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Abstract
Key message Mixed N fertilization with  NO3

−:NH4
+ ratio of 0.50:0.50 mitigates negative water stress effects on growth 

in young Eucalyptus urophylla plants.
Abstract Plant tolerance to water deficit can be influenced by several factors, including the available ionic forms of fertili-
zation. The goal of this study was to assess the effects of nitrate  (NO3

−) and ammonium  (NH4
+) ratios in N fertilization on 

growth-related morphophysiological and biochemical traits, with the aim of mitigating water stress in young Eucalyptus 
urophylla plants. A greenhouse experiment was arranged in a completely randomized design and factorial scheme 5 × 2, with 
different  NO3

−:NH4
+ ratios (0.0:1.0 × 0.25:0.75 × 0.50:0.50 × 0.75:0.25 × 1.0:0.0) and water regimes based on irrigation at 

90 and 30% of pot capacity. The results showed that water deficit inhibited plant growth, resulting in lower plant height, and 
smaller stem diameter, total leaf area, and leaf, stem and root dry mass. Decreases in stomatal conductance, net photosyn-
thesis, and the content of reducing sugar and starch are involved in growth inhibition. Increasing the  NO3

−:NH4
+ ratio can 

mitigate negative water deficit effects on leaf water potential, stomatal conductance, and photosynthesis. Furthermore, leaf 
nitrate reductase activity improves under mixed  NO3

−:NH4
+ fertilization, compared with  NO3

– or  NH4
+ fertilization alone. 

Despite this, variations in N sources proved to be ineffective in preventing growth inhibition under water deficit. However, the 
 NO3

−:NH4
+ ratio of 0.50:0.50 provided the best performance of morphophysiological traits, regardless of the water regime. 

This was particularly relevant at irrigation levels under 30% since fertilization with an  NO3
− ratio equal to  NH4

+ can mitigate 
water stress effects on plant growth, despite not preventing damage to morphophysiological traits.

Keywords Woody plants · Nitrogen · Mineral nutrition · Water deficit

Introduction

The increasing demand for wood in Brazil has led to the 
expansion of Eucalyptus cultivation throughout the coun-
try. However, in many regions low and/or unstable rainfall 
distribution can limit the establishment of new forest stands. 
Water deficit negatively affects seedling growth, and can 
threaten their survival in the field. Water deficit-tolerant 

genotypes are usually recommended for cultivation in these 
regions, but this strategy alone may not be sufficient to 
prevent the harmful physiological effects of low soil water 
availability, especially in the early growth stages.

Plant nutritional status is one of the determining factors 
for growth under water deficit conditions, and nitrogen is 
the most essential nutrient. Inorganic nitrogen is absorbed 
as  NO3

− and  NH4
+ ionic forms (Hawkesford et al. 2012) 

although it is now acknowledged that organic N forms (e.g., 
amino acids) are also used by plants (Warren 2006, 2009). 
Nitrate absorption and assimilation both demand energy, 
either for the influx from the apoplast to the cytosol across 
the plasma membrane or for the subsequent reduction to 
nitrite  (NO2

−) and  NH4
+, mediated by nitrate reductase (NR) 

and nitrite reductase (NiR), respectively (Taiz et al. 2017). 
In contrast, ammonium absorption requires less energy and 
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can occur passively (Li et al. 2013), although it can become 
toxic when it accumulates in plant tissues.

Previous studies have reported that  NO3
− and  NH4

+ have 
different effects on the performance of some growth-related 
morphophysiological and biochemical traits that improve 
tolerance to water deficit, such as root dry mass (Holzschuh 
et al. 2011), water uptake (Gao et al. 2010; Faustino et al. 
2015), photosynthesis rate (Cao et al. 2018), osmoregulator 
content such as reducing sugar and proline, and antioxidant 
activity (Zhang et al. 2011b; Fernández-Crespo et al. 2012). 
The beneficial effects of mixed  NO3

−:NH4
+ fertilization have 

been attributed to such factors as the maintenance of intra-
cellular pH stability, lower energy demand for N assimila-
tion, regulation in the uptake of other cations, rational use of 
carbon skeletons, and mitigation of  NH4

+ toxicity (Li et al. 
2013; Hachiya and Sakakibara 2016).

Previous studies have shown that the highest growth rate 
is reached in Eucalyptus urophylla seedlings under hydro-
ponic medium with mixed  NO3

−:NH4
+ fertilization with a 

0.75:0.25 ratio (Guimarães et al. 2014). Mixed  NO3
−:NH4

+ 
fertilization improves the tolerance of water deficit in corn 
(Zhang et al. 2011a) and rice (Cao et al. 2018; Wang et al. 
2018) found that mixed  NO3

−:NH4
+ fertilization in Camel-

lia oleifera seedlings, regardless of water regime, increased 
leaf N, chlorophyll, soluble sugar and protein content, and 
promoted higher enzymatic activity.

Mixed  NO3
−:NH4

+ fertilization can also improve the 
absorption efficiency of other nutrients (Holzschuh et al. 
2011; Wang et al. 2018), thereby mitigating the negative 
effects of water deficit (Ashraf et al. 2011; Waraich et al. 
2011). Moreover, it can promote auxin accumulation in the 
roots (Fu et al. 2020; Meier et al. 2020), favoring expansion 
and deepening (Hachiya and Sakakibara 2016; Liu et al. 
2019). The increase in root/shoot ratio improves the water 
absorption capacity, as observed in Populus deltoides (Wool-
folk and Friend 2003) and Oryza sativa L. (Holzschuh et al. 
2011) under mixed  NO3

−:NH4
+ fertilization. Despite the 

positive effects on some species, there is still a knowledge 
gap regarding the ideal  NO3

−:NH4
+ ratio to provide more 

tolerance to water stress in young Eucalyptus plants.
We hypothesized that a high  NO3

−:NH4
+ ratio could 

reduce water deficits in Eucalyptus seedlings through 
changes in stomatal conductance, improvements in photo-
synthesis rate and osmoregulation, higher root/shoot ratio 
and increased water and nutrient absorption. Thus, the goal 
of this study was to assess the effects of different  NO3

−:NH4
+ 

ratios in N fertilizer on growth-related morphophysiological 
and biochemical traits, with the aim to mitigate water stress 
in young Eucalyptus urophylla plants.

Materials and methods

Site description and experimental design

A greenhouse experiment was carried out at State University 
of Southwest Bahia, in Vitória da Conquista, Bahia, Brazil 
(14º53′08′′-S, 40º48′02′′-W, 881 m asl), from October to 
December 2019. The local climate is Cwb type (dry-winter 
subtropical highland climate), according to the Köppen-Gei-
ger classification. During the experimental period, the aver-
age temperature and relative humidity inside the greenhouse 
were 24 ± 2 °C and 61.5 % ± 5 %, respectively.

The experiment was arranged in a completely randomized 
design and factorial scheme 5 × 2, four replicates (one plant 
per pot), with five different  NO3

–:NH4
+ ratios (0.0:1.0 × 

0.25:0.75 × 0.50:0.50 × 0.75:0.25 × 1.0:0.0) and two water 
regimes based on irrigation at 90 and 30 % of pot capacity.

Plant material and growing conditions

The seedlings of Eucalyptus urophylla clone AEC 144 used 
for this study were produced in small tubes (54  cm3) con-
taining the following substrates: bovine manure (40%), ver-
miculite (40%) and coconut husk powder (20%) (Oliveira 
Júnior et al. 2011). Seedlings 120-days-old, with 6‒8 fully-
expanded leaves on average, and approximately 20 cm in 
height were planted in 15  dm3 pots using sand previously 
washed with deionized water as a substrate which was fer-
tilized in two stages, using a nutrient solution proposed by 
Hoagland and Arnon (1952) (Table 1).

Table 1  Chemical composition of the nutrient solution supplied per 
plant for different  NO3

−:NH4
+ ratios

NO3
–:NH4

+ ratios

Chemicals 0.0:1.0 0.25:0.75 0.50:0.50 0.75:0.25 1.0:0.0
Quantity supplied (mmol)
  KH2PO4 1 1 1 1 1
  NH4Cl 15 11.25 7.5 3.5 –
 KCl 5 2.2 – 7.6 –
  CaCl2 5 5 3.75 – –
  MgSO4 2 2 2 2 2
  KNO3 – 3.75 5 1.2 5
 Ca(NO3)2 – – 2 5 5
  FeSO4.7H2O 0.089 0.089 0.089 0.089 0.089

Quantity supplied (µmol)
  H3BO3 46.25 46.25 46.25 46.25 46.25
  MnCl2.4H2O 9.15 9.15 9.15 9.15 9.15
  ZnCl2 0.74 0.74 0.74 0.74 0.74
  CuCl2 0.29 0.29 0.29 0.29 0.29
  H2MoO4.H2O 0.11 0.11 0.11 0.11 0.11
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The first fertilization was carried out immediately after 
the seedlings were planted in the pots, and the ionic strength 
of the nutrient solution was gradually increased (30%, 60 
and 100%) every 3 days, to aid in seedling adaptation to the 
new substrate. Twenty-one days after planting, the second 
fertilization was conducted using only the nutrient solu-
tion at its maximum ionic strength. For both fertilizations, 
the volume of nutrient solution supplied was sufficient to 
maintain the substrate moisture at 90% of the pot capacity, 
which was measured by the gravimetric method. The electri-
cal conductivity of the solution was kept below 1.5 mS  cm–1, 
and the pH was 5.5 ± 0.2, using HCl 0.1 M solution. Water 
regimes were established 45 days after planting. Fifteen days 
after water regimes started, we carried out measurements of 
morphology, plant water status, gas exchange, and biochemi-
cal and metabolic traits.

Plant water status

Plant water status was assessed at predawn in fully expanded 
leaves (n = 4) from the middle part of the canopy. A pressure 
chamber (Model 1000, PMS, Albany, USA) was used for 
leaf water potential measurements, according to Scholander 
et al. (1965). Relative water content (RWC) measurements 
were based on fresh (FM), turgid (TM), and dry mass (DM) 
from 10 leaf disc samples, and data were used in this equa-
tion (Weatherley 1950):

Gas exchange

Net photosynthesis (A), transpiration (E) and stomatal con-
ductance (gs) were measured from 8:00 to 10:00 in fully 
expanded leaves (n = 4) from the middle part of the canopy, 
using an infrared gas analyzer (IRGA LCPro, ADC, UK). 
Measurements were performed under a photon irradiance 
of 900 mmol  m−2  s−1 and a  CO2 air concentration of 375 
mmol  mol−1. The intrinsic water use efficiency (iWUE) was 
calculated as the ratio between A and gs (A/gs).

Biochemical and metabolic traits

Fully expanded leaf samples (n = 4) were oven-dried at 
70 °C for 2‒3 days prior to analysis of reducing sugar, pro-
line and starch content. Reducing sugar was extracted from 
200 mg of dry leaves after immersion in 15 mL of  KH2PO4 
0.1 M buffer solution, 3 × centrifuged at 2500g for 45 min. 
The supernatant was taken as the extract, and the reduc-
ing sugar content was determined using a spectrophotom-
eter (Miller 1959). Starch was extracted from 250 mg of 

RWC =
(FM − DMM)

(TMM − DM)
× 100.

dry leaves previously subjected to fat removal by hexane, 
followed by immersion in 5 mL of  H2SO4 0.5 M at 100 ºC 
for 1 h. Starch content was determined using a spectropho-
tometer, according to Normative Instruction  No 20 (Brasil 
1999). Proline was extracted from 200 mg of fresh leaves, 
after immersion in 6 mL of 3 % (w/v) sulfosalicylic acid, 3 
× centrifuged at 7500 rpm for 10 min. The supernatant was 
taken as the extract, and proline content was determined in 
a spectrophotometer (Bates et al. 1973).

Leaf nitrate reductase activity in vivo was assessed as 
described by Guimarães et al. (2014). The enzymatic assay 
was based on a 500 mg sample of fresh fragmented leaves 
(n = 4), after immersion in 5 mL of  KH2PO4 0.1 M buffer, 
3 % (v/v) npropanol, and  KNO3 (0.1 M) at pH 7.5, and a 
water bath at 30 °C in the dark. After 1 h, a 1 mL aliquot 
from the assay was added to a medium consisting of 1 mL 
of 1 % (w/v) sulfanilamide in HCl (1.5 M), 1 mL of 0.02 % 
(w/v) n-1-naphthylethylenediamine di-HCl, and 1 mL of 
deionized water. Nitrite content was determined using a 
spectrophotometer.

Morphophysiological traits

Measurements of plant height and stem diameter (measured 
at the root collar) were measured using a graduated ruler and 
digital caliper, respectively. For total leaf area, a leaf area 
meter (LICOR, LI-3100) was used. The dry mass of leaves, 
stem and roots was obtained after drying in an oven at 70 ± 5 
ºC, followed by weighing on a scale.

Statistical analysis

The data were subjected to an analysis of variance. Mean 
values from the water regimes were compared using Tuk-
ey’s test. Regression models were adjusted for data from 
the  NO3

−:NH4
+ ratios. When traits were not adjusted to 

the regression models, data from  NO3
−:NH4

+ ratios were 
compared using Tukey’s test, using the SISVAR statistical 
program (Ferreira 2011).

Results

Plant water relations

The results only showed a significant interaction (p < 0.005) 
between  NO3

−:NH4
+ ratios and water regimes in relation 

to leaf water potential (Ψw). As an isolated factor, the 
 NO3

–:NH4
+ ratios influenced both Ψw and relative water 

content (p < 0.001). Regarding Ψw, there was a quadratic 
effect on plants under 90 % irrigation in response to increas-
ing  NO3

−:NH4
+ ratio (Fig. 1). There was an increase in Ψw, 

followed by a decrease from an estimated 0.58:0.42 ratio. 



84 Trees (2022) 36:81–91

1 3

However, under 30 % irrigation, increasing the  NO3
−:NH4

+ 
ratio caused a linear increase. The water regime effect was 
significant only at the 1.0:0.0 ratio, where Ψw was higher 
under 30 % irrigation (Fig. 1A). Regarding relative water 
content, there was a significant decrease at 1.0:0.0, irrespec-
tive of water regime, although this data was similar to that 
observed for the 0.25:0.75 ratio (Fig. 1B).

Gas exchange

The results showed a significant interaction (p < 0.001) 
between the  NO3

−:NH4
+ ratios and water regimes for all 

gas exchange traits. The increase in  NO3
−:NH4

+ ratio under 
30 % irrigation caused linear increases in A, E and gs, and a 
linear decrease in iWUE. Conversely, under 90 % irrigation, 
these traits were not influenced by the different  NO3

−:NH4
+ 

ratios. Results from A, E, and gs were higher under 90 % 
irrigation than under 30% irrigation, for the majority of the 
 NO3

−:NH4
+ ratios, except at 1.0:0.0, where there was no dif-

ference between water regimes. The performance of iWUE, 
in turn, was consistently higher under 30 % irrigation, irre-
spective of the  NO3

−:NH4
+ ratio (Fig. 2).

Biochemical and metabolic traits

The results showed a significant interaction between 
 NO3

−:NH4
+ ratios and water regimes for reducing sugar 

(p < 0.001), starch (p < 0.005), and proline (p < 0.005) con-
tents, as well as nitrate reductase (NR) activity (p < 0.001).

Regarding reducing sugar, there was no difference 
between the water regimes when the  NO3

−:NH4
+ ratio was 

0.0:1.0. However, the other ratios showed a lower reduc-
ing sugar under 30 % irrigation than under 90%. With 30% 
irrigation, reducing sugar decreased linearly in response 

to an increased  NO3
−:NH4

+ ratio (Fig. 3A). Starch con-
tent, in turn, was lower under irrigation 30 % than under 
90%, regardless of the  NO3

−:NH4
+ ratio. The increased 

 NO3
−:NH4

+ ratio caused a slight quadratic effect at 30%, 
with starch content decreasing up to an estimated 0.61:0.39 
ratio (Fig. 3B). Proline content increased under 30 % irriga-
tion at most of the  NO3

−:NH4
+ ratios, except at 0.75:0.25, 

where it did not differ between water regimes. This increase 
was more pronounced in fertilization with only one ionic N 
form than with mixed  NO3

−:NH4
+ fertilization (Fig. 3C).

Leaf nitrate reductase activity was not influenced by 
water regimes, fertilization with  NO3

− or  NH4
+, or mixed 

N fertilization at 0.75:0.25. Enzymatic activity at 0.25:0.75 
and 0.50:0.50 was higher under 30 % irrigation. At 90 %, RN 
activity showed a slight decline, in response to an increased 
 NO3

−:NH4
+ ratio, whereas with 30 % irrigation, the increase 

in  NO3
−:NH4

+ ratio caused a quadratic effect, with enzy-
matic activity increasing to an estimated 0.46:0.54 ratio 
(Fig. 3D).

Morphophysiological traits

The results showed no significant interaction between 
 NO3

−:NH4
+ ratios and water regimes in relation to plant 

height, stem diameter, total leaf area, and leaf, stem and 
root dry mass. Nevertheless, both  NO3

−:NH4
+ ratios and 

water regimes showed significant differences for all traits 
(p < 0.001). In general, increasing the  NO3

−:NH4
+ ratio 

had positive effects on growth-related morphophysiologi-
cal traits, which reached the best performance at 0.50:0.50, 
despite some similarities with higher  NO3

−:NH4
+ ratios, 

depending on the variable (Table 2). As for water regimes, 
30 % irrigation negatively affected all morphophysiological 
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plants, clone AEC 144, at different  NO3
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Tukey’s test (p < 0.01)
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traits, especially leaf and stem dry mass, which decreased 
28.96 and 32.30 %, respectively (Table 3).

Fifteen days after starting treatments with mixed N fertili-
zation, typical symptoms of  NH4

+ toxicity were observed in 
plants at 0.0:1.0 and 0.25:0.75. The first symptoms appeared 
at stage B (Silva et al. 2020) of leaf development, when 
a purple to reddish color became noticeable at leaf edges, 
followed by upper edge curling (Fig. 4A). These symptoms 
evolved to necrosis at stage C of leaf development (Fig. 4B).

Discussion

The results showed that increasing the  NO3
−:NH4

+ ratio 
under water deficit was not effective in preventing sig-
nificant decreases in growth-related morphophysiological 
traits such as plant height, stem diameter, total leaf area, 
and leaf, stem and root dry mass (Table 3). Regarding dry 
mass, these effects were more pronounced on leaf and stem, 
which reduced in size by 28.96 and 32.30 %, respectively, 
when compared to well-watered plants. Due to the smaller 

decrease in root dry mass (18.83 %), there was likely a 
higher source-to-sink assimilate partitioning for this organ, 
which favors water uptake, thus providing higher tolerance 
to water deficit. The best morphophysiological traits were 
achieved at  NO3

−:NH4
+ ratios of 0.50:0.50, irrespective of 

water regime (Table 2). This effect is especially interesting 
for plants under 30 % irrigation since it helps to mitigate the 
effects of water stress on plant growth.

For gas exchange, gs was one of the most important fac-
tors, showing a strong correlation with E and A. Under 30 % 
irrigation, gs, E, and A values were lower at low  NO3

−:NH4
+ 

ratios (Fig. 2). These results agree with those of Cramer and 
Lewis (1993) in wheat, and Lopes et al. (2004) in barley, 
who determined that gs and A values were   significantly lower 
in  NH4

+- than in  NO3
–-fertilized plants.

Water deficit usually promotes partial stomatal closure, 
reducing gs, E, and A (Sharma et al. 2020). In our study, 
the results revealed that increasing the  NO3

−:NH4
+ ratio 

attenuated the water deficit effect on gas exchange affected 
by water potential (Fig. 2). The increase in A, in response 
to increased  NO3

− supply, partly relates to the concomitant 
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decrease in  NH4
+ supply, thus mitigating the negative effects 

of this cation on gas exchange. A high  NH4
+ content may 

also be involved in stomatal closure (Foyer et al. 2003), as 
gs and A are decreased. These deleterious effects of high 

 NH4
+ content on gas exchange corroborate other studies on 

strawberry, sugar cane, and fir, even under well-watered con-
ditions (Rothstein and Cregg 2005; Tabatabaei et al. 2006; 
Pissolato et al. 2019). In contrast, in our study  NO3

−:NH4
+ 
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Fig. 3  Leaf contents of A reducing sugar, B starch and C proline, and 
D  nitrate reductase activity in young Eucalyptus urophylla plants, 
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−:NH4

+ ratios in each water regime, by Tukey’s test (p < 0.01)

Table 2  Effects of  NO3
−:NH4

+ ratio on plant height (H), stem diameter (D), total leaf area (TLA), and leaf, stem and root dry mass (LDM, SDM 
and RDM) in young Eucalyptus urophylla plants, clone AEC 144, irrespective of water regimes

Lower-case letters compare data on the same line using Tukey’s test (p < 0.05)

Traits NO3
−:NH4

+ ratio

0.0:1.0 0.25:0.75 0.50:0.50 0.75:0.25 1.0:0.0

H (cm) 41.50 ± 0.68 c 41.94 ± 1.76 bc 48.18 ± 1.54 a 44.12 ± 1.08 bc 45.31 ± 0.52 ab
D (cm) 6.18 ± 0.37 bc 5.83 ± 0.23 c 7.05 ± 0.24 a 6.73 ± 0.26 ab 6.63 ± 0.17 ab
TLA  (cm2) 1320.49 ± 88.75 b 1565.54 ± 137.45 b 1942.70 ± 106.70 a 1599.48 ± 98.36 ab 1628.26 ± 89.42 ab
LDM (g) 7.52 ± 0.69 b 8.33 ± 0.96 b 10.54 ± 0.92 a 10.48 ± 0.65 a 10.52 ± 0.54 a
SDM (g) 5.24 ± 0.74 bc 4.52 ± 0.40 c 7.15 ± 0.59 a 6.35 ± 0.73 ab 6.61 ± 0.41 ab
RDM (g) 5.96 ± 0.47 c 7.09 ± 0.90 bc 8.74 ± 0.67 a 8.52 ± 0.58 ab 8.34 ± 0.29 ab
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ratios did not cause significant changes in gas exchange 
under 90% irrigation, and this result verifies that of Guima-
rães et al. (2014), also using Eucalyptus urophylla.

The reasons for  NH4
+-supplemented plants inducing 

decreased gs remains unclear, but a more restricted osmotic 
adjustment is assumed to be involved. Rhizosphere acidifi-
cation due to  NH4

+ assimilation restricts cation absorption 
compared to fertilization mainly with  NO3

− sources (Basra 
and Goyal 2002). Decreased gs values   may reflect a low 
 NO3

− supply, which is not only a relevant osmolyte (Mci-
ntyre 1997; Lopes and Araus 2006), but also an essential 
anion for cation translocation through the xylem (Guo et al. 
2003; Wang et al. 2012). According to Marschner (2012), 
plants mainly-fertilized with  NH4

+- reveal less Ca, Mg, and 
K content than those with  NO3

− as the main agent. In this 
regard, it should be noted that a lower K content may restrict 
stomatal function (Laporte et al. 2002). In our study, some 
slight signs of root senescence were observed in plants that 

were mainly  NH4
+-fertilized, which may cause decreased gs 

(Basra and Goyal 2002; Britto and Kronzucker 2013).
NO3

−:NH4
+ ratios less than 0.50:0.50 caused a decrease 

in root dry mass (Table 2), which may be related to the lim-
iting effect of high  NH4

+ content on water uptake, leading 
to a hardening water stress. Therefore, it is assumed that 
under 30 % irrigation a decrease in  NH4

+ supply due to an 
increase in the  NO3

−:NH4
+ ratio must have contributed to 

improved water uptake, thus increasing leaf Ψw. Moreover, 
the increase in  NO3

–:NH4
+ ratio up to 0.75:0.25 may have 

contributed to maintaining leaf relative water content, in 
whole or in part, despite the increase in E (Fig. 1).

Increasing Ψw concomitant with increased  NO3
−:NH4

+ 
ratio under 30 % irrigation corroborates Faustino et  al. 
(2015) with Pinus taeda. According to those authors, 
increasing  NO3

– supply induces changes in root dry mass 
and hydraulic conductance, providing more tolerance to 
water deficit. However, the increase in Ψw may also relate 
to a decreased  NH4

+ supply, as evidenced in studies on other 
species under water stress, in which  NH4

+ fertilization com-
plicates water uptake making it further even more difficult, 
thus reducing Ψw (Pill and Lambeth 1977; Wu et al. 2017). 
Conversely, under 90 % irrigation,  NO3

−:NH4
+ ratios higher 

than an estimated 0.58:0.42 caused a decrease in Ψw, which 
reached the lowest value at 1.0:0.0.

The decrease in reducing sugar and starch content, as 
observed in plants under 30 % irrigation (Fig. 3), may be 
another consequence of stomatal closure under water deficit, 
which impedes  CO2 absorption, negatively affecting carbo-
hydrate synthesis (Hartmann et al. 2020). Under 30% irriga-
tion, increasing the  NO3

−:NH4
+ ratio decreased the reducing 

sugar content (Fig. 3A) concomitantly with an increase in A. 
This suggests a short-term conversion from reducing sugar 
to sucrose, and subsequent source-to-sink assimilate parti-
tioning, corroborated by a similar positive effect on plant 

Table 3  Effects of water regimes on plant height (H), stem diameter 
(D), total leaf area (TLA), and leaf, stem and root dry mass (LDM, 
SDM and RDM) in young Eucalyptus urophylla plants, clone AEC 
144, irrespective of  NO3

−:NH4
+ ratios

Lower-case letters compare data on the same line using Tukey’s test 
(p < 0.05)

Traits Water regimes

Irrigation 90 % Irrigation 30 %

H (cm) 46.15 ± 0.85 a 42.27 ± 0.76 b
D (cm) 6.97 ± 0.17 a 6.01 ± 0.13 b
TLA  (cm2) 1741.32 ± 83.92 a 1481.27 ± 59.57 b
LDM (g) 11.74 ± 0.46 a 8.34 ± 0.42 b
SDM (g) 7.12 ± 0.30 a 4.82 ± 0.27 b
RDM (g) 8.76 ± 0.41 a 7.11 ± 0.48 b

Fig. 4  Symptoms of  NH4
+ toxicity at stages B [5A] and C [5B] of leaf development in young Eucalyptus urophylla plants, clone AEC 144, ferti-

lized by  NO3
–:NH4

+ at 0.0:1.0 and 0.25:0.75 ratios
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height, stem diameter, and leaf, stem, and root dry mass 
(Table 2).

With 30% irrigation, increasing the  NO3
−:NH4

+ ratio up 
to an estimated 0.61:0.39 caused a slight decline in starch 
content (Fig. 3B). As the  NO3

−:NH4
+ ratio increases, so 

does the demand for  NO3
− reduction, which is energeti-

cally expensive (Nunes-Nesi et al. 2010) and is avoided 
when  NH4

+ is the main N source (MacNeill et al. 2017). 
In tobacco (Nicotiana tabacum L.) and soybean (Glycine 
max L.) leaves with increasing  NO3

− supply, the starch con-
tent decreases as the carbon is reallocated to metabolites of 
the Krebs cycle, organic acids, and amino acids (Veau et al. 
1992; Scheible et al. 1997). The increasing  NO3

−:NH4
+ ratio 

in Arabidopsis results in a decline in starch content and an 
increase in metabolites associated with tricarboxylic acids 
(Hachiya et al. 2012; Sato and Yanagisawa 2014).

Proline content was higher in water-stressed plants, par-
ticularly in those fertilized solely with  NO3

−- or  NH4
+-over 

those receiving mixed N (Fig. 3C). The increase in leaf 
proline content usually occurs both in water deficit condi-
tions (Hossain and Fujita 2010) and fertilization with only 
 NH4

+ fertilization (Fernández-Crespo et al. 2012; Kováčik 
and Klejdus 2014; Ravazzolo et al. 2020). In our study, 
it suggested that either  NO3

− or  NH4
+ root accumulation 

may be involved in a pronounced increase in proline con-
tent. In Arabidopsis thaliana L. mutants under water stress, 
increased proline content is related to  NO3

− accumulation 
in the roots (Chen et al. 2012). In Triticum durum L. (var. 
Amilcar), however, the increase in proline content was seen 
as a response to  NH4

+ toxicity (Torralbo et al. 2019).
Different  NO3

−:NH4
+ ratios influenced leaf NR activ-

ity, but only in plants under 30 % irrigation. This finding 
disagrees with other studies that suggest water deficit as an 
inhibitory factor of NR activity (Zahoor et al. 2017; Huang 
et al. 2018). Leaf NR activity increased up to an estimated 
0.46:0.54 ratio with 30 % irrigation. This response may be 
due to both the positive effect of increased  NO3

− supply 
on enzymatic kinetics (Sauro 2011) and to an attenuation 
of the inhibitory effect of  NH4

+ on NR activity (Botella 
et al. 1993). However, this result was reversed under higher 
 NO3

−:NH4
+ ratios, suggesting that a high  NO3

− content may 
inhibit leaf NR activity (Fig. 3D). Similar findings were 
reported by Wang et al. (2018) and Zhang et al. (2019).

Increasing  NO3
−:NH4

+ from the 0.5:0.5 ratio attenuated 
leaf  NH4

+ toxicity occurred with the 0.0:1.0 and 0.25:0.75 
ratios (Fig. 4). Symptoms of  NH4

+ toxicity also occur in 
other species (Guo et al. 2007; Helali et al. 2010; Wang et al. 
2018), and can lead to a disruption in hormonal homeostasis 
(Walch-Liu et al. 2000), reduced photosynthesis (Pissolato 
et al. 2019), oxidative stress (Wang et al. 2010), acidification 
of cellular organelles, and photophosphorylation inhibition 
(Bittsánszky et al. 2015).

The results also showed that mixed N fertilization favored 
NR activity more than only  NO3

− or  NH4
+ supply. Under-

water stress, NR activity maintenance is necessary because 
this enzyme acts in the synthesis of nitric oxide (Pissolato 
et al. 2020), which plays an important role as in mitigating 
water stress, as observed in other species (Cai et al. 2015; 
Pissolato et al. 2020).

The positive effect of increasing  NO3
−:NH4

+ ratio on 
morphophysiological traits under water deficit can be 
attributed, to some extent, to a close relationship among 
 NO3

− ratio, NR activity, and A. Carbon skeletons derived 
from  CO2 assimilation are required for amino acid syn-
thesis, after  NO3

−–NH4
+ reduction. In this process, NR 

acts as a key enzyme that provides metabolic regulation in 
 NO3

− reduction to ensure that  NH4
+ production does not 

exceed the availability of carbon skeletons for amino acid 
synthesis (Heldt and Piechulla 2011).

Conclusions

The growth of young Eucalyptus urophylla plants is nega-
tively affected by water deficit, resulting in lower plant 
height, less stem diameter, total leaf area, and dry mass of 
leaves, stems, and roots. Reduction in turgor pressure, asso-
ciated with decreases in stomatal conductance, net photo-
synthesis, and reducing sugar and starch contents are the 
main physiological and biochemical changes that lead to 
growth inhibition.

Mixed N fertilization with increased  NO3
−:NH4

+ ratio 
can mitigate negative water deficit effects on leaf water 
potential, stomatal conductance, and photosynthesis. Fur-
thermore, leaf nitrate reductase activity improved with 
mixed  NO3

−:NH4
+, compared with only fertilizing with 

 NO3
− or  NH4

+. Despite this, variations in N sources proved 
to be ineffective in preventing growth inhibition in young 
plants under water deficit.

The best performance of growth-related morpho-
physiological traits was achieved at a  NO3

−:NH4
+ ratio 

of 0.50:0.50, regardless of the water regime. These data 
can be seen as particularly relevant for plants under 30 % 
irrigation, since fertilization with an  NO3

− ratio equal to 
 NH4

+, despite not preventing damage to morphophysi-
ological traits, can mitigate water stress effects on plant 
growth.
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