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Abstract
Southern Europe is home to two naturally occurring pear species: the European wild pear (Pyrus pyraster (L.) Burgsd.) and 
the almond-leaved pear (P. spinosa Forssk.). In addition to these two species, the cultivated pear (P. communis L.) is also 
grown throughout Europe. Since the cultivated pear is one of the most widespread fruits in Europe, gene flow between the 
cultivated species and their wild relatives is to be expected. The aim of this study was to determine the genetic diversity of 
natural populations and whether gene flow from the cultivated pear can alter the genetic composition of wild pear popula-
tions. We collected samples from 21 populations of P. pyraster and 22 populations of P. spinosa as well as 24 cultivars of 
P. communis. DNA fingerprinting based on nine microsatellite markers (SSR) was used to analyze the genetic diversity and 
structure of the wild pear populations and to assess the relationship between wild and cultivated pears. In general, we found 
a higher genetic diversity of P. pyraster compared to P. spinosa. In three Mediterranean P. pyraster populations, signifi-
cant cultivated-to-wild gene flow was observed, whereas in P. spinosa it was rare and only observed in a few individuals. 
Furthermore, in regions where the ecological niches of the two wild pear species overlap, hybrids between them were also 
found. This study provides valuable insights into the genetic variability of these species and can significantly advance their 
use in sustainable forest management, conservation, and breeding programs.
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Introduction

The genus Pyrus L. (Rosaceae), pears, is a highly diverse 
genus composed of both cultivated and wild species (Bell 
and Itai 2010). The number of pear species varies according 
to different studies, ranging from 26 (Bell and Itai 2010) to 
80 (Browicz 1993). Nowadays, centers of pear diversity are 
located in eastern Asia, Caucasus and the Mediterranean 
(Korotkova et al. 2018), prompting the popular division into 
Oriental (Asian) and Occidental (European) pears (Zheng 
et al. 2014). Pears are best known for their fruits, and owing 
to their nutritional value, have a long history of cultivation. 
The earliest mention of pear cultivation in Europe dates back 
to Ancient Greece, around 3000 years ago, when the Greek 
poet Homer referred to them as a “gift from God” (Layne 
and Quamme 1975). Today, pears are among the most 
important commercially grown fruits, with more than 3000 
cultivars registered (Bielsa et al. 2021). In addition, species 
from the genus Pyrus have very high quality and valuable 
wood, used in the production of musical instruments and 
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furniture (Parle 2016). Generally speaking, wild pear species 
are extremely important for the maintenance of biodiversity, 
as their fruits are food for many mammals such as foxes, 
badgers and martens, while their flowers are pollinated by 
different insects (Debussche and Isenmann 1989; Pigozzi 
1992).

Among the most important wild pear species in Europe is 
the European wild pear (Pyrus pyraster (L.) Burgsd.). This 
species grows in deciduous forests, usually in a scattered dis-
tribution pattern individually or in smaller groups (Paganová 
2011). Due to their poor competitive ability compared to 
other species, as well as pronounced heliophilia, they most 
commonly grow along the edges of forests, on neglected 
agricultural lands and in extreme, marginal habitats (Stephan 
et al. 2003). We usually find them in areas with cool-tem-
perate climates, in lowlands and hills, and rarely in moun-
tains and deciduous sub-Mediterranean forests characterized 
by somewhat longer rain periods. In southeast Europe, this 
pear species sometimes grows with another related species 
from the Circum-Mediterranean group of pears (Bell and Itai 
2010), almond-leaved pear (P. spinosa Forssk.). Almond-
leaved pear is a species adapted to more xerothermic habitats 
(Vidaković et al. 2021, 2024), mostly growing in discon-
tinuous, widely spaced bush associations with open spaces 
in Mediterranean forests, usually called garrigue. Although 
the ecological niches of these two species seldom overlap, 
in the habitats where they grow together, one can also find 
their hybrids (Kumar et al. 2017).

Namely, as pears have been cultivated since ancient times 
and are one of the most widely grown fruit species in Europe 
(Deckers and Schoofs 2008), the vicinity of cultivated trees 
to natural populations is inevitable. In that case, when culti-
vated and wild taxa are sympatric, both are fertile and sexu-
ally compatible and there is flowering synchrony, interspe-
cific gene flow can be expected (Oliveira et al. 2021). One 
of the most important cultivated pears, not just in this part 
of Europe but in other temperate regions around the world 
is the common pear (Pyrus communis L.) (Bound 2021). 
The majority of orchards in Europe are composed of cul-
tivars of precisely this species, characterized by fruits of 
different shapes, sizes and colors, times of fruit ripening, 
etc. Spontaneous hybridization between cultivated and wild 
pears has already been confirmed on several occasions (Iket-
ani et al. 2010; Jiang et al. 2016; Bisi et al. 2021), includ-
ing the hybrids between common pear and European wild 
pear (Dolatowski et al. 2005; Bennici et al. 2018; Wagner 
and Büttner 2019), as well as the hybrids between common 
pear and almond-leaved pear (Bennici et al. 2018; Sau et al. 
2020).

In previous studies, various molecular markers were 
used to explore the genetic diversity of natural pear popu-
lations (Dolatowski et al. 2005; Liu et al. 2012; Wolko 
et al. 2015) and cultivars (Sehić et al. 2012; Liu et al. 

2015; Nishio et al. 2016; Ferradini et al. 2017; Kumar 
et al. 2017; Queiroz et al. 2019; Kocsisńe et al. 2020; Ouni 
et al. 2020; Bielsa et al. 2021), including amplified frag-
ment length polymorphisms (AFLPs), random amplified 
polymorphic DNA (RAPD), restriction fragment length 
polymorphisms (RFLPs), simple sequence repeats (SSRs), 
and noncoding regions of chloroplast DNA (cpDNA). 
However, the majority of previous studies on the genetic 
diversity of wild and cultivated pears were performed 
using simple sequence repeat (SSR) markers or micro-
satellites (Wolko et al. 2015; Reim et al. 2017; Queiroz 
et al. 2019; Bielsa et al. 2021). Such studies provide data 
on a variety of evolutionary parameters, including genetic 
variability and its partitioning on variability within and 
between populations, levels of inbreeding, effective popu-
lation sizes, and the dynamics of recent population bot-
tlenecks. In general, the maintenance of wild populations’ 
genetic diversity is crucial for the long-term survival of 
a species and its adaptation (Liu et al. 2012), especially 
in populations in extreme climatic sites (Hampe and Petit 
2005). Therefore, studies covering the issue provide useful 
information for the conservation and management of wild 
species, which is increasingly represented in national and 
international policies (Pearman et al. 2024).

With regard to the natural populations of European wild 
pear and almond-leaved pear, there have only been a few 
studies conducted to date that addressed their genetic (Wolko 
et al. 2015; Reim et al. 2017) and morphological (Paganová 
2011; Vidaković et al. 2021, 2022, 2024; Vidaković and Pol-
jak 2024) variability, and featuring only a small number of 
populations. However, more extensive genetic studies were 
performed on other wild pears, such as P. calleryana Decne 
(Liu et al. 2012; Sapkota et al. 2021, 2022), P. elaeagrifolia 
Pall. (Uzun et al. 2022), P. pyrifolia (Burm.f.) Nakai (Jiang 
et al. 2009) and P. ussuriensis Maxim. ex. Rupr. (Katayama 
et al. 2007, 2016), all of which have significant economic 
value in their respective regions. Nevertheless, the major-
ity of studies carried out to date on species from the genus 
Pyrus were focused on the conservation and evaluation of 
pear cultivars.

The main objectives of this study were: (1) to assess 
genetic diversity and structure of two wild pear species, 
i.e., European wild pear and almond-leaved-pear, in the area 
that covers Eastern Adriatic coast and North-western part 
of the Balkan Peninsula; (2) to test whether neutral spatial 
genetic variation correlates with the geographic (isolation 
by distance—IBD) or environmental variation (isolation by 
environment—IBE); (3) to test for the occurrence of hybrid 
genotypes between European wild pear and almond-leaved 
pear in the wild were the ecological niches of these two 
species overlap; and (4) to test for the occurrence of hybrid 
genotypes between cultivated and wild species in the natural 
populations.
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Material and methods

Study area and plant material

The research was conducted on three different Pyrus taxa, 
including two wild species, P. pyraster and P. spinosa, and 
one cultivated, P. communis. In total, 740 individuals form 
21 wild populations of P. pyraster, 22 wild populations of 
P. spinosa and one orchard of P. communis were included 
in the research (Fig. 1, Suppl. Table 1). The research area 
covers the eastern Adriatic coast and the northwestern part 
of the Balkan Peninsula, where the distributions of these 
two wild species overlap in certain parts. Pyrus commu-
nis samples were collected from the Agro-Car orchard in 
Novaki Bistranski, in the vicinity of Zagreb, specialized 
in the production of planting material of fruit crops. The 
samples collected in this orchard included 24 registered 
cultivars (Croatian Agency for Agriculture and Food 2021; 
Suppl. Table 2).

To conduct DNA extraction, fully developed buds were 
collected from each tree in the autumn of 2022. Upon the 
collection, buds were immediately put in filter bags, which 
were then stored in plastic bags with silica gel. The sam-
ples were kept in silica gel-filled bags at room temperature 
and in the dark until further analysis. All plant material was 
collected according to relevant institutional, national, and 
international guidelines. Voucher specimens were identified 
by Antonio Vidaković and Igor Poljak and are deposited in 
the DEND Herbarium, Zagreb, Croatia.

DNA extraction and microsatellite characterization

Total genomic DNA was extracted from collected samples 
using the DNeasy Plant Mini Kit (Qiagen GmbH, Hilden, 
Germany), following instructions provided by the manu-
facturer. Additionally, 1% polyvinylpyrrolidone (PVP) and 
1% β-mercaptoethanol in lysis buffer were added to the 
extraction process for better performance. Finally, DNA 

Fig. 1  Geographical location of studied Pyrus pyraster (P01-P21, 
blue circles) and P. spinosa (P22-P43, green circles) populations and 
P. communis orchard (P44, pink circle). Populations: P01–Kuberton; 
P02–Lupoglav; P03–Krk; P04–Rumin; P05–Kamešnica; P06–Stu-
denci; P07–Perušić; P08–Plitvička jezera; P09–Brinje; P10–Ogulin; 
P11–Lukovdol; P12–Karlovac; P13–Žumberak; P14–Strahinščica; 
P15–Kalnik; P16–Hrvatska Kostajnica; P17–Moslavačka gora; P18–

Lipovljani; P19–Okučani; P20–Donji Miholjac; P21–Vinkovci; P22–
Tar; P23–Žminj; P24–Pula; P25–Vir; P26–Nin; P27–Obrovac; P28–
Krka; P29–Drniš; P30–Radošić; P31–Klis; P32–Sinj; P33–Bisko; 
P34–Seoca; P35–Batinići; P36–Brač; P37–Hvar; P38–Kotišina; P39–
Vrgorac; P40–Pelješac; P41–Mljet; P42–Slano; P43–Konavle; P44–
orchard
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concentrations were measured with a NanoPhotometer P300 
(Implen GmbH, Munich, Germany).

Nine microsatellite SSR markers were used for genetic 
analysis (Suppl. Table  3). These included EMPc10, 
EMPc104, EMPc105, EMPc111, EMPc115, EMPc117, 
NB105, NB113 and NH025, produced for P. communis 
(Fernández-Fernández et al. 2006; Lukoseviciute et al. 2013; 
Urrestarazu et al. 2015; Rana et al. 2015). For polymerase 
chain reactions (PCRs), a total volume of 20 μL containing 
1 × PCR buffer, 1.5 mM  MgCl2, 200 μM each of dNTPs, 
5 μM forward and reverse primers, 0.5 U TaqHS polymer-
ase (TaKaRa Bio Inc. Shiga, Japan) and 5 ng of template 
DNA were used. The resulting products were analyzed by 
capillary electrophoresis on an ABI 3730xL DNA analyzer 
(Applied Biosystems, Foster City, CA, USA) provided by 
Macrogen DNA service (Amsterdam, Netherlands), and 
alleles were scored using GeneMapper software version 4.0 
(Applied Biosystems, Foster City, CA, USA).

Data analysis

The total number of alleles (Na), polymorphic information 
content (PIC) and probability of identity (PI) of each micros-
atellite locus were calculated separately for each species and 
for the entire dataset using Cervus v. 3.0 (Kalinowski et al. 
2007). The microsatellite data of P. pyraster and P. spinosa 
populations were checked for the presence of null alleles 
and scoring errors using Micro-Checker v. 2.2.3 (van Oost-
erhout et al. 2004) and the frequencies of null-alleles were 
estimated using the expectation–maximization algorithm in 
FreeNA (Chapuis and Estoup 2007). The accessions of P. 
communis were excluded from the analysis of null alleles 
and scoring errors, as this is a group of cultivars for which 
the Hardy–Weinberg equilibrium (HWE) assumption cannot 
apply in principle. Allele frequencies adjusted for the pres-
ence of null alleles in FreeNA were used to recalculate the 
expected heterozygosity values [HE(null)] in each population 
of P. pyraster and P. spinosa and compare them with the 
original values (HE) using the Wilcoxon rank-sum test in 
SAS v. 9.4 (SAS Institute Inc. Cary, NC, USA).

Diversity within populations was determined by calculat-
ing the average number of alleles (Nav), allelic richness (Nar), 
number of private alleles (Npr) and private allelic richness 
(Npar) using HP-Rare v. 1.0 (Kalinowski 2005). Population 
genetic parameters such as the observed heterozygosity 
(HO), the expected heterozygosity (HE) and the inbreeding 
coefficient (FIS) were calculated using Genepop v. 4.7 (Rous-
set 2008). Possible deviations from Hardy–Weinberg equi-
librium (HWE) were tested in Genepop and the significance 
level was adjusted after sequential Bonferroni corrections 
for multiple testing using SAS. Populations that showed 
significant deviation from Hardy–Weinberg equilibrium 
were further analyzed using INEST v. 2.2 (Chybicki and 

Burczyk 2009), which applies a Bayesian approach (individ-
ual inbreeding model; IIM) to simultaneously estimate the 
effects of null alleles and inbreeding. The full model (‘nfb’), 
which includes the effect of inbreeding and genotypic fail-
ures (FIS > 0), was tested against a random model (‘nb’) that 
assumes the presence of null alleles and genotypic failures 
(FIS = 0). The parameters used were set as follows: 500,000 
MCMC cycles with an update every 200 cycles and a burn-
in of 50,000. The deviance information criterion (DIC) was 
used to compare the models. Friedman’s non-parametric 
two-way ANOVA was used to assess differences in Nar, HO 
and HE among species and markers. When results were sig-
nificant for species, Wilcoxon signed-rank tests were applied 
to detect significant differences among pairs of species. Both 
analyses were performed using SAS.

The signs of bottlenecks in the populations of P. pyraster 
and P. spinosa were examined with the heterozygosity-
excess test (Cornuet and Luikart 1996) and the M-ratio test 
(Garza and Willimason 2001) using INEST. The test for het-
erozygosity excess, indicating a recent population reduction, 
was performed under the two-phase model (TMP) using the 
parameter values recommended by Peery et al. (2012): the 
proportion of multistep mutations, pg = 0.22 and the average 
multi-step mutation size, δg = 0.31. The M-ratio was calcu-
lated as the average ratio between the total number of alleles 
(k) and the overall allele size range (r) in each population. 
A significant value of the M-ratio test is strong evidence of 
a past bottleneck. The significance of both tests was deter-
mined using Wilcoxon’s signed-rank test P-values based on 
1,000,000 permutations.

To evaluate the genetic differentiation among populations 
(P. pyraster, P. spinosa) and a group of cultivars (P. com-
munis), the pairwise FST values and the respective P values 
(after 10,000 permutations) were estimated in FSTAT v. 
2.9.3.2 (Goudet 1995).

Analysis of molecular variance (AMOVA; Excoffier et al. 
1992) was performed in ARLEQUIN v. 3.5.2.2 (Excoffier 
and Lischer 2010) by partitioning total microsatellite diver-
sity among species, among populations (including a group 
of cultivars of P. communis) within species, and within 
populations. Additional two-way AMOVAs were similarly 
performed for each pair of species. The one-way AMOVAs 
for partitioning total microsatellite diversity among and 
within populations were performed separately for P. pyraster 
and P. spinosa. The significance level of the parameters φ 
was determined after 10,000 permutations. A model-based 
clustering method was applied to multilocus microsatellite 
data to infer genetic structure and determine the number of 
clusters in the dataset using STRU CTU RE (Pritchard et al. 
2000). The analysis was performed for the entire dataset 
as well as for each Pyrus species separately. Thirty runs of 
STRU CTU RE were performed, with the number of clusters 
(K) set from 1 to 11. Each run consisted of a burn-in period 
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of 200,000 steps followed by 1,000,000 Monte Carlo Markov 
Chain (MCMC) steps, assuming an admixture model and 
correlated allele frequencies. The calculations were per-
formed on the Padobran computer cluster at the University 
of Zagreb (Croatia), University Computing Center (SRCE). 
The choice of the most probable number of clusters (K) was 
determined by calculating an ad hoc ΔK statistic (Evanno 
et al. 2005) using the web-based software StructureSelector 
(Li and Liu 2018), which also allows clustering and merging 
of the resulting runs according to the CLUMPAK method 
described in Kopelman et al. (2015). The individuals with 
membership probabilities (Q) of less than 75% for each clus-
ter were considered to be of mixed origin (Matsuoka et al. 
2002).

Isolation by distance (IBD) (Rousset 1997) was analyzed 
by calculating the correlation between the matrix of the 
natural logarithm of geographic distances (in km) and the 
matrix of pairwise FST/(1 − FST) ratios between population 
pairs separately for P. pyraster and P. spinosa. Significance 
was determined by the Mantel test after 10,000 permutations 
using NTSYS-pc v. 2.21L (Rohlf 2009).

Environmental dissimilarity between populations was 
based on data of the average bioclimatic conditions for the 
period from 1970 to 2000, in the area of the studied popula-
tions obtained from the WorldClim 2 database with a spatial 
resolution close to a square kilometer (Fick and Hijmans 
2017). The bioclimatic variables used in the analysis rep-
resent yearly, seasonal, and monthly averages and extremes 
in temperature and precipitation. All 19 bioclimatic vari-
ables (Suppl. Table 1) were included in the analysis for 
calculating the environmental dissimilarity matrix. Firstly, 
the PRINCOMP procedure in SAS was used to perform 
principal component analysis and the pairwise Euclidean 
distances between population scores on the first two princi-
pal components were used as a measure of environmental 
dissimilarity between populations. Accordingly, the isola-
tion by environment (IBE) was analyzed by calculating the 
correlation between the matrix of environmental dissimilar-
ity and the matrix of pairwise FST/(1 − FST) ratios between 
pairs of populations. Significance was determined by the 
Mantel test after 10,000 permutations using NTSYS-pc v. 
2.21L (Rohlf 2009).

Results

Microsatellite diversity

Nine SSR markers were used to identify genetic diversity in 
all three species. In total, 214 alleles were revealed for Pyrus 
pyraster, 191 for P. spinosa and 94 for P. communis (Suppl. 
Table 3). The average number of alleles revealed in each spe-
cies was 23.78, 21.22 and 10.44, respectively. In P. pyraster, 

the number of alleles varied between 17 (NB105) and 28 
(EMPc105, EMPc117). A larger range was revealed in P. 
spinosa, from 12 (NB113) to 33 (EMPc10), while the num-
ber of alleles in P. communis varied between 6 (EMPc104) 
and 16 (EMPc115). The average Polymorphism Information 
Content (PIC) values for P. pyraster, P. spinosa and P. com-
munis were 0.824, 0.768 and 0.768, respectively, indicat-
ing high informativeness of used markers (Suppl. Table 3). 
In P. pyraster, PIC values ranged from 0.582 (EMPc10) to 
0.936 (EMPc117), in P. spinosa they ranged from 0.519 
(NB113) to 0.875 (EMPc117) and in P. communis from 
0.686 (EMPc10) to 0.838 (EMPc115). Across all three spe-
cies, PIC values identified a limited number of moderately 
informative markers: EMPc10 in all three species, NB113 
in P. spinosa and NH025 in P. communis.

Population diversity

Genetic diversity parameters for each population based on 
allelic frequencies are summarized in Table 1. The average 
number of alleles in P. pyraster varied from 7.111 (P07) 
to 11.889 (P21), while allelic richness ranged from 5.286 
(P07) to 7.762 (P03). The number of private alleles was the 
highest in P14 (4), followed by P21 (3) and P06 and P09 
(2). One private allele each was found in P02, P10, P18 and 
P19, while no private alleles were found in the remaining 
13 populations of P. pyraster. Observed and expected het-
erozygosity were the highest in P04 (0.972) and P03 (0.870), 
respectively, while both values were the lowest in P07 
(0.627 and 0.681). After Bonferroni correction, significant 
deviation from Hardy–Weinberg equilibrium (HWE) was 
detected only in P04. However, the DIC value of the model 
assuming the presence of null alleles and genotyping fail-
ures  (DICnb = 720.60) was slightly lower than the full model 
including the effect of inbreeding  (DICnfb = 720.95). A total 
number of detected null alleles across all of 189 microsatel-
lite loci × population combinations in P. pyraster was 12, 
with the frequency from 0.093 (EMPc115 in P09) to 0.190 
(EMPc105 in P02). The largest number of null alleles in P. 
pyraster was found in EMPc105 (Supplementary Table 4). 
The expected heterozygosity values adjusted for the pres-
ence of null alleles [HE(null)] did not differ significantly from 
the original values in any population (PWilcoxon = 0.62–0.95), 
indicating that null alleles had no effect on the results.

Overall lower allelic diversity was found in P. spi-
nosa, where the average number of alleles varied from 
5.000 (P37) to 8.889 (P25, P30, P35), while allelic rich-
ness was within the range of 4.426–6.426, with the lower 
limit of the range characteristic of P37, and the upper 
limit of P35 (Table 1). Furthermore, a number of private 
alleles was notably lower as well, with only five popula-
tions with one private allele each (P35, P38, P39, P42, 
P43), and the rest of populations without any private 
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Table 1  Genetic diversity of 21 
Pyrus pyraster, 22 P. spinosa 
and a group of P. communis 
based on nine microsatellite 
markers

n sample size, Nav average number of alleles, Nar allelic richness, Npr number of private alleles, Npar private 
allelic richness, HO observed heterozygosity, HE expected heterozygosity, HE(Null) expected heterozygo-
sity adjusted for the presence of null alleles, FIS inbreeding coefficient, PTPM probability of heterozygosity 
excess using two-phase model (TPM) indicating a recent bottleneck, PMR probability of Garza-Willamson’s 

Population n Nav Nar Npr Npar HO HE HE(null) FIS PTPM PMR

P01 17 11.222 7.417 0 0.052 0.830 0.859 0.862 0.033 1.000 0.538
P02 20 10.778 7.160 1 0.119 0.789 0.842 0.844 0.063 1.000 0.157
P03 16 11.000 7.762 0 0.042 0.854 0.870 0.875 0.019 1.000 0.075
P04 12 7.333 6.251 0 0.040 0.972 0.836 0.842 −0.163** 0.286 0.000
P05 13 7.222 5.596 0 0.058 0.838 0.746 0.750 −0.122 1.000 0.057
P06 16 9.111 6.430 2 0.267 0.813 0.803 0.813 −0.012 1.000 0.034
P07 14 7.111 5.286 0 0.013 0.627 0.681 0.696 0.079 1.000 0.075
P08 17 9.444 6.376 0 0.131 0.824 0.783 0.785 −0.052 1.000 0.000
P09 16 9.444 6.696 2 0.220 0.785 0.823 0.833 0.046 1.000 0.000
P10 21 10.000 6.339 1 0.096 0.810 0.766 0.771 −0.057 1.000 0.075
P11 21 9.778 6.405 0 0.047 0.820 0.793 0.800 −0.034 1.000 0.194
P12 18 10.556 6.707 0 0.050 0.796 0.793 0.800 −0.004 1.000 0.245
P13 17 9.778 6.429 0 0.066 0.752 0.790 0.800 0.048 1.000 0.057
P14 17 10.000 6.705 4 0.309 0.850 0.808 0.812 −0.051 1.000 0.000
P15 19 8.667 5.753 0 0.026 0.760 0.752 0.756 −0.010 1.000 0.075
P16 8 7.778 7.290 0 0.042 0.847 0.866 0.871 0.022 1.000 0.075
P17 14 7.667 6.012 0 0.017 0.778 0.755 0.759 −0.030 1.000 0.034
P18 14 8.556 6.220 1 0.134 0.770 0.801 0.809 0.039 1.000 0.257
P19 20 10.667 6.526 1 0.060 0.806 0.783 0.793 −0.028 1.000 0.194
P20 18 10.111 6.641 0 0.031 0.784 0.797 0.799 0.016 1.000 0.538
P21 20 11.889 7.486 3 0.289 0.856 0.862 0.864 0.008 1.000 0.538
P22 10 5.444 4.758 0 0.016 0.711 0.688 0.698 −0.033 1.000 0.040
P23 12 6.778 5.503 0 0.036 0.713 0.774 0.788 0.079 1.000 0.040
P24 20 7.778 5.409 0 0.034 0.806 0.761 0.766 −0.059 1.000 0.083
P25 23 8.889 5.680 0 0.085 0.768 0.768 0.777 0.000 1.000 0.083
P26 11 6.889 5.602 0 0.088 0.758 0.776 0.789 0.024 1.000 0.176
P27 20 8.556 5.527 0 0.021 0.706 0.747 0.758 0.055 1.000 0.000
P28 19 8.667 5.864 0 0.049 0.766 0.770 0.779 0.005 1.000 0.190
P29 11 7.556 6.139 0 0.010 0.737 0.780 0.786 0.054 1.000 0.062
P30 22 8.889 5.741 0 0.029 0.768 0.757 0.763 −0.014 1.000 0.040
P31 17 8.556 5.985 0 0.083 0.712 0.769 0.786 0.074 1.000 0.083
P32 11 6.333 5.256 0 0.027 0.778 0.733 0.735 −0.061 1.000 0.138
P33 14 7.000 5.481 0 0.046 0.770 0.754 0.765 −0.021 1.000 0.108
P34 14 7.000 5.579 0 0.011 0.770 0.766 0.777 −0.005 1.000 0.195
P35 15 8.889 6.426 1 0.092 0.733 0.797 0.812 0.080 1.000 0.195
P36 14 7.333 5.651 0 0.061 0.706 0.778 0.788 0.092*** 1.000 0.190
P37 20 5.000 4.426 0 0.070 0.722 0.741 0.768 0.025 0.042 0.062
P38 20 8.556 5.609 1 0.043 0.683 0.749 0.761 0.088** 1.000 0.040
P39 17 8.556 6.042 1 0.269 0.765 0.781 0.789 0.021 1.000 0.176
P40 19 7.778 5.552 0 0.047 0.737 0.748 0.752 0.015 1.000 0.192
P41 7 5.667 5.667 0 0.030 0.730 0.759 0.772 0.038 1.000 0.195
P42 20 8.222 5.842 1 0.115 0.756 0.773 0.779 0.022 1.000 0.195
P43 15 8.556 6.392 1 0.175 0.770 0.810 0.811 0.049 1.000 0.000
P44 24 10.222 6.186 1 0.187 0.857 0.812 N/A N/A N/A N/A
P. pyraster 348 23.778 12.134a 42 3.894 0.806a 0.837 N/A N/A N/A N/A
P. spinosa 351 21.222 9.400b 26 2.548 0.745a 0.790 N/A N/A N/A N/A
P. communis 24 10.222 9.215b 1 2.077 0.857a 0.812 N/A N/A N/A N/A
PFriedman 0.002 0.012 0.118
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alleles. Expected and observed heterozygosity were very 
similar across studied populations of P. spinosa and ranged 
from 0.683 (P38) to 0.806 (P24), and from 0.688 (P22) to 
0.810 (P43), respectively. In two populations, P36 and P38, 
a significant deviation from the Hardy–Weinberg equilib-
rium (HWE) was found. In both populations, the model 
that excludes the effect of inbreeding fitted the data better 
[DICnb(P36) = 781.09, DICnb(P38) = 1109.78] than the full 
model [DICInfb(P36) = 781.09, DICnfb(P38) = 1112.04], 
suggesting that the deviation from HWE is due to the pres-
ence of null alleles and not to inbreeding. Compared to 
P. pyraster, a larger number of null alleles was detected 
in P. spinosa. The total number of null alleles across all 
198 microsatellite loci × population combinations in P. 
spinosa was 29, with the frequency ranging from 0.074 
(EMPc104 × P28) to 0.316 (EMPc104 × P40) (Suppl. 
Table 4). The highest number of null alleles was found in 
EMPc104, in which they were found in 14 out of 22 popula-
tions. As with P. pyraster, no significant differences were 
found between HE and HE(null) in any P. spinosa population 
(PWilcoxon = 0.25–0.95).

The average number of alleles in P. communis was 10.22, 
with an allelic richness of 6.186. Within P. communis sam-
ples only one private allele was found. Observed heterozy-
gosity and expected heterozygosity were both higher than 
the average values in the other two species, being 0.857 and 
0.812, respectively.

Allelic richness differed significantly among species, 
with P. pyraster having a significantly higher value than 
P. spinosa and P. communis. The observed heterozygosity 
was also found to be significantly different among species 
according to the Friedman test, but subsequent pairwise 
comparisons between species were not significant. All three 
species had the same level of expected heterozygosity. The 
heterozygosity-excess method utilizing the Wilcoxon signed 
rank test assuming a two-phased model (TPM), followed by 
Bonferroni correction, identified a significant recent bottle-
neck only in one population of P. spinosa, P37. On the other 
hand, the M-ratio test detected strong signals of population 

size reduction in the past in six populations of P. pyraster 
(P04, P06, P08, P09, P14, P17) and six populations of P. 
spinosa (P22, P23, P27, P30, P38, P43) (Table 1).

Population genetic differentiation and structure

Genetic differentiation values (FST) were calculated between 
all pairs of populations within each species (Suppl. Table 5). 
In P. pyraster, the genetic differentiation ranged from 0.003 
(between P12 and P13) to 0.126 (between P05 and P07). 
Out of 210 possible pairs, statistically significant differ-
ences were found in 160 cases, or in 76.2%. Population 
P06 showed significant differentiation from all of the other 
populations, while on the other hand, population P16 was 
differentiated only from P06. Furthermore, among the most 
differentiated populations were also P05 and P14, which 
showed significant differences from all but one population 
(P16), and P04, P15 and P21, which showed significant dif-
ferences from all but two populations each.

The opposite results were found for P. spinosa. Namely, 
its populations were revealed to be much more similar than 
the populations of P. pyraster, and significant differences 
were found only in 76 out of a possible 231 cases, which is 
32.9% (Suppl. Table 6). The genetic differentiation between 
P. spinosa populations ranged from 0 (between P36 and 
P42) to 0.117 (between P22 and P41). The most differenti-
ated populations were P40 and P37, which showed signifi-
cant differences from all but one population (P35) and four 
populations (P26, P29, P32 and P41), respectively. On the 
other hand, the least differentiated populations were P26, 
which had only one population it was significantly differenti-
ated from (P40), and P29 and P31, which were significantly 
differentiated from two populations each.

The results of the two-way AMOVAs conducted for 
all three species showed statistically significant differ-
ences between species, among populations within species 
and within populations (Table 2). The two-way AMO-
VAs revealed that most of the total variation (85.83%) 
could be attributed to within-population variation, while 

M-ratio indicating a past bottleneck
P. pyraster populations: P01–Kuberton; P02–Lupoglav; P03–Krk; P04–Rumin; P05–Kamešnica; P06–Stu-
denci; P07–Perušić; P08–Plitvička jezera; P09–Brinje; P10–Ogulin; P11–Lukovdol; P12–Karlovac; P13–
Žumberak; P14–Strahinščica; P15–Kalnik; P16–Hrvatska Kostajnica; P17–Moslavačka gora; P18–Lipo-
vljani; P19–Okučani; P20–Donji Miholjac; P21–Vinkovci. P. spinosa populations: P22–Tar; P23–Žminj; 
P24–Pula; P25–Vir; P26–Nin; P27–Obrovac; P28–Krka; P29–Drniš; P30–Radošić; P31–Klis; P32–Sinj; 
P33–Bisko; P34–Seoca; P35–Batinići; P36–Brač; P37–Hvar; P38–Kotišina; P39–Vrgorac; P40–Pelješac; 
P41–Mljet; P42–Slano; P43–Konavle. P. communis: P44
P-value: ns non-significant value
* significant at P < 0.05
**  significant at P < 0.01
***  significant at P < 0.001
N/A not applicable. PFriedman–the significance level of the differences in the values of Nar, HO, HE among 
the species (different letters in the columns indicate significant differences between the species at P < 0.05)

Table 1  (continued)



1304 Trees (2024) 38:1297–1314

between-species and between-population differences 
within-species accounted for 10.51% and 3.66% of the 
total variability, respectively. However, both sources of 
variation were highly significant (P < 0.0001). Pairwise 
two-way AMOVAs between species showed that the high-
est percentage of total variation in the between-species 
variance component was between P. spinosa and P. com-
munis (11.27%) and the lowest was between P. pyraster 
and P. communis (4.27%). The results of one-way AMO-
VAs among and within populations of P. pyraster and P. 
spinosa showed that only a limited percentage (4.75% and 
3.58%) of the total variance could be attributed to among-
population variation, although the φST values were very 
highly significant in both cases (P < 0.0001).

For the purpose of classifying individuals into geneti-
cally differentiated groups assuming Hardy–Weinberg 
equilibrium as well as linkage equilibrium within each 
group, a Bayesian analysis of the population structure was 
performed. The highest ΔK (4671.80) value was obtained 
at K = 2, which revealed the most probable division of 
studied individuals into two genetic clusters, followed by 
ΔK of 116.89 at K = 3 (Suppl. Figure 1). At K = 2, popu-
lations P01-P21 and P44 were assigned to Cluster K2_A 
including all the populations belonging to P. pyraster and 
P. communis, while all the populations belonging to P. spi-
nosa (P22-P43) were assigned to Cluster K2_B (Fig. 2A). 
In Cluster K2_A, 17 individuals were of a mixed origin 
(Q < 0.75), all of which were present in populations P01-
P06, with the exception of one sample in P16. In Cluster 
K2_B, 11 individuals proved to be of a mixed origin.

The second most probable division of populations was 
at K = 3. The three clusters correspond to the three species 
studied, P. pyraster (Cluster K3_A), P. spinosa (Cluster 
K3_B) and P. communis (Cluster K3_C) (Fig. 2B). At the 
individual tree level, 59 individuals initially collected as P. 
pyraster were assigned to Cluster K3_C, i.e. P. communis, 
and two individuals to Cluster K3_B, or P. spinosa. In total, 
58 individuals of P. pyraster were of mixed origin, most of 
which had significant admixture with P. communis. With 
the exception of two individuals being assigned to Cluster 
K3_C, all of the individuals of P. spinosa were assigned 
to Cluster K3_B. Within P. spinosa, 15 individuals were 
found to be of a mixed origin. Attribution of P. communis 
individuals to Cluster K3_C proved to be complete for all 
individuals. In total, 45 hybrids between P. pyraster and P. 
communis were found, the majority of which were located 
in P02, P03, P14, P20 and P21. Furthermore, 14 cases of 
hybrids between P. spinosa into P. pyraster were detected, 
all of which were present in the areas of overlapping distri-
butions of these two species. Hybridization between P. spi-
nosa and P. communis was also confirmed, as 10 individuals 
showed such genetic structuring.

A model-based clustering method was also performed 
for each species separately. In P. pyraster, the most prob-
able division of individuals was at K = 2, followed by K = 3 
(Suppl. Figure 2). At K = 2, the majority of individuals in 
sub-Mediterranean populations P01-P06 and continental 
populations P16, P20 and P21 were assigned to Cluster 
K2_A, while all of the remaining populations had indi-
viduals belonging to Cluster K2_B (Fig. 3A). At K = 3, 

Table 2  The results of two-way (between species) and one-way (within species) analysis of molecular variance (AMOVA)

Analysis Components of the variance df Variance 
components

% total variation P-value

Among P. pyraster, P. spinosa and P. communis Among species 1 0.430 10.51  < 0.0001
Among populations within species 41 0.150 3.66  < 0.0001
Within populations 1402 3.515 85.83  < 0.0001

Between P. pyraster and P. spinosa Between species 1 0.447 10.86  < 0.0001
Among populations within species 41 0.150 3.64  < 0.0001
Within populations 1355 3.516 85.49  < 0.0001

Between P. pyraster and P. communis Between species 1 0.168 4.27  < 0.0001
Among populations within species 20 0.173 4.40  < 0.0001
Within populations 722 3.593 91.34  < 0.0001

Between P. spinosa and P. communis Between species 1 0.452 11.27  < 0.0001
Among populations within species 21 0.127 3.17  < 0.0001
Within populations 727 3.435 95.56  < 0.0001

Within P. pyraster Among populations 20 0.158 4.75  < 0.0001
Within populations 675 3.177 95.25

Within P. spinosa Among populations 21 0.113 3.58  < 0.0001
Within populations 680 3.050 96.42
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populations P01, P02 and P16, which correspond to those 
with the highest number of hybrid trees with cultivated P. 
communis, had the greatest proportion of Cluster K3_A. 
Cluster K3_B consisted mostly of individuals in populations 
P03, P06, P14, P15, P20 and P21, while the proportion of 
the Cluster K3_C was the highest in central populations P07-
P13 (Fig. 3B).

In P. spinosa, the most probable division of individu-
als was into four clusters, followed by division into two 
clusters (Suppl. Figure 3). At K = 2, the majority of studied 
individuals showed mixed ancestry between clusters K2_A 
and K2_B, with the exceptions of P36, P40, P42 and P43, 
which had a somewhat greater proportion of Cluster K2_B 
(Fig. 3C). At K = 4, most of the studied individuals had even 
proportion of four clusters. However, the northernmost pop-
ulations P22-P24, and southern populations P36-P42 stand 
out as the ones with the greatest proportion of clusters K4_C 
and K4_D (Fig. 3D).

Association between genetic, geographical 
and environmental variation

The results of Mantel tests identified significant correla-
tions between geographical and genetic distances in both 
wild pear species, P. pyraster (r = 0.436, PMantel < 0.0001) 
and P. spinosa (r = 0.378, PMantel < 0.0001). Therefore, the 

genetic variability of the studied populations showed signifi-
cant dependence on geographical distances between popula-
tions, indicating greater genetic similarity in geographically 
adjacent populations. On the other hand, genetic distances 
did not correlate significantly with environmental distances 
(Fig. 4). 

Discussion

Our results confirmed the high informativeness of all 
SSR markers used in describing the genetic diversity of 
P. pyraster, P. spinosa and P. communis. Overall, the 
microsatellite markers used in this research had the highest 
informativeness in P. pyraster, followed by lower values 
in P. spinosa and P. communis. Overall, all of the mark-
ers except EMPc10 showed high informativeness across 
all three species, with PIC values above 0.8. Such results 
are in accordance with previously reported PIC values 
for these markers (Wolko et al. 2010, 2015; Rana et al. 
2015; Ouni et al. 2020). The average number of alleles 
in P. pyraster ranged from 17 to 28, which is higher than 
previously reported values for comparable microsatel-
lites (Rugienius et al. 2013; Wolko et al. 2015; Reim et al. 
2017). With the average number of alleles ranging from 
six to 16, P. communis had a similar or somewhat higher 

Fig. 2  The results of structure analysis at K = 2 (A) and K = 3 (B) depicted as barplots with posterior probabilities of membership of each indi-
vidual into each genetic cluster. Populations acronyms as in Fig. 1
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number of alleles per marker, compared to values reported 
by numerous authors (Fernández-Fernández et al. 2006; 
Wolko et al. 2010; Sehić et al. 2012; Lukoseviciute et al. 
2013; Urresterazu et al. 2015; Rana et al. 2015; Reim et al. 
2017; Ouni et al. 2020). Genetic diversity of wild P. spi-
nosa has not been investigated so far. This study has thus 
proved that microsatellite markers can be successfully 
used for assessing its genetic diversity.

Our study revealed that P. pyraster contains high and 
roughly uniform genetic diversity throughout the study area. 
With the average expected heterozygosity of 0.80, observed 
heterozygosity of 0.81 and average allelic richness of 6.55, 
P. pyraster stands out as a genetically very diverse species, 
compared to other ecologically and biologically similar spe-
cies, like Prunus avium (L.) L. (Schueler et al. 2006), Sorbus 
aucuparia L. (Yousefzadeh et al. 2021), S. torminalis (L.) 

Fig. 3  The results of structure analysis for each species, depicted as barplots with posterior probabilities of membership of each individual into 
each genetic cluster. Pyrus pyraster at K = 2 (A) and K = 3 (B) and P. spinosa at K = 2 (C) and K = 4 (D)
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Crantz (Bednorz et al. 2006) and Malus sylvestris (L.) Mill. 
(Coart et al. 2003; Reim et al. 2020). In addition, the genetic 
diversity of P. pyraster populations included in our research 
was higher compared to populations in Poland (Wolko et al. 
2015) and Germany (Reim et al. 2017). This greater diver-
sity was expected, given that the Balkan Peninsula served 
as a refugial area for many plant species during the last gla-
ciation (Hewitt 2004), probably including P. pyraster. It is 
well known that populations from Northern Europe have a 
much lower genetic diversity than populations from South-
ern Europe (Pearman et al. 2024), as they resulted from 
recolonization events from the Balkan, Apennine and Ibe-
rian peninsulas, where in general populations have retained 
a high genetic diversity (Bennett et al. 1991; Taberlet and 

Cheddadi 2002). The recolonization of former habitats usu-
ally involves a founder effect leading to decreased genetic 
diversity (Stewart et al. 2010). Therefore, higher genetic 
diversity is to be expected at low to intermediate latitudes, 
where many temperate species have survived glaciation peri-
ods (Lawrence and Fraser 2020) since genetic diversity had 
time to accumulate over a longer period of evolution (Adams 
and Hadly 2013). Furthermore, even at the local scale of our 
research, southern populations showed greater differentia-
tion, containing unique alleles and have experienced signifi-
cant historical bottleneck, which may indicate that a refugial 
population of European wild pear was indeed located nearby 
(Petit et al. 2003). According to Cornille et al. (2013), a 
refugial population of European crabapple (Malus sylvestris) 

Fig. 4  Isolation by geographical distance (IBD) and isolation by envi-
ronmental distance (IBE) in Pyrus pyraster (A) and P. spinosa (B) 
populations. Scatter plots of Mantel’s tests showing the relationships 

between geographic and genetic distances on the left, and between 
environmental and genetic distances on the right
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was located in the Balkan Peninsula, in close proximity to 
populations P04-P06. Considering major similarities in biol-
ogy and ecology between European crabapple and European 
wild pear, it is safe to assume they survived in the same area 
during the last glaciation. Nowadays, however, P. pyraster 
is rather rare in this area, with very low population density, 
suggesting these individuals might be the remnants of a large 
historical population, which lost its size due to low competi-
tiveness with other species and selective pressures of climate 
change (Yousefzadeh et al. 2021).

Significant inbreeding was detected in a single population 
of P. pyraster, P04. It is a small population at high altitude 
and a strained ecological niche for this species. Despite a 
small number of individuals in this populations, relatively 
high allelic richness was found, indicating high mate avail-
ability and high S-allele diversity. This suggests that small 
populations of self-incompatible species such as P. pyraster 
do not necessarily suffer from limitations in mating within 
the population (Holderegger et al. 2008). However, repro-
ductive isolation from neighboring populations seems to 
cause significant inbreeding in this population. Namely, 
this population is located in the high mountain area of the 
Dinaric Alps, where the terrain configuration is limiting 
gene flow, as it is separated from the nearest other popula-
tion (P05) by mountain peaks and valleys. Since it is an ani-
mal-dispersed species, gene flow between such populations 
is very difficult, and the number of possible seed transfer 
vectors is limited. In addition, due to heterogeneous habitat 
conditions, divergence in reproductive phenology might also 
play an important role in gene flow limitation (Bonner et al. 
2019).

The genetic diversity in P. spinosa was somewhat lower 
than in P. pyraster. To the best of our knowledge, this is 
the first study on population genetics of wild P. spinosa. 
To date, only a few genetic studies have been conducted 
on this species, all related to its interaction with local cul-
tivars in Italy (Bennici et al. 2018; Sau et al. 2020). The 
genetic diversity reported here is similar to that of other 
wild fruit species in the area, such as P. avium (Mariette 
et al. 2010) and M. sylvestris (Kišek et al. 2021), but also 
various landraces of Pyrus (Ferradini et al. 2017). However, 
the obtained values of genetic diversity for P. spinosa are 
higher than those of Sorbus domestica L. in the same region 
(George et al. 2015). Genetic diversity was very uniform 
throughout all the studied populations, and no population 
stands out as the most genetically diverse. Furthermore, FST 
values indicated there were no significant pairwise differ-
ences between most of the studied populations, especially in 
the central part of the study area (P25-P36). Their similarity 
suggests a natural continuum between neighboring popu-
lations, due to which it might be considered as one large 
population. Unlimited gene flow between these populations 
can be attributed to the abundance of animals that serve as 

vectors of P. spinosa seed dispersal, such as foxes, badgers 
and martens (Debussche and Isenmann 1989; Pigozzi 1992), 
and even wild boars, whose settling onto Adriatic islands is 
increasing (Tomljanović and Grubešić 2014). Apart from 
animals, human impact on the homogenous genetic diversity 
of P. spinosa populations in this area must be considered, as 
it is commonly used as a rootstock for grafting commercial 
pear cultivars (Matsumoto et al. 2006). On the other hand, 
populations P37, P40 and P43, and to some extent P22, P23 
and P24 stood out with greater differences compared to other 
populations. Their distinctiveness was also confirmed by the 
STRU CTU RE analysis. These populations are geographi-
cally the most isolated ones. Populations P22, P23 and P24 
are located in the northernmost part of the study area, sepa-
rated by the large area where P. spinosa was not found. Pop-
ulation P37 is located on the highest peak of the island Hvar 
(Sveti Nikola, 626 m.a.s.l.), while population P40 is located 
in the northernmost part of the steep Pelješac peninsula, with 
no other populations nearby, which makes it a de facto insu-
lar population. Increased differentiation of the populations is 
expected with the increasing distance of the island popula-
tion from the mainland (Frankham 1997) and was previously 
confirmed for various plant species (Hufford et al. 2014). 
Nevertheless, despite the geographical isolation, these popu-
lations showed significant genetic diversity, equaling that 
of mainland populations. Similar levels of genetic diversity 
between mainland and island populations were previously 
confirmed in another woody species, Periploca laevigata 
Aiton (García-Verdugo et al. 2015). The authors explained 
such pattern of genetic diversity with high dispersal ability 
and potential for population establishment and persistence, 
and by the general hypothesis that locally widely distrib-
uted species are associated with moderate to high levels of 
genetic diversity (Gitzendanner and Soltis 2000).

According to AMOVAs, a small fraction of the total vari-
ability of both wild species could be attributed to the inter-
population variability, with more than 95% of the total vari-
ability associated with intra-population variability. The same 
was previously confirmed for P. pyraster populations in 
Poland (Wolko et al. 2015) and Germany (Reim et al. 2017). 
In addition, the distribution of total variability was the same 
as in other woody species, i.e. intra-population variability 
was much higher compared to inter-population variability 
(Wolko et al. 2015; Li et al. 2020). As expected, significant 
differences were also confirmed between the three species 
studied. However, the differentiation between P. pyraster 
and P. communis was weaker than that between P. spinosa 
and P. communis. This result is most likely prompted by 
the close relation between P. pyraster and P. communis, as 
shown by the STRU CTU RE analysis as well. Namely, the 
most probable division of the entire dataset was into two dis-
tinct groups, the first one corresponding to P. pyraster and P. 
communis, and the second one to P. spinosa. This result may 
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be attributed to a close phylogenetic relationship between P. 
pyraster and P. communis, as the former is considered to be 
one of the main wild ancestors of the latter (Heywood and 
Zohary 1995; Volk et al. 2006; Asanidze et al. 2011).

Natural hybridization is one of the major contributors to 
plant evolution and can cause a wide range of evolution-
ary consequences, such as adaptation and speciation (Wong 
et al. 2022; Wu et al. 2024). Hybrids usually display inter-
mediate and transgressive morphological characters of 
their parents (Wang et al. 2021), often resulting in taxo-
nomic complexity within the group (Wu et al. 2024). One 
of the families with a large number of interspecies hybrids 
is Rosaceae (Fritz 2004). Within this family, natural inter-
specific hybridization has been confirmed in Crataegus L. 
(Vaškova and Kolarčik 2019), Prunus L. (Szymajda et al. 
2022), Rosa L. (Mercure and Bruneau 2008), Sorbus L. (Wu 
et al. 2024) and Pyrus (Bell and Hough 1986), to name a 
few. Genus Pyrus is known to have no major incompatibility 
barriers to interspecific hybridization (Bell and Hough 1986; 
Kumar et al. 2017). Therefore, natural hybrids can occur in 
the areas of overlapping distributions (Sadeghnejad et al. 
2014). Indeed, our study confirmed hybridization between 
two wild species, P. pyraster and P. spinosa, which was, to 
the best of our knowledge, only reported by Dostálek (1980) 
in Bulgaria. However, the mentioned report described the 
hybrid solely based on morphological characters. In total, 
our study confirmed 14 hybrid individuals, all of which were 
present in a very limited area of overlapping distributions of 
these two species. Furthermore, although not tested in this 
research, based on the research by Westwood and Bjornstad 
(1971) conducted on various Pyrus taxa, fertile offspring are 
expected to result from these hybrids.

In addition, hybridization between cultivated and wild 
pear populations was detected in our research. In total, 
55 individuals were found to have a significant admixture 
of cultivated P. communis, 45 of which were P. pyraster, 
and only 10 were P. spinosa. This disparity probably 
stems from the fact that P. communis is much more com-
mon in the continental part, often grown in commercial 
plantations, while on the coast it is present mostly as 
individual trees in private gardens. Due to this, hybridi-
zation between P. communis and P. spinosa in the area 
is hampered, despite their compatibility. Hybridization 
between the cultivated pears and their wild relatives has 
been described on multiple occasions (Dostálek 1989; 
Dolatowski et al. 2004; Bennici et al. 2018; Wagner and 
Büttner 2019; Sau et al. 2020) and is recognized as the 
major threat to the genetic diversity of wild species (Wag-
ner and Büttner 2019), which may result in the increased 
risk of their extinction (Todesco et al. 2016). As cultivated 
pears became one of the most widespread fruit crops in 
Europe, the likelihood of contact between them and wild 
species has been increased, leading to a higher frequency 

of gene flow between cultivated forms and their wild rel-
atives. This might lead to genetic swamping, by which 
wild pear could be replaced by hybrids, or demographic 
swamping, which may lead to reduced population growth 
rates due to wasteful production of maladaptive hybrids 
(Todesco et al. 2016). On the other hand, wild relatives 
of cultivated pear may be valuable for improving its gene 
pool through alleles providing greater tolerance to abiotic 
or biotic threats (Cornille et al. 2013). In addition, the 
presence of feral individuals, i.e. generative descendants 
of cultivated pears, may not be excluded. They usually 
retain some domesticated traits but also contain valuable 
adaptive features (Pisias et al. 2022), usually resulting in 
higher morphological similarity to wild individuals (Kišek 
et al. 2021). In general, gene flow between cultivated and 
wild species is not unexpected and has so far been proven 
for many economically important fruit species, like apples 
(Cornille et al. 2013; Ha et al. 2021; Kišek et al. 2021), 
grapevine (di Vecchi-Staraz et al. 2009; De Andrés et al. 
2012), Japanese chestnut (Nishio et al. 2021) and pears 
(Iketani et al. 2010).

In both P. pyraster and P. spinosa, a significant correla-
tion between genetic and geographical distances, i.e. isola-
tion by distance (IBD), was found. This implies greater simi-
larities between geographically proximate populations, and 
vice versa (Sexton et al. 2014; Morente-Lopez et al. 2018). 
Isolation by distance arises from evolutionary mechanisms 
such as genetic drift and natural selection, which, at greater 
distances, occur faster than the homogenization of popula-
tions by dispersal (Twyford et al. 2020). Both P. pyraster 
and P. spinosa are mammal-dispersed species, mostly by 
foxes, badgers, martens and wild boars (Debussche and Isen-
mann 1989; Pigozzi 1992), all of which are highly territo-
rial. Therefore, possibility of long-distance seed dispersal 
is highly reduced and can be considered a sporadic event 
facilitated by birds and humans. A similar pattern of genetic 
structure has been found in other wild, mammal-dispersed 
fruit species such as Sorbus domestica (Armbruster et al. 
2022), Malus sylvestris (Chen et al. 2023) and Pyrus ussu-
riensis (Wujun et al. 2015), as opposed to bird-dispersed 
species like S. torminalis (Angelone et al. 2007) and Prunus 
mahaleb L. (Jordano and Godoy 2000) where IBD is weak 
or insignificant. On the other hand, isolation by environment 
(IBE) was also tested but proved non-significant. In our pre-
vious research on morphological variability of P. pyraster 
and P. spinosa, leaf phenotypic diversity proved to be under 
significant influence of environment and geographical dis-
tances in both species (Vidaković et al. 2021, 2022). This 
indicated the high phenotypic plasticity and adaptability 
of these species, which are the key mechanisms in species 
responses to environmental heterogeneity (Stotz et al. 2021), 
as they act faster than evolutionary mechanisms (Vázquez 
et al. 2017).
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Conclusions

Overall, our results indicate high genetic diversity in 
both wild species, P. pyraster and P. spinosa, with the 
former having somewhat higher values of genetic diver-
sity. Significant differences were confirmed between 
studied species, and in both wild species notably higher 
intra-population compared to inter-population variability 
was found. However, P. spinosa proved to have higher 
gene flow between populations and therefore genetically 
more similar populations, probably due to higher popu-
lation density and lack of geographical barriers. Signifi-
cant inbreeding and historical bottleneck were found in 
southern P. pyraster populations, which might indicate the 
refugial character of these populations as they are located 
in geographical proximity of the known refugial area of 
Malus sylvestris, a species ecologically and biologically 
very similar to P. pyraster. In areas of overlapping dis-
tributions of the two wild species studied, interspecific 
hybrids were found. However, their frequency was rather 
low. In addition, interspecific hybridization was detected 
between both wild species and cultivated P. communis, 
with greater occurrence in P. pyraster. This comes as no 
surprise, considering there are no major incompatibility 
barriers to interspecific hybridization in pears. Finally, our 
results suggest that the main driver of the genetic structure 
of the studied wild populations is their mutual geographi-
cal distance, as a significant correlation between genetic 
and geographical distances has been found. This study 
provided insight into the genetic diversity and structure 
of the two most common wild pear species in Europe and 
will serve as the baseline data for the creation of guide-
lines for their protection and conservation, as well as in 
afforestation programs.
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