laws are permissible covariances if the singularity at zero is cut off. The short-
range cutoff is related to the smallest length scale present in the process (in the
case of hydraulic conductivity this would be the size of the smallest pore). A
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power-law covariance with short-range cutoff based on the incomplete gamma
function was proposed in (Christakos et al., 2000).

At large distances, asymptotic persistence of power-law correlations is a sign of
long-range dependence. If the power law persists over the system scale, the power
exponent should be bounded for the spectral density to be well defined (Isi-
chenko, 1992). Long-range correlations have a significant effect on physical
processes in porous media (e.g., Bouchaud and Georges, 1990). If the scaling
behavior extends up to a maximum scale, which is smaller than the system size,
the long-range regime is cut off. The numerical simulation of random fields with
long-range correlations that span the entire system is not trivial (e.g., Makse
et al., 1996). An explicit long-range cutoff, if justified by the analysis of the data or
the physics of the process, can alleviate numerical difficulties. We consider the
following function, defined for v > 0

Cx(r)IJZM:02M, p=r/w. (1)
(1+7r2/w2)" (1+p2)"
The spectral density of the exponential is non-negative and integrable, and the
density of the rational function is non-negative and bounded (although not in-
tegrable for all values of v). Their convolution is a non-negative and integrable
function that satisfies Bochner’s theorem. Since the convolution is the spectral
density ¢,(k), the function ¢, (r) is a permissible covariance. The length w de-
termines the short-range cutoff. For r/w < 1 the approximation
cx(r) = d(1 — vr*/2w?) is good. The length scale ¢ sets the long-range cutoff,
since for r > ¢ the correlations are exponentially damped. The normalized dis-
tance p = r/w is used to express the covariance in terms of a single length
parameter, the ratio w/&. The covariance ¢, (r) behaves as a fGn for w < r < &, as
shown on the log-log plots of Fig. 1. Within the scaling regime the plots of c,(r)
vary as straight lines with slope —v. For comparison we also plot the
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Fig. 1. Plots of the power-law covariances with short-range cutoff w = 5 and exponents
v =0.1,0.5,1.0 and 1.5. The solid curves include a long-range cutoff £ = 4000, the broken-
line curves have pure power law tails



unconstrained power laws. The integral scale of the covariance, defined by
A =072 [[7 dre.(r), is given by

s N2
A= T‘/_ (%) L(1 = v/2)[Huyp(W/E) = Na—y p(w/€)] (2)

where H(;_,)/;(w/¢) is the Struve function of order (1 —v)/2 and N{;_,);,(w/&)
the Bessel function of the second kind (Gradshteyn and Ryzhik, 1994). Since
w/& <« 1, using the leading order terms of the Struve and Bessel function
expansions for 0 < v < 1 we obtain

N <5>H 27"/al(1-v/2)
- sin[(1 — v)r/2]0(1/2 +v/2)

A
+ (3)
w w
According to Eq. (3) the integral scale depends on &, w and v. For v = 0 we obtain
/.= & in agreement with the fact that in this case ¢,(r) is exponential. As the
power exponent v increases towards one, w becomes the dominant length of the
integral scale.

Anisotropic covariance models can be constructed based on Eq. (1). In the
coordinate system of the principal axes they are defined as follows

2exp<—\/zl 1 1/5) ZeXP<—\/Zf1p?W?/£?)

(stimm)” (sl

, pi=rifwi.

&(r)=o

(4)

The covariance (4) has anisotropic cutoffs but isotropic power exponent. A more

general covariance with anisotropic exponents v;(i = 1,...,d) is given by
d
ew(-yShn/d)  ew(—y/SLm)
cx(r) = do? y =do* . (5)
vi/2 d vi/2
> (L+ 7 /w) > (1+07)

Class (B): Separable models

This class includes all separable covariance functions with one-dimensional
components of the same functional form. In a coordmate system aligned with the
pr1nc1pal axes these covariances are expressed as ¢, (f) = a2 H1 1 8(7i), where g(+)
is a permissible one-dimensional covariance functlon (Chrlstakos, 1992). Classes
(A) and (B) are not completely disjoint since the Gaussian model belongs to both
of them. However, with this notable exception, the models in Class (B) can not be
reduced to isotropic functions. An example of a Class (B) covariance is the hole-
effect model, defined by g(7;) = sin(#;) /7.

Superellipsoidal covariance models

A new family of separable covariance models is defined based on geometrical
generalizations of the ellipse called superellipsoids (Wallace, 1968). In two spatial
dimensions a superellipsoid with index n obeys the following equation
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/&l + /&P = 1R BP = (6)

Let us define the following separable function

g(Rl*") . (7)

We will define differentiability conditions for the random field and permissibil-
ity conditions for c, (). Differentiability is partly determined by the index n.

A Gaussian random field is everywhere differentiable (in the mean square sense)
if the second-order derivative of the covariance exists at zero separation (e.g.,
Adler, 1981; Yaglom, 1987). The derivative at zero separation is given by (see
Appendix 1)

e(F) = arg (A7)

Oex(F 2 o 2
&l oig(m){ 2P s ¢ (o)
1

B (2 it + ) |f1|2/"16<n>} . ®)
n

nél 1

In Eq. (8) the prime denotes the derivative with respect to w; = |r;/ fl|2/ " and
sgn(r;) the sign function. The derivative at zero separation exists if the g(w;) is
twice differentiable and the limits lim,,, o g'(w;)®] 2/n=2 and limg,, o g” (wl)w?/ "
exist. These conditions guarantee a finite covariance derivative.

Differentiability conditions: A superellipsoidal random field with covariance
given by Eq. (7) is differentiable if (i) the function g(w;) is twice dlfferentlable
and (ii) n < 1or 1 <n <2 and g'(w;) tends to zero faster than w’ 2/n

The above conditions are not sufficient for permissibility. Permissibility
criteria for a specific type of superellipsoidal covariance functions are derived
below.

Exponential superellipsoid
Let us define the exponential superellipsoid

() = a2exp(—In /& [ " —Ira/ &P (9)

Except for n = 1 the functions defined by Eq. (9) do not reduce to an isotropic
form. Hence, they differ from the exponential models ¢,(r) = o2 exp[—(r/&)"]
(Abrahamsen, 1997). The plots of the isolevel contours in Fig. 2 show clearly the
departure from the ellipsoidal shape. The contours are rounded rectangles for
n < 1, ellipses for n = 1, concave diamonds for 1 < n < 2, diamonds for n = 2,
and convex (“pinched”) diamonds for n > 2. The exponential superellipsoid with
index n = 2, was shown to be a permissible covariance function (Christakos et al.,
2000). In general, it can be shown that the spectral density is non-negative for
oo > n > 1 (Schoenberg, 1938). In Fig. 3 we plot the spectral densities of the
functions in Fig. 2, obtained with the Fast Fourier Transform method (e.g., Press
et al., 1986). All densities are non-negative except for n = 0.5.
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Fig. 2. Plot of the isolevel contours of the exponential superellipsoid functions for six
values of the index n =0.5,1,1.5,2,2.5,3
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Fig. 3. Plot of the power spectral density for the exponential superellipsoid functions
shown in Fig. 2
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Permissibility condition: The exponential superellipsoids, defined by Eq. (9),
are permissible covariances if co > n > 1. In view of the differentiability con-
dition given above, the respective random fields are differentiable only for
n=1

3

The covariance tensor identity

For differentiable random fields the second order derivatives of the covariance
0%ce(h)/ Ghiahj|h:0, generate the second-rank covariance tensor. The slope tensor
(SRST) Xj(s) is defined by Xji(s) = (0X(s)/0s;)(0X(s)/0s;). The mean value of
Xij(s) is denoted by (Xji(s)) = Q; (the brackets denote the stochastic average).
The mean SRST and the covariance tensor are related via the following tensor
identity (e.g., Swerling, 1962)

0, = (EEOAXE\ o*cy(h)
v 651- 65]' N ahlah]

(10)

h=(0,0) .

Equation (10) is not valid for non-differentiable random fields, e.g., for expo-
nential covariance. The anisotropy parameters of non-differentiable fields can be
estimated approximately using generalized derivatives (Yaglom, 1987; Christakos,
1992; Christakos and Hristopulos, 1998) as shown in Appendix 2. The covariance
tensor identity permits estimating the anisotropic parameters from the mean
SRST based on the available data. Then, it is possible to transform into a coor-
dinate system in which the covariance function is either isotropic or a product of
identical one-dimensional functions. The transformation involves a rotation that
aligns the coordinate system with the principal axes, and a rescaling that makes
all the correlation lengths equal. Standard geostatistical methods can be used
(e.g., Christakos, 1992; Olea, 1999) to estimate the isotropic variogram in the
transformed system. For a separable variogram it suffices to estimate one of its
components along a principal direction. In either case there is no need to con-
sider separately different directions in space. Once the variogram is estimated in
the transformed system, the inverse set of transformations should be used to
obtain the variogram in the original coordinate frame.

If &, i=1,...,d denote the correlation lengths along the principal axes, d — 1
aspect ratios can be defined as follows

s
T g

The vector R(;) = (1,Ry(1), ..., Ry1)) has d — 1 independent components. Below
we determine the orientation of the principal axes and the correlation aspect ratio
from the SRST. First, we consider a coordinate system aligned with the principal
axes.

R, (i=1,....d) . (11)

Principal axes coordinate system
We express the covariance function in terms of #; = r;/¢;. The covariance tensor
identity leads to the following expression

1 0%y (F)
Qj=—7+ 5~ i,j=1,...,d 12
Yy ézé] ariarj —0.0) ( J ) ( )



In this system the covariance tensor for both Classes (A) and (B) models is
isotropic at zero separation. Hence, —0%c,(F)/ 6f,~6fj|r:(oﬁo)z o2(5;; for all i,j
where ( is a dimensionless number. The d — 1 equations for the aspect ratios
below follow from Eq. (12)

Qi _ <
Qu &

The roots of the Eqgs. (13) determine the correlation aspect ratios. Coordinate
systems aligned with the principal axes are not always practical for applications.
Nonetheless, such systems are useful for simulations and often a natural choice
for engineered materials.

Ry, (i=2,....d) . (13)

General coordinate system

Transformation of the covariance tensor to a system aligned with the principal
axes involves the rotation matrix U (defined in Sect. 2). Using the chain rule for
the derivatives of ¢,(h) we find Oc,/0h; = (Ory/0h;)0c,/0Or = Uklacx/érk (sum-
mation is 1mphed over repeated indices.) The rescaling transformation is based

on dc, /dr; = &' (dc, /OF;). Hence,

Coe _ (Uly) e (14)
ah,@hj Ex& ) onon
So, based on Eq. (12), the covariance tensor identity is expressed as follows
ZC 0_2 CZ 5
Qj= 2 5 UkiRy(1) UiRy1) Ot = % UkiUgRi1y,  (Lj=1,....d) . (15)

The expression (15) gives a system of equations with the components of the
rotation matrix U and the vector R as unknowns. These should be determined
from the mean SRST Q;;. The constant ¢* and «fz remain undetermined, but they
are not needed for the rotation and rescahng transformations. The length ¢&; is
determined from the experimental variogram. The value of (* is not required in
the variogram calculations, but it can be determined from the second-order
derivative of the isotropic variogram (e.g., in the Gaussian case {* = 2).

Two-dimensional random field

We derive specific expressions in two dimensions based on Eqgs. (15). The
rotation matrix U is given by U;; = Uy, = cos 0 and Uy, = —Uy; = sin 0. The
anisotropic ratio vector is R(;) = (1, Ry(;)). The Egs. (15) are then expressed as
follows

292

Qu = 651 )sin2 0) , (16)
Qn = 2€ (RZ W cos? 6 + sin® 0) (17)
&
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o
Qun=Qy = ? sin 0 cos (1 — Ry )| - (18)
1

The orientation of the principal axes is determined by 0 and the aspect ratio by
Ry(1). By dividing both sides of Egs. (17) and (18) by the terms on the respective
51des of Eq. (16) we obtain the following set of equations

Qy R§(1> + tan® 0 "
Qi \1+R: tan20) (19)

2(1)

Q tan 6(1 — Rg(l)) 20)
Q11 14+ R%(l) tan2 0 '

The roots of the non-linear system (19) and (20) are the anisotropic parameters.
We define the following objective function

2 2
o0 @ R§(1> + tan? 0 Q, tan0(1— R§(1>)
ORm) = o~ \To e w2l | Tlo. 17 wntdl -
Q11 1+R2(1) tan? 0 Q11 1+R2(1> tan? 0

(21)

The function ®(0, Ry(;)) is non-negative and vanishes when both terms inside the
brackets are zero. Hence, minimization of the objective function yields the
anisotropic parameters (provided that the minimization does not stop at local
minima).

4

Estimation of anisotropic parameters on regular grids

In this section we discuss the estimation of the mean SRST and the anisotropic
parameters from data distributed on a regular grid. Regularly distributed data are
not the rule in environmental applications. However, uniform spacing is useful
for laboratory studies of porous materials (e. g Henriette et al., 1989) and sim-
ulations. In practice, the derivative operators in Xj;(s) are replaced by discrete
differences. An accurate estimate X;;(s) that closely approximates (X;;(s)) requires
small discretization step (compared to the correlation length). Precision measures
the uncertainty of Xj(s), and it improves with increasing domain size (for fixed
correlation length). We assume that X(s) data are distributed on a Cartesian grid
G with N points at the locations s (k =1,...,N ). The mean SRST Q,] is esti-
mated based on the forward-difference operator as follows

Nod, Noyh, 2 X (56 + bido) = X(s] [X(si + biey) — X(s0)] (22)
k=1

Ql]

The discretization step is b; and €; denotes the unit vector in direction s;. The right
hand-side of Eq. (22) can be calculated very efficiently numerically. Estimation of
the anisotropic parameters is based on the solution of the Egs. (15). In two
dimensions this is equivalent to the minimization of the objective function (21).
We illustrate the numerical procedures using synthetic random field examples.



Numerical example

We generate random fields with ai =1, ¢ =6, ¢ =4 and Gaussian covariance
(¢* = 2) on a square grid with L nodes per side, aligned with the principal
anisotropy axes. According to Eq. (10) the SRST is given in this system by

2
o-22|%" 2] )

We use the Fourier Filtering Method (FFM) (e.g., Makse et al., 1996b; Le Ravalec
et al., 2000) for the simulations. The “true” values of the mean SRST tensor are
Qi1 = 0.0556 and Qy, = 0.1250. The anisotropic ratio is Ry;) = 1.5. One real- 53
ization of the field for L = 100 is shown in Fig. 4. In Fig. 5 we plot the estimated
SRST components and the aspect ratio Ry(;) as functions of L. The SRST com-
ponents approach stable values for L > 100. The aspect ratio levels off faster. The
difference is probably due to fluctuations of the sample variance. The SRST
depends on the variance, while the aspect ratio is, in contrast, independent.
Next, we calculate the SRST for random fields with principal axes rotated by
45°. A sample plotted in Fig. 6 shows clearly the tilting of the axes. Three different
realizations with the same aspect ratio and orientation angle (Ry;) = 1.5 and
0 = 45°) but different correlation lengths are generated. We estimate the SRST
elements numerically from Eq. (22) and use them in Eq. (21) to estimate the
anisotropic parameters by minimizing the objective function ®(0, R,;)). For the
minimization we use an algorithm based on the simplex search method of Nelder
and Mead (e.g., Press et al., 1986). We initialize the search with values 0, = 0° and
Ry(1) = 1. The results for the mean SRST and the anisotropic parameters are
shown in Table 1. The table also lists the theoretical values of the mean SRST,
obtained from Eqgs. (16) to (18). The estimates of the anisotropic parameters are
accurate, especially for the fields with smaller correlation lengths. As the
correlation length increases the accuracy of the estimates is reduced due to the
finite size of the sample. The maximum aspect ratio that can be accurately
estimated depends on the domain size since ergodic estimates require &, < L.

Gaussian correlation

10 a0 30 40 ] B0 T a0 20 00

Fig. 4. Plot of a two-dimensional random field with anisotropic Gaussian covariance,
oy =1, ¢ =6, £, = 4. The principal axes coincide with the axes of the coordinate system
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Fig. 5. Plot of the diagonal elements of the SRST and the anisotropic ratio as a function
of the system size for sizes in the range between 40 and 161 nodes per side
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Fig. 6. Plot of a two-dimensional random field with Gaussian covariance, g, =1, &, = 7.5
and ¢, = 5. The principal axes are rotated by 45° with respect to the coordinate system

Assuming that L > 20&,,,, to satisfy ergodic requirements, the maximum aspect
ratio should be Ryax < L/20&,;,. The estimates of the mean SRST elements are
not as accurate as the anisotropic parameters, most likely due to fluctuations of
the sample variance, as we discussed above.

5

Estimation of anisotropic parameters from sparse data

Spatially sparse data sets routinely occur in geostatistical applications. Let us use
o (Sk) = Hsnn(k) — Sk” to denote the distance between the datum at point s; and



Table 1. Estimates and theoretical values of the mean SRST, the aspect ratio and the
orientation angle of the principal axes (in degrees). Three realizations of a two-dimensional
random field with different correlation lengths are investigated. The theoretical aspect ratio
is 1.5 and the orientation angle 45° for all the realizations

Qn 073 Q2 Ry 0
i =45¢=3
Estimated 0.1132 0.1250 —0.0441 1.48 41.18
Theoretical 0.1605 0.1605 -0.0617 1.50 45
6 =756=5
Estimated 0.0475 0.0486 —0.0193 1.53 44.17
Theoretical 0.0578 0.0578 —0.022 1.50 45
51 = 15> 52 =10
Estimated 0.0130 0.0147 —0.0037 1.32 38.46
Theoretical 0.0144 0.0144 —0.0056 1.50 45
its nearest neighbor. Let 7y, max = max[ron(sk)] (k =1,...,N) be the maximum
nearest-neighbor distance. A data set is dense if the index pige = Emin/Tonmax
Emin = min(¢;) (i=1,...,d) is larger than one. Large values of u4, permit more

accurate estimation of the derivatives, but this should be balanced against the
danger of local numerical instabilities due to very small ry,(sk). The data distri-
bution is uniform if ry, (s) varies little from site to site. The variation is measured
by the uniformity index p,, = 7on A/ Var(ran). Low values of y, indicate high
variability. Various approximate estimators of the SRST can be defined for
irregularly spaced data. If we use the Euclidean distance, the discretization step at
sk in the direction s; is given by Ask; = sny(k),i — Sk.i - Large steps have a
smoothening effect on the slope, while very small steps lead to large

numerical fluctuations. Hence, the point s; will be included in the estimation
of QU if the |Asy ;| and |Asyj| are bounded inside [0, o). If s; denote the )
locations and Ne(7,j) the number of data points used in the calculation of Qjj>
this is given by

Nerr (i) X(S:m(k)) — X(S;;) X(S:n(k)) - X(Slt)

Ner (i, 7) ; Asy ; Asg

The cutoffs o and o, are not a priori specified. To avoid excessive smoothing the
upper cutoff should satisfy oy, < i, but &y is indeterminate before calculation
of the variogram. An initial estimate can be obtained by visual inspection of
approximate maps of the data. On the other hand, «;/&;, should not be too
small, because noise would dominate the estimate of the slopes.

Numerical example

We illustrate the calculation of the SRST for a sparse data distribution. We
simulate a field at N random sites within a square domain of length L using the
harmonic superposition method (Drummond, 1987; Jinnai et al., 2000). This is
less efficient than the FFM, but it can generate field values at any location. The
superposition is defined by
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Fig. 7. Grayscale map of a sparsely sampled random field. The positions of the “data
points” are marked with stars. The map was generated from the available data using linear
interpolation
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Fig. 8. Histogram of the nearest-neighbor distances for the data set of Fig. 7

1/2 Nim
X(s) = o (Nim) D cos(k s+ ) (25)

The phase variables ¢,, are distributed uniformly in [0, 27]. The wavevectors k,
are randomly distributed with probability density f;(k,) = Acc(k,), where & (k,)
is the spectral density of the covariance c,(r) and A = | [ dk,cx(ky)] ! Fora
Gaussian c¢,(r) the normalized spectral density is f;(k,) = (1 &,/47) exp



Table 2. Estimates of the mean SRST tensor and the number of sites used in the calculation
of each element for different values of the lower cutoff with a fixed upper cutoff o, = 2. The
theoretical values of the mean SRST elements are Q;; = 0.1250, Q,, = 0.0556 and Q;, =0

o Qu Q2 Q2 Neft‘(L 1) Neff(27 2) Neff(17 2)
0.1 15.237 28.232 —0.109 424 420 359
0.2 1.508 0.584 0.002 380 385 298
0.3 0.703 0.442 —0.005 355 368 265
0.4 0.653 0.336 —0.033 323 334 216
0.5 0.466 0.229 —0.039 295 309 180
0.6 0.303 0.218 —0.056 263 282 141
0.7 0.298 0.193 —0.052 241 255 110
0.8 0.281 0.175 —0.060 192 202 69
0.9 0.172 0.139 —0.034 169 171 55
1.0 0.161 0.132 —0.005 156 154 40
1.1 0.150 0.121 —0.041 137 129 31
1.2 0.152 0.084 0.008 125 99 17
1.3 0.143 0.084 —0.002 99 84 12
1.4 0.141 0.074 0.009 84 68 8
1.5 0.151 0.078 —0.020 74 52 6

[—(K}&} + k2E3) /4]. Based on the normalized central limit theorem the super-

position tends to the normal distribution as N, tends to infinity.

We simulate the data set using 500 random sites on a 80 x 80 square domain.
The random field has o, = 1, {; =4, &, = 6, and principal axes aligned with the
domain sides. The corresponding mean SRST values according to Eq. (23) are
Qi1 = 0.1250, Q,; = 0.0556, and Q;, = 0. The number of modes used in the
simulation is N;, = 14000. A map of the simulated data set is shown in Fig. 7. The
plotted values on the regular grid were obtained from the field values at the
random sites by linear interpolation. Figure 8 shows a histogram of the nearest-
neighbor distance distribution 7y, (sx). The uniformity index is u,, = 1.83 based
on 7yp(sg) = 1.79 and +/Var(ry,) = 0.98. The maximum nearest-neighbor dis-
tance is 7ynmax = 5.40 giving a density index 4. =2 0.56. Hence, the “data set” is
fairly uniform but not very dense. In Table 2 we show the estimates of the SRST
components for different values of o;. The upper cutoff is o, = 2 (one half of
Emin)- The best agreement with the theoretical SRST values is obtained for
oy € [1 — 1.5]. However, Ner(i,j) is small for these values of o, implying reduced
precision. The sparseness of the data set imposes strong constraints on predict-
ability. This is an inherent limitation of spatial statistics analyses when the size of
the available data set is small.

6

Conclusions and discussion

This paper focuses on the modeling of range anisotropy in spatial statistics. We
present a truncated power-law covariance with short and long-range cutoffs,
which has applications in subsurface hydrology. We also introduce a family of
separable covariances based on superellipsoids. These functions are useful for
non-Euclidean metric spaces and have non-elliptical isolevel contours. We also
propose a new method for estimating the anisotropic parameters of random
fields. This method is based on the covariance tensor identity and employs the
mean SRST, which can be estimated from the available data. We formulate a
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system of equations that relate the mean SRST to the anisotropic parameters in
any number of dimensions. In two spatial dimensions we derive an explicit
system of nonlinear equations for the anisotropic parameters, which we solve by
minimizing an appropriate objective function. We calculate the mean SRST and
the anisotropic parameters using simulated random fields with both regular and
sparse distributions. Extension of the method to three dimensions is straight-
forward, based on the general equations (15). We are also investigating a different
approach for solving the nonlinear system based on a globally convergent Newton
method.

Estimation of the mean SRST from sparse distributions merits further inves-
tigation, especially the cutoffs used in the calculation of the field derivatives. An
alternate approach is to define nearest neighbors separately in each direction.
Next nearest neighbors can be considered if the distance between two nearest
neighbors is smaller than the lower cutoff. It is possible to estimate the mean
SRST using maximum likelihood methods (e.g., Kitanidis, 1983). However, this
will not eliminate the numerical issues related to the calculation of the random
field gradients so long as they are involved in the observation set of the likelihood
function.

Appendix 1

We calculate the second partial derivative of the covariance

cx(F) = a2g(|71™")g(|72|*'™) with respect to r,. Let us define w; = |r;/&;|*"
(i =1,2). The first partial derivative is

0cy(T)/0r = aig(wz)dg(wl)/drl ) (1.1)

Since dw;/dr; = (2/n&;)|ri/&[*" 'sgn(r;), where sgn(-) is the sign function, we
obtain

dg(w,)/dr = g'(w1)dw, /dr = [Zg'(wlﬂfl/@|2/"_1/n51}Sgn(ﬁ) (1.2)

where g'(w;) = dg(w;)/dw;. Similarly, the second partial derivative is given by

2/n—1

Pex(F) dg(o) _ , d |2¢(1)

ar% = O'xg((,()z) dr% - O'xg(COz) dr1 |:Tél

"

<

sgn(rl)} (1.3)

The derivative of the bracketed term on the right hand side of Eq. (1.3) is given by

i Zg/(a)l) 12/nils n(r) o i r_Z/nils n(r) ’ N((D)
dr, né& & gy = néy ¢y sun) &l
26(@) (2 \|n["7
G e
4g/(w1) ﬁ2/7171
+ né% 51 5(r1) ) (14)




where we used Osgn(r,)/0r; = 20(r;). Finally, we obtain

azcx(i') 2 2 |n 2t ’ "
o 7,8 (2) e sgn(ri)| g (w1)
2g’(w1) 2 " 2/n—-2 , 4g/(w1) " 2/n-1

(1.5) 59

Appendix 2

The covariance tensor identity is not valid for non-differentiable random fields
(e.g., for exponential covariance dependence). However, the identity can be
extended to generalized random fields that are differentiable. Assume that

®(s — ¢') is a real, differentiable kernel and define the generalized random field
Xo(s) as follows

Xo(s) = /ds’fb(s —sH)X(s') = /dw(D(w)X(s -w) . (2.1)
Then, the partial derivatives 0X¢(s)/0s; (i = 1,...,d) are defined by

Pl [ar e Sxie) = w2 xs—w) (22)

The generalized covariance of the field Xo(s) is

Ceoh) = (Xo(s)Xa(s + h)) = / dyP(y)e(h—y) . (2.3)

The kernel of the convolution is ¥(s) = o [ dz®[(z +y)/2)|®[(z — y)/2)] where o
is the constant Jacobian of the transformation to the center-of-mass coordinate
system. The covariance tensor identity is then valid for the differentiable field
Xq)(S).

To determine the anisotropic parameters with accuracy, the kernel function
should not affect significantly the anisotropy of the original field. Ideally, the
function ¥(y) should have the same anisotropic dependence as X(s). However,
this is not possible in practice, since the anisotropy of X(s) is unknown. Instead,
we can use a short-range isotropic kernel, which disturbs only minimally the
anisotropy. Without loss of generality, we express the covariance tensor identity
in the principal axes system in terms of Fourier transforms

Qg.’_/(szk)dkikjEx(k)‘i’(k) (i,j=1,...,d) . (2.4)

The P(k) is a function of the dimensionless variable k¢, where ¢ is the range of the
isotropic kernel. By using the dimensionless variables u; = k;&; (i = 1,...,d), we
obtain
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Q= m / dud, (¥ (/& ual/E4) | (2.5)
i%j

where ¢(u) is the isotropic function obtained from ¢, (k) by rescaling, and
W' (/& ... ual/&y) is the function, in general anisotropic, obtained from
Y(k).If¢/& <1 (i=1,...,d), the Eq. (2.5) can be approximated as follows

D ~ \iﬂ(o) Ly P Yy i d 1~/
Qj zw/duu,u]cx(u) ééj an)? d()/ () (2:6)

where J;; is the Kronecker delta and W'(0) = ¥'(u = 0). Based on Eq. (2.6) we
obtain the equivalent of Eq. (13) as follows

Q@4

NS

(i=1,....d) . (2.7)
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