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Abstract
Key message Models for quantifying tree biometric properties, imperative for forest management decision-making, 
including height, diameter, bark thickness and volume were developed, and wood basic density was documented for 
dry Afromontane forests of south-central Ethiopia.
Abstract Tree biometric properties such as height (ht), diameter at breast height (dbh), bark thickness (bt), volume and 
wood basic density (wbd) are imperative for forest management decision-making. For dry Afromontane forests in south-
central Ethiopia, models for quantifying such tree properties are totally lacking. This study, therefore, aimed at developing 
models for ht based on dbh, for dbh based on stump height diameter (dsh), for bt based on dbh, for volume based on dbh, ht 
and crown width (crw), as well as documenting wbd data. Comprehensive and representative datasets were collected from 
Degaga–Gambo and Wondo Genet forests. The ht, dbh and bt modelling were based on 1345 sampled trees during forest 
inventories, while the volume modelling and wbd documentation were based on 63 destructively sampled trees from 30 spe-
cies covering 87% of the total basal area in the study sites. Weighted least squares regression was applied for modelling and 
leave one out cross-validation was used for evaluation. The ht–dbh and dbh–dsh models performed well (pseudo-R2 = 0.72 
and 0.98), while bt–dbh performed poorer (pseudo-R2 = 0.42). Models for the total tree, merchantable stem and branches 
volume were developed with different options for independent variables, where pseudo-R2 varied from 0.74 to 0.98, with 
smallest values for the branches models The models may be applied to forests outside the present study sites provided that the 
growing conditions are carefully evaluated. The species-wise wbd was ranging from 0.426 to 0.979 g cm−3, with the overall 
mean of 0.588 g cm−3. The wbd data will be useful for building up a national wbd database and may also be included in the 
Global Wood Density database. The study represents a significant step towards sustainable forest management including 
REDD + MRV practices in the dry Afromontane forests of south-central Ethiopia.

Keywords Dry Afromontane forests · Height–diameter and bark models · Volume models · Wood basic density

Introduction

Forest management decisions can be affected by the avail-
ability of relevant tree biometric information. In the course 
of acquiring information for decision-making in the whole 

continuum from single trees to forests, the use of appropri-
ate models and data plays an immense role (Vanclay 1994; 
van Laar and Akça 2007). The availability of tree biometric 
data like wood basic density (wbd), tree height (ht), diameter 
at breast height (dbh), bark thickness (bt), volume and bio-
mass are critical for supporting forest management decision-
making and reducing costs for ground based forest resource 
assessment (van Laar and Akça 2007; West 2009). Such 
data and models are also the basis for assessing changes 
over time, which is linked to a successful implementation of 
measurement reporting and verification (MRV) practices in 
reducing emissions from deforestation and forest degrada-
tion (REDD+) programs (Penman et al. 2003).

Diameter at breast height and tree height are core varia-
bles describing trees. In the tropics, tree height measurement 
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is very challenging compared to dbh (Mokria et al. 2015). 
Hence, tree height is mostly determined by means of models 
describing ht–dbh relationships (West 2009; Mugasha et al. 
2013, 2019; Mokria et al. 2015). To this line, studies have 
also reported 10–30% errors in ht measurements in tropi-
cal forests (Larjavaara and Muller-Landau 2013). Hence, 
the presence of appropriate ht–dbh models may, therefore, 
reduce both the inventory costs and the uncertainty in height 
estimates, especially in tropical forests with complex tree 
architecture (Feldpausch et al. 2011). When assessing pre-
vious harvests or damages in a forest, only stump diameter 
(dsh) can usually be measured. For such cases, it is, there-
fore, important to establish a dbh–dsh relationship, where 
dbh, and subsequently volume or biomass can be estimated 
by measuring dsh only (Corral-Rivas et al. 2007; Özçelik 
et al. 2010). Furthermore, quantifying bark thickness of trees 
by means of an established bt–dbh relationship might be 
useful either to assess the volume of solid wood to be used 
for construction materials or volume of bark to be used for 
energy purposes, spices or medicine (van Laar and Akça 
2007; Kershaw et al. 2017).

Volume data are used to describe present forest resources, 
as a variable in growth and yield models for predicting future 
growing stocks and impacts of harvest as well as to assist in 
evaluating silvicultural practices (Vanclay 1994; Weiskittel 
et al. 2011). Volume data may also be used to determine bio-
mass using expansion and conversion factors (Lindner and 
Karjalainen 2007; Bollandsås et al. 2016). Models predicting 
volume of trees based on dbh, ht and other tree properties 
measured in the field have been developed for decades. The 
development of such models, however, continues to attract 
attention, because no single theory exists for developing vol-
ume models that can be used satisfactorily for all tree species 
and forest types (Muhairwe 1999).

Wood basic density (g  cm−3) of trees, i.e. the ratio of oven 
dry mass to the green volume of the wood (Williamson and 
Wiemann 2010), is the basis for characterizing tree species 
from a wood utilization point of view (Chave et al. 2009; 
Missanjo and Matsumura 2016). Information on wbd may 
have management implications since larger wbd indicates 
better wood quality for fuel (Githiomi and Kariuki 2010) and 
better resistance to severe abiotic disturbance factors (Chave 
et al. 2009). Wood basic density may also be used to predict 
biomass either when using allometric models (Chave et al. 
2014; Njana et al. 2016) or along with biomass expansion 
factors and volume data (Bollandsås et al. 2016). The mag-
nitude of wbd is reported to vary with tree height and age 
(Githiomi and Kariuki 2010), tree section (Njana et al. 2016; 
Tesfaye et al. 2019), and between species, sites, and other 
environmental factors (Henry et al. 2010; Ubuy et al. 2018a).

The present study was conducted in dry Afromontane for-
est, which is a dominant forest type in Ethiopia (UN-REDD 
2017). Dry Afromontane forests are characterized by high 

levels of biodiversity and species endemism (Mittermeier 
et al. 2004; Friis et al. 2010) and are found in most high-
land areas in north-central, central and south-central parts 
at elevations between 1500 and 3400 m. Having about 460 
woody species recorded, the dry Afromontane is the second 
most diverse forest type in the country following the Acacia-
Commiphora forest (Friis et al. 2010). The upper canopy 
of the remaining patches of these forests are dominated by 
Juniperus procera, Afrocarpus falcatus, Olea europaea, 
Croton macrostachyus and Ficus species, while the middle 
and lower canopy are usually occupied by Allophylus abys-
sinicus, Apodytes dimidiata, Bersama abyssinica, Cassipou-
rea malosana, Celtis africana, Chionanthus mildbraedii, and 
Dombeya torrida (Friis et al. 2010).

Forests in Ethiopia and their management have been given 
attention recently from different stakeholders, mainly in line 
with the growing concern on climate change and its mitiga-
tion issues (UN-REDD 2017). In response, the country is 
striving to improve its forest management by implementing 
new approaches like participatory forest management (PFM) 
(Lemenih et al. 2015), area exclosures (Lemenih and Kassa 
2014), and REDD + (UN-REDD 2017). Dry Afromontane 
forests, like most other natural forest types in the coun-
try, have none or little active management (Guillozet et al. 
2014). However, recently, the longstanding concern that 
such forests should be managed and used sustainably rather 
than mere protection is gaining momentum, and thus some 
efforts to implement PFM regimes which integrate sustain-
able timber harvesting have been seen (Lemenih et al. 2015; 
Ayele et al. 2018). This may provide sufficient incentives and 
motivate to a better forest management scheme, as opposed 
to the status-quo protection-oriented system, which favours 
illegal and uncontrolled harvests of timber and other forest 
products (MEFCC 2018). The forest policy amendment in 
2018 and the development of guidelines for sustainable tim-
ber harvesting from forests under PFM (Ayele et al. 2018) 
are steps forward towards a shift in management.

Models and data which are basic for informed decision-
making and facilitating a shift in forest management for dry 
Afromontane forests in Ethiopia, however, are very scarce 
or totally lacking. Kebede et al. (2013) and Wondrade et al. 
(2015), for example, spent much time measuring both dbh 
and ht of all trees in their study area due to lack of any 
models describing ht–dbh relationships. No studies have 
been found specifically dealing with the dbh–dsh relation-
ship, although several studies from natural forests in Ethio-
pia have used dsh instead of dbh to estimate biomass (e.g. 
Mokria et al. 2018; Ubuy et al. 2018b). Except for Eriksson 
et al. (2002), who partly dealt with bark from a fire resist-
ance point of view, no studies have been found quantify-
ing bt of trees in Ethiopia. Despite having diverse forest 
types, models estimating tree volume for natural forests in 
Ethiopia are lacking (Henry et al. 2011). In the literature, we 
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found volume models only for plantations (Pohjonen 1991; 
Teshome 2005; Berhe 2009). Hence, a general volume for-
mula that uses tree basal area, ht and form factor (f) has 
been applied. Form factor is a correction value that charac-
terizes the shape of the tree stem and adjusts the assumed 
cylindrical volume value to the actual stem volume (Laar 
and Akça 2007). However, this approach requires knowing 
species-specific f values, which are totally lacking for natural 
forests in Ethiopia. Instead, a generalised f value of 0.5 is 
usually applied (Sisay et al. 2017). Despite the importance 
of wbd in describing wood properties and the presence of the 
high number of tree species as well as diverse environmental 
conditions in Ethiopia, only a limited number of wbd studies 
are found in the literature (Desalegn et al. 2012; Ubuy et al. 
2018a; Tesfaye et al. 2019). As a result, biomass estimations 
in the Ethiopian forest reference level (FRL) report submit-
ted to the United Nations Framework Convention on Cli-
mate Change (UN-REDD 2017) were based on wbd values 
obtained from the Global Wood Density (GWD) database 
(Chave et al. 2009; Zanne et al. 2009), comprising very little 
data from Ethiopia.

The main objective of this study was, therefore, to pro-
vide models and data that can be used as tools for quantify-
ing biometric tree properties and facilitating a sustainable 
use of resources in the dry Afromontane forests of south-
central Ethiopia. Specifically, the study aimed at (1) devel-
oping models for ht based on dbh, dbh based on dsh and 
bt based on dbh, (2) developing models for merchantable 
stem, branches and total tree volume, and (3) determining 
and documenting the wbd values and their variability for 
different tree species.

Materials and methods

Study sites

The study was conducted in Degaga–Gambo and Wondo 
Genet dry Afromontane forests in south-central Ethiopia 
(Fig. 1), situated along the eastern escarpment of the Great 
East African Rift Valley. The sites receive a biannual rain-
fall with the short rainy season between March and May 
and the main rainy season between July and September. 

Fig. 1  Map of study sites; DG 
Degaga–Gambo, WG Wondo 
Genet
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The surrounding landscapes are composed of mosaics of 
land use/land covers including plantations, woodlands, set-
tlements and water bodies. The sites are habitat for several 
wildlife species and source of several tributary rivers. The 
vegetation at both sites is remnant of previously dense dry 
Afromontane forests (Friis et al. 2010).

In Degaga–Gambo, the district authorities simply con-
serve the natural forests, while maintaining plantation for-
ests of exotic tree species for economic wood production 
purposes. During the forest inventory, we observed many 
stumps from illegal harvesting in the natural forests. Cur-
rently, there is an ongoing effort of transferring the natural 
forests into a PFM system as a means to reduce deforestation 
and forest degradation in the area. Degaga–Gambo forest 
extends from 38°45′ to 38°56′ E longitude and from 7°13′ 
to 7°33′ N latitude, with an area of 12,580 ha. The elevation 
ranges from about 2100 to 2700 m a.s.l. The mean annual 
rainfall and temperature are 1245 mm and 14.9 °C, respec-
tively. The soils are generally classified as Mollic Nitisols 
and Humic Umbrisols, respectively, at lower and upper alti-
tudes (Fritzsche et al. 2007). The Wondo Genet site is under 
the concession areas of Wondo Genet College of Forestry 
and Natural Resources, which gives the forest protection and 
guarding services against illegal logging and fire incidences. 
The natural forest has no management plan, and no silvicul-
tural interventions are carried out except some occasional 
planting activities. It extends from 38°37′ to 38°39′ E lon-
gitude and from 7°6′ to 7°7′ N latitude. The forest has an 
area of 390 ha with an altitudinal range from about 1850 to 
2400 m a.s.l, and the soils are mainly classified as Mollic 
Andosols (Erikson and Stern 1987). The mean annual rain-
fall and temperature are 1123 mm and 17.6 °C, respectively.

Data collection

Forest inventories

Forest inventories were carried out in 2018 to obtain infor-
mation required for the tree selection in the destructive 

sampling (e.g. Mauya et al. 2014). A systematic square 
grid was overlaid with the sampling frame (map of the 
respective sites) that resulted in 65 and 42 sample plots for 
Degaga–Gambo and Wondo Genet, respectively. Circular 
plots with a size of 1000 and 400  m2 were used for the inven-
tories in Degaga–Gambo and Wondo Genet, respectively. All 
trees in the plot with dbh ≥ 5 cm were identified by species 
and measured for dbh. Up to ten trees were then randomly 
sampled for each plot and measured for dsh (at 0.30 m above 
ground), ht, and bt (at breast height). Where there were only 
ten or less trees in the plot, all trees were measured for dbh, 
dsh, ht and bt. For buttressed trees, dsh was measured at the 
top of the buttress, and then dbh measured 0.3 m above this 
point if the buttress extended beyond 1 m (West 2009). Tree 
diameters were measured using diameter tape or calliper, 
while ht was measured using a Haglöf VL5 hypsometer. 
For the sample plots, 45 and 50 tree species were identi-
fied in Degaga–Gambo and Wondo Genet, respectively, 
while in total there were 71 tree species. The maximum dbh 
encountered was 270 cm for Degaga–Gambo and 197 cm 
for Wondo Genet. A total of 1345 sample trees representing 
60 tree species were measured and used for modelling of ht, 
dbh and bt. The mean (and range) values of these trees were 
24.7 cm (5.0–270.0 cm), 20.9 cm (5.0–270.0 cm), 10.9 m 
(2.1–69.4 m) and 9.9 mm (2.0–50.0 mm) for dsh, dbh, ht 
and bt, respectively.

Selection of trees for destructive sampling

Based on the forest inventory data, a total of 63 trees rep-
resenting 30 species (11 unique from each site and eight 
common from both) were selected for destructive sampling 
(Tables 1, 8 in Appendix). The dominant tree species, that 
constituted about 85% of the total basal area, were first 
included into the sample proportional to their basal area. The 
remaining trees were selected randomly among all species, 
meaning that 87% of the total basal area was represented in 
the dataset. An effort was made to proportionally select the 
trees throughout the 11 diameter classes considered from 5 

Table 1  Descriptive summary 
of destructively sampled trees

SD = standard deviation
a Vms for trees with dbh ≥ 15 cm only, n = 23, 22 and 45 for Degaga–Gambo, Wondo Genet and both sites, 
respectively

Both sites (n = 63) Degaga–Gambo (n = 32) Wondo Genet (n = 31)

Mean Range SD Mean Range SD Mean Range SD

dbh (cm) 37.8 7.0–106.5 29.9 37.4 7.0–105.5 30.0 38.3 8.0–106.5 30.3
ht (m) 17.9 5.2–38.8 9.1 17.6 5.4–36.0 8.9 18.2 5.2–38.8 9.4
crw (m) 8.4 2.4–23.9 5.0 7.9 2.3–20.0 4.7 8.9 2.4–23.9 5.3
Vtot  (m3) 3.066 0.014–22.537 5.230 2.897 0.014–17.252 4.918 3.242 0.031–22.537 5.611
Vms  (m3)a 2.687 0.074–11.865 3.559 2.683 0.076–11.865 3.671 2.691 0.074–11.579 3.525
Vbr  (m3) 1.147 0.014–10.958 2.140 0.969 0.014–6.113 1.654 1.332 0.031–10.958 2.564
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to ≥ 105 cm (i.e. 5–15, 15–25, …, ≥ 105), as this will help 
to ensure better and more stable models (Bollandsås et al. 
2016). In addition, we tried to have a fair representation 
of large trees (10 trees with dbh > 75 cm) to try to avoid 
extrapolation in model applications (Bollandsås et al. 2016). 
Moreover, during destructive sampling, efforts were made in 
the selection to represent the altitudinal variation and spatial 
coverage over both sites to capture as much variability as 
possible in tree properties.

Before felling, we measured dbh over bark with a diam-
eter tape or a calliper, depending on the size and shape of 
the stem. Tree height was measured with Haglöf VL5 hyp-
someter. In addition, mean crown width (crw) was recorded 
by taking two measurements using a measuring tape, one for 
maximum and one for minimum crown width. At the posi-
tion of each tree, elevation (m), slope (%) and aspect (N, E, 
S, W) were measured, and basal area  (m2  ha−1) was deter-
mined by means of relascope. Our hypotheses regarding wbd 
were that slope and basal area positively affect wbd because 
of slower growth, while elevation negatively affects wbd 
because precipitation increases with elevation and hence 
growth will be faster. In contrast, north and south facing 
aspects affect wbd positively and negatively, respectively, 
because of slower and faster growth.

Destructive sampling procedures

The selected trees were felled at stump height (0.3 m) using 
a chainsaw and each tree was sorted into merchantable stem, 
branches, and leaves and twigs sections (Table 1). The main 
stem up to the minimum useable top diameter (≥ 10 cm) 
was considered as merchantable stem. This cut off point was 
applied since it has been practiced as a rule of thumb at the 
sawmill of Wondo Genet College of Forestry and Natural 
Resources. However, trees with dbh < 15 cm were included 
in the branches section since they are considered to have 
insignificant merchantable value. As a result, the merchanta-
ble stem volume analysis was based on 45 out of the 63 trees 
(Table 1). The branches section included the top log with 
diameter < 10 cm and all branches with diameter ≥ 2 cm. 
Twigs with diameter < 2 cm were set aside together with 
leaves for a separate biomass study. The stem was cross-
cut into shorter logs (from 0.5 to 2.5 m) to facilitate the 
mid diameter and length measurement as well as to reduce 
taper effects. Similarly, branches were cut into pieces mostly 
shorter than 2 m and measured for length and mid diameter. 
The volume of each log was determined by multiplying the 
middle cross-sectional area of the log by its length (e.g. Bol-
landsås et al. 2016). Tree merchantable stem volume (Vms) 
and branches volume (Vbr) were obtained by summing up 
volumes for all logs in each section, respectively. Total tree 
volume (Vtot) was determined by summarizing merchantable 
stem and branches volumes (Table 1; Fig. 3 in appendix).

Sub‑samples for wood basic density and laboratory work

For determining wbd, Chave et al. (2006) recommended col-
lecting wood sub-samples from all parts of the tree. Accord-
ingly, for each tree, we collected three wood discs from the 
stem (i.e. one from breast height position, and one from 
each of the middle and upper parts) and three wood discs 
from the branches (one disc at a random point from a small, 
medium and large branch, respectively). The sizes of most 
discs were about 3–4 cm in length. For smaller trees with 
few and small-sized branches, only one sub-sample was col-
lected for the branch section. For larger trees, where it was 
not practical to take the whole wood disc, sub-samples were 
taken in such a way that they represent both the sapwood 
and heartwood sections (Williamson and Wiemann 2010). 
In total, we collected 364 sub-samples of wood, which cor-
respond to an average of 5.8 sub-samples per tree. All sub-
samples were put in an airtight plastic bag and brought to 
a laboratory, where green volumes were determined by the 
water displacement method after peeling off the bark. Then 
the sub-samples were oven dried at a temperature of about 
103 °C until a constant mass was guaranteed by checking 
through recurrent measurements with a sensitive digital bal-
ance. Often this was attained within 48 or 72 h, depending 
on the size of the sub-sample. Finally, wbd was determined 
as the ratio of dry mass (g) to the green volume  (cm3) for 
each sub-sample.

Data analyses

All data analyses were done with the R software (R Core 
Team 2019). The ‘nlstools’ package (Baty et al. 2015) in 
the R software was used for non-linear regression. Model 
fitting and performance evaluation were carried out based 
on two different datasets. To develop the ht–dbh, dbh–dsh 
and bt–dbh relationships, we used the sample trees’ data 
(n = 1345) from the inventories. To develop models for Vtot, 
Vms and Vbr, and to document wbd values and their variabil-
ity, we used the destructively sampled trees (n = 63).

For establishing the ht–dbh relationship, five different 
non-linear models were tested. The data were first divided 
randomly into equal sized training and test datasets. Models 
were fitted to the training dataset, then applied on the test 
dataset for evaluation. Their performances were assessed 
using root mean squared error (RMSE), mean prediction 
error (MPE) and pseudo-R2 (Eq. 7–11), where generally the 
smallest (close to zero) RMSE and MPE values and largest 
pseudo-R2 values (close to 1), indicating a better model fit 
(James et al. 2013). The best performing model was finally 
recalibrated to the full dataset. The dbh–dsh and bt–dbh 
models were developed in a similar way as ht–dbh model.

For volume modelling, the data were first visu-
ally explored by plotting volume against the potential 
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explanatory variables (Fig. 3 in appendix) to examine their 
functional relationships. Several textbooks suggest the use of 
dbh and ht together or separately as independent variables in 
volume modelling (e.g. West 2009; Kershaw et al. 2017). We 
were not able to find volume models developed for natural 
forests in Ethiopia, hence potential models for further test-
ing were picked from the general literature (Schumacher and 
Hall 1933; van Laar and Akça 2007; West 2009) and from 
previous research on tree volume in natural forests in Tan-
zania (Mauya et al. 2014; Mugasha et al. 2016) and Malawi 
(Kachamba and Eid 2016). In addition, we tested two models 
for prediction of Vbr, where crw was included as independent 
variable. The following six models were tested:

where a , b , and c are model parameters.
Weighted ordinary least square regression was applied 

for Model 1 and non-linear least square regression for the 
remaining. Weights were applied to account for heterosce-
dasticity in the data, i.e. non-constant variance of the residu-
als with increasing values of the response variable. This is 
a common phenomenon that often occurs when modelling 
biological entities like trees (van Laar and Akça 2007; Zeng 
and Tang 2011). The error variances were inversely propor-
tional to the  dbh2, and hence a weight of 1/(dbhw)2 was used, 
where w is the weighting factor. The initial value for w was 
determined as explained in Picard et al. (2012), and finally 
after an iterative procedure the value which resulted in the 
smallest possible prediction error was selected as weight-
ing factor. In addition, following recommendations by Kelly 
and Beltz (1987) for models with dbh and ht as independent 
variables, a weighting factor of 1/(dbhw × ht)2 was tested, 
and the obtained prediction error was compared with the 
prediction error of 1/(dbhw)2. Eventually, the one with the 
smallest prediction error was used for weighting.

The basic requirement when testing the models was that 
all parameter estimates should be significantly different from 
zero. For further evaluation of the model performances, a 
leave one out cross-validation approach was applied (James 

(1)Vtot,ms,br = a + b × (dbh)2,

(2)Vtot,ms,br = a × (dbh)b,

(3)Vtot,ms,br = a ×
(

dbh2 × ht
)b
,

(4)Vtot,ms,br = a × (dbh)b × (ht)c,

(5)Vbr = a ×
(

dbh2 × crw
)b
,

(6)Vbr = a × (dbh)b × (crw)c,

et al. 2013), where one observation was put aside as test data 
and the model fitted to all remaining observations (i.e. n − 1, 
training data) and then prediction was done on the test data 
(n = 1) at a time. The procedure was repeated n times until 
all observations in the data were tested. The residuals, differ-
ence between the observed and predicted, were then used to 
calculate the performance indicators RMSE, RMSE%, MPE, 
MPE% and pseudo-R2 as shown in Eq. 7–11, respectively. 
Akaike information criterion (AIC) was also computed.

where Yi and Ŷi are observed and predicted ht, dbh, bt 
or volume (either total, merchantable stem or branch) of 
observation i respectively; Y  is mean observed ht, dbh, bt or 
volume (either total, merchantable or branch); SSR is sum 
of squared residuals; and CSST is corrected total sum of 
squares.

We also investigated consequences of using form factors 
in determining total volume by means of Eq. 12;

where g is the basal area of a tree calculated using dbh; 
f0.5, fmean and fpred are different form factors. We first applied 
the frequently used form factor of 0.5 (f0.5) and the mean 
form factor observed in our data (fmean). The fmean is the aver-
age of all observed form factors calculated as the ratio of 
observed total volume and the volume of a cylinder with 
a diameter dbh and length of ht. In addition, we wanted to 
test the application of a predicted form factor (fpred) for each 
tree by fitting a model based on dbh and ht (Tenzin et al. 
2016) to the observed form factors in our data. However, this 
approach failed because of insignificant parameter estimates 
in the model. Finally, since no previously developed relevant 
volume models exist for Ethiopia, the performance of some 
previously developed models for natural forests elsewhere 
in east-Africa (Mauya et al. 2014; Kachamba and Eid 2016; 
Mugasha et al. 2016) were tested on our dataset.

(7)RMSE =

�

∑n

i=1
(Yi − Ŷi)

2

n
,

(8)RMSE (% ) =

(

RMSE

Y

)

× 100,

(9)MPE =

∑n

i=1

�

Yi − Ŷi
�

n
,

(10)MPE (% ) =

(

MPE

Y

)

× 100,

(11)pseudo − R2 = 1 −
(

SSR

CSST

)

,

(12)Vtot = g × ht × f0.5, mean, pred,



1417Trees (2020) 34:1411–1426 

1 3

The wbd values obtained from stem and branch sub-sam-
ples were averaged to get mean stem and branch wbd. These 
mean values were further aggregated by weighting them by 
their respective volumes to obtain a volume-weighted wbd 
at tree and species level. The wbd data were organized and 
summarized using descriptive statistics. In addition, analy-
sis of variance was carried out to assess the presence of 
significant variations in wbd among the tree species and 
between the sites. Differences among stem sections (breast 
height, middle and upper stem positions) and branch sizes 
(big, mid and small branch) for wbd were also tested by 
means of analysis of variance. Furthermore, pair-wise t tests 
were applied to determine if there were significant wbd dif-
ferences between stems, branches, values at breast height 
and volume-weighted means. As wbd is expected to vary 
depending on growing conditions, we fitted a linear regres-
sion to explore effects of elevation (m), slope (%), aspect (N, 
E, S, W) and basal area  (m2  ha−1) on wbd variations.

Results

The model parameters and model performance indicators 
for the relationships between ht–dbh, dbh–dsh and bt–dbh 
are shown in Table 2. The ht–dbh relationship was relatively 
strong (pseudo-R2 = 0.72). A very strong dbh–dsh relation-
ship was found (pseudo-R2 = 0.98) while the bt–dbh rela-
tionship was weaker. Generally, none of the MPEs for the 
models were significantly different from zero.

The model parameters and performance indicators for the 
general total (GT), merchantable stem (GMS) and branch 
(GB) volume models are shown in Table 3. The pseudo-R2 
of the total volume and merchantable stem volume mod-
els varied between 0.93–0.95 and 0.96–0.98, respectively. 
Moreover, none of these models had MPEs significantly 
different from zero and all had significant model parame-
ters. For total volume, Model GT2 performed best (pseudo-
R2 = 0.95, RMSE = 37.4%) for the models with only dbh 
as independent variable, while Model GT3 performed best 

Table 2  Model parameters and performance indicators for different tree variable models

A RMSE and MPE in cm, m and mm for dbh, ht and bt, respectively; n = 1345; all parameters p < 0.001

Tree variable Model Parameters Pseudo-R2 RMSE MPE

a b c (A) (%) (A) (%)

ht ht = 1.3 + a × [1 − exp 
(− b × (dbh)c)]

41.498221 0.023370 0.849478 0.72 3.96 36.4 − 0.01 − 0.1

dbh dbh = a × (dsh)b 0.6720320 1.062245 0.98 3.36 16.1 0.14 0.7
bt bt = a × (dbh)b 2.4743200 0.489150 0.42 4.90 49.7 0.00 0.0

Table 3  Model parameters and performance indicators for general total, merchantable stem and branch volume models

Best performed models shown in bold
*Non-significant parameter (p > 0.05); 1p < 0.05; 2p < 0.01; all other parameters p < 0.001

Tree section Model Parameters Pseudo-R2 RMSE MPE AIC

a b c (m3) (%) (m3) (%)

Total volume (n = 63) GT1 − 0.1591000 0.0014030 0.93 1.326 43.2 − 0.0027 − 0.1 199
GT2 0.0001228 2.5500000 0.95 1.146 37.4 − 0.0004 − 0.0 187
GT3 0.0000605 0.9789000 0.95 1.156 37.7 − 0.0009 − 0.0 193
GT4 0.0000891 2.4090000 0.2795000a 0.95 1.158 37.8 0.0053 0.2 187

Merchantable stem volume (n = 45) GMS1 − 0.2715391 0.0009319 0.96 0.675 25.2 − 0.0024 − 0.1 86
GMS2 0.00009542 2.5020000 0.98 0.518 19.3 0.0017 0.1 67
GMS3 0.00003691 0.9811000 0.97 0.642 23.9 − 0.0006 − 0.0 85
GMS4 0.00005962 2.2480000 0.47010002 0.98 0.557 20.7 0.0008 0.0 68

Branch volume (n = 63) GB1 − 0.0036570* 0.0004964 0.78 0.997 86.9 0.0036 0.3 179
GB2 0.00006631 2.4660000 0.74 1.079 94.1 0.0019 0.2 178
GB3 0.00004211 0.9227000 0.74 1.085 94.5 0.0721 6.3 177
GB4 0.0000771* 2.7130000 − 0.3671000* 0.72 1.124 98.0 0.0054 0.5 179
GB5 0.00004231 0.9829000 0.88 0.752 65.5 − 0.0056 − 0.5 129
GB6 0.00007731 1.4980000 1.5070000 0.89 0.714 62.2 0.0020 0.2 120
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(pseudo-R2 = 0.95, RMSE = 37.7%) for the models with both 
dbh and ht as independent variables. Likewise, for merchant-
able stem volume, Model GMS2 and GMS4 with dbh only 
and with dbh and ht independent variables, respectively, 
were performing best regarding pseudo-R2 and RMSE. In 
general, the addition of ht into the total and merchantable 
stem volume models did not improve the performance indi-
cators. The branch volume models in general had larger 
RMSEs compared to the total and merchantable stem vol-
ume models. For the models with dbh only as independent 
variable, Model GB2 was found to perform best (pseudo-
R2 = 0.74, and RMSE = 94.1%). Models with dbh and ht pre-
dictor variables either had poorer performance (Model GB3) 
or insignificant parameter estimates (Model GB4). Inclusion 
of crw instead of ht reduced the RMSEs to some extent. 
For the models with dbh and crw as independent variables, 
Model GB6 was found to perform best (pseudo-R2 = 0.89, 
RMSE = 62.2%). None of the branch volume models had 
MPEs significantly different from zero.

Site-specific total volume models for Degaga–Gambo 
(DT) and Wondo Genet (WT) were also developed (Table 4). 

As for the general total volume models, Model DT2 and 
WT2 were found to be the best among models with dbh 
only in both sites Degaga–Gambo (pseudo-R2 = 0.99, 
RMSE = 19.3%) and Wondo Genet (pseudo-R2 = 0.91, 
RMSE = 51.4%) respectively. Inclusion of ht into the models 
improved performance marginally for Degaga–Gambo, but 
not for Wondo Genet. All the models for Degaga–Gambo 
performed better than the corresponding models in Wondo 
Genet. We also tested the general Model GT2 on the specific 
data from the two sites, but MPE was not significantly dif-
ferent from zero for any of them.

Table 5 shows the results when testing the use of form 
factor approach and the previously developed models to 
predict total volume for our data. With f0.5, total volume is 
significantly (p > 0.05) underpredicted (16.1%), while when 
applying fmean (0.64), volume tended to be overpredicted, 
although not significantly. Generally, the previously devel-
oped models over- or underpredict volume, although the 
difference between observed and predicted volume is not 
significantly different from zero when applying the mod-
els developed by Mauya et al. (2014) and Mugasha et al. 

Table 4  Model parameters and performance indicators for site-specific total volume models

Best performed models shown in bold
*Non-significant parameter (p > 0.05); 1p < 0.05; 2p < 0.01; all other parameters p < 0.001

Site Model Parameters Pseudo-R2 RMSE MPE AIC

a b c (m3) (%) (m3) (%)

Degaga–Gambo (n = 32) DT1 − 0.15170002 0.0013560 0.97 0.897 31.0 − 0.0002 − 0.1 70
DT2 0.0001306 2.5280000 0.99 0.558 19.3 − 0.0003 − 0.0 51
DT3 0.00004112 1.0080000 0.99 0.587 20.3 − 0.0001 − 0.0 51
DT4 0.0000744 2.1840000 0.61440002 0.99 0.519 17.9 0.0001 0.0 46

Wondo Genet (n = 31) WT1 − 0.18660001 0.0014720 0.90 1.773 54.7 − 0.0011 − 0.0 115
WT2 0.0001190 2.5650000 0.91 1.665 51.4 0.0005 0.0 112
WT3 0.00006082 0.9811000 0.91 1.680 51.8 0.0042 0.1 115
WT4 0.00008802 2.5520000 0.1071000* 0.89 1.846 57.0 0.0027 0.1 113

Table 5  Testing the use of form 
factor and previously developed 
models for predicting total tree 
volume from our data

n = 63; observed total volume is 3.066  m3

*p < 0.05, **p < 0.01, ***p < 0.001

Model type Predicted 
volume  (m3)

RMSE MPE

(m3) (%) (m3) (%)

f0.5 2.574 1.423 46.4 0.493** 16.1
fmean (0.64) 3.296 1.169 38.1 − 0.229 − 7.5
Mauya et al. (2014): dbh only 2.727 1.264 41.2 0.339* 11.1
Kachamba and Eid (2016): dbh only 2.675 1.655 54.0 0.391 12.8
Mugasha et al. (2016): dbh only 2.318 2.214 72.2 0.749** 24.4
Mauya et al. (2014): dbh and ht 3.081 1.020 33.3 − 0.015 − 0.5
Kachamba and Eid (2016): dbh and ht 4.103 1.957 63.8 − 1.036*** − 33.8
Mugasha et al. (2016): dbh and ht 2.870 1.073 35.0 0.196 6.4
Current study (GT2) 3.030 1.021 33.3 0.006 0.2
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(2016) with both dbh and ht as independent variables. Fig-
ure 2 illustrates how all the models developed by Mauya 
et al. (2014), Kachamba and Eid (2016) and Mugasha et al. 
(2016), using only dbh as independent variable underpre-
dicted volume consistently for medium and larger dbh sizes 
as compared to the corresponding model developed in the 
present study (Model GT2, Table 3).

Volume-weighted wbd values for 30 different tree species 
are documented in Table 6. The species-wise overall volume-
weighted mean (n = 30 species) wbd was 0.588 g cm−3 and 
ranged between 0.426 and 0.979 g cm−3. At individual tree 
level (n = 63), the overall volume-weighted mean wbd was 
0.553 g cm−3 and ranged between 0.380 and 0.979 g cm−3. 
Among the species, T. nobilis, D. angustifolia and O. cap-
ensis were found to be the top three with the largest wbd 
values of 0.979, 0.816, and 0.779 g cm−3, respectively; while 
A. falcatus, P. viridiflorum and V. amygdalina were the three 
species with the smallest wbd values with 0.426, 0.441 and 
0.457 g cm−3, respectively.

Analysis of variance revealed that wbd values were sig-
nificantly different (p < 0.001) among the tree species, while 
they were not significantly different (p > 0.05) between sites. 
In addition, analyses showed that there were no significant 
differences in wbd among the three samples collected from 
the stem sections (at breast height, at midpoint and at upper 
part) or among the three branch sizes (small, medium and 
large branches). The species-wise overall mean wbd for sam-
ples from stem, branch, and breast height position were also 
determined, and found to be 0.590, 0.589 and 0.576 g cm−3, 
respectively (Table 8 in Appendix); and analyses of variance 

revealed no significant differences between these means 
(p > 0.05).

The outputs from regression analysis of wbd against vari-
ables describing growing conditions revealed non-significant 
parameter estimates for all the tested variables (Table 7) 
and a very small value of coefficient of determination. Still, 
when considering the signs of the parameter estimates, wbd 
was negatively influenced by elevation and basal area but 
positively influenced by slope. Concerning aspect, trees fac-
ing to the south tend to have higher wbd than the trees facing 
north.

Discussion

Models for tree biometric properties

The present study reported multi-species ht–dbh, dbh–dsh 
and bt–dbh models (Table 2), based on 1345 trees and 60 
tree species, representing the study of dry Afromontane for-
ests. Our ht–dbh model explained about 72% of the variation 
in ht, which is similar to models developed for four different 
natural forest types in Tanzania (Mugasha et al. 2013). Tree 
height measurement is challenging and susceptible to errors 
in tropical forests with complex tree architecture. Thus, the 
presence of local ht–dbh models may play a considerable 
role in reducing measurement errors (Larjavaara and Muller-
Landau 2013; Mugasha et al. 2019).

The dbh–dsh model explained 98% of the variance. Simi-
larly, other studies have reported strong dbh–dsh relationship 

Fig. 2  Relationship of tree 
diameter against predicted total 
volume of selected previous 
models and the current study 
(Model GT2). Vertical lines 
indicate the maximum dbh 
used in the studies by Mauya 
et al. (2014), the current study, 
and Kachamba and Eid (2016), 
respectively
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(Corral-Rivas et al. 2007; Özçelik et al. 2010). This indi-
cates that the model is important for volume or biomass 
quantification, particularly where there is only dsh data. 
More importantly, the model is helpful to estimate the mag-
nitude of forest degradation and carbon loss from remain-
ing stumps, which is presently a challenge in REDD + MRV 
practices (UN-REDD 2017).

The bt–dbh model explained only 42% of the variation in 
bt. The model has a larger RMSE (49%) than some similar 
previously developed models, e.g. by Zeibig-Kichas et al. 
(2016) in the USA (RMSE of about 25%), but the MPE 
was not significantly different from zero, indicating that the 
model has an appropriate behaviour. Although some uncer-
tainty will be involved in application due to the large RMSE, 
the model can be used for predicting bt at breast height, 
which may be useful in itself. Based on the bt predicted 
from the model, it is also possible indirectly to quantify tree 
properties relevant to forest management, such as volume of 
solid wood and volume of bark (van Laar and Akça 2007; 
Kershaw et al. 2017).

Tree and forest volume may be used for planning and 
monitoring of forest management practices (West 2009). 
Merchantable stem volume is needed to evaluate trees from a 
timber production perspective, but may also be useful when 
determining compensations for timber loss due to several 

Table 6  Mean and range of 
volume-weighted wbd values by 
tree species

Scientific name No. of sample 
trees

wbd (g  cm−3)

Mean Range

Acokanthera schimperi (A. DC.) Schweinf. 1 0.621
Afrocarpus falcatus (Thumb.) Mirb. 9 0.426 0.401–0.480
Albizia gummifera (J.F.Gmel.) C. A. Sm. 3 0.534 0.499–0.598
Allophylus abyssinicus Radlk. 2 0.509 0.509–0.515
Apodytes dimidiata E. Mey ex Am. 1 0.556
Bersama abyssinica Fresen. 1 0.576
Canthium oligocarpum Hiern 1 0.473
Cassipourea malosana Alston 2 0.663 0.605–0.683
Celtis africana Burm. F. 5 0.631 0.615–0.658
Combretum molle R. Br. ex. G. Don 1 0.701
Croton macrostachyus Hochst. ex. Delile. 5 0.511 0.430–0.521
Dodonaea angustifolia L. f. 1 0.816
Ekebergia capensis Sparm. 1 0.532
Ficus thonningii Blume 1 0.471
Galiniera coffeoides Delile 1 0.563
Maesa lanceolata Forssk. 3 0.483 0.457–0.536
Maytenus arbutifolia (Hochst. ex. A. Rich) R. Wilczek 2 0.615 0.615–0.622
Millettia ferruginea Hochst 4 0.550 0.380–0.554
Nuxia congesta R. Br. 2 0.537 0.498–0.603
Olea capensis L. 1 0.779
Olea welwitschii (Knobl.) Gilg. & Schellenb. 1 0.700
Olinia rochetiana A. Juss. 1 0.544
Osyris quadripartita Salzam. ex Decne. 1 0.690
Pittosporum viridiflorum Sims 1 0.441
Pouteria adolfi-friedericii (Engl.) Baehni 4 0.460 0.458–0.567
Prunus africana (Hook.f.) Kalkman 3 0.609 0.608–0.615
Syzygium guineense (Willd.) DC. 2 0.580 0.579–0.590
Teclea nobilis Delile 1 0.979
Vepris dainellii (Pic. Serm.) Kokwaro 1 0.631
Vernonia amygdalina Del 1 0.457

Table 7  Parameter estimates and p values from linear regression 
analysis of wbd as a dependent variable and some growing factors as 
independent variables

Parameters p value

Intercept 0.762300 < 0.0000
Elevation (m) − 0.000103 0.1950
Slope (%) 0.000317 0.7960
Basal area  (m2  ha−1) − 0.000262 0.9030
Aspect (south) 0.009509 0.7730
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reasons such as road construction (Melemez 2012). Branch 
volume estimates, particularly for big trees that have been 
used for timber production, maybe useful to estimate fuel-
wood quantities. Thus, our models remain crucial for the 
aspired sustainable utilization of the natural forests in Ethio-
pia (Ayele et al. 2018).

Generally, the total tree volume models explained about 
93—95% of the variation in volume (Table 3). Model GT2, 
with dbh only as independent variable performed better than 
the other models, i.e. Model GT3 with dbh and ht as inde-
pendent variables revealed a marginally larger RMSE than 
Model GT2. The same applies to the merchantable stem 
volume models, i.e. Model GMS2 with dbh only and Model 
GMS4 with both dbh and ht, where the differences in RMSE 
again were marginal. The fact that inclusion of ht in the 
models revealed none or marginal improvements, conforms 
with studies in natural forest elsewhere in eastern Africa 
(e.g. Mauya et al. 2014; Mugasha et al. 2016). The branch 
volume models generally exhibited poorer performance than 
the total and merchantable stem volume models. Among the 
six branch volume models, Model GB2 with dbh and Model 
GB6 with dbh and crw had significant model parameters and 
the smallest MPE with pseudo-R2 of 0.74 and 0.89, respec-
tively. The relatively poor performance of the branch volume 
models might be attributed to the different branching hab-
its of the different species. Similar findings regarding poor 
performance of branch volume models are also previously 
reported (Mauya et al. 2014; Kachamba and Eid 2016).

We also developed site-specific total volume models for 
Degaga–Gambo and Wondo Genet (Table 4). Site-specific 
models usually provide more accurate site-specific results 
than general models developed with data from multiple 
sites (Penman et al. 2003). Accordingly, we recommend the 
site-specific models to be applied for their respective sites. 
Furthermore, we recommend to use Models DT2 and DT4 
for Degaga–Gambo and Models WT2 and WT3 for Wondo 
Genet with dbh only and with dbh and ht entries, respec-
tively, depending on the availability of data.

No previous volume models have been developed in Ethi-
opia, neither for dry Afromontane forests in particular, nor in 
general for natural forests. When applying the most relevant 
volume models from elsewhere in eastern Africa (Mauya 
et al. 2014; Kachamba and Eid 2016; Mugasha et al. 2016) 
on our data, the results showed that the MPEs in many cases 
were quite large (Table 5; Fig. 2). This is not surprising since 
these models were applied outside the ecological range they 
are developed for. Form factor f0.5, along with dbh and ht, is 
often used in Ethiopia to determine tree volume (e.g. Sisay 
et al. 2017). Our result on the use of f0.5 and fmean showed 
that both form factors produced large MPEs, although the 
use of fmean performed relatively better (Table 5). A study 
in Tanzania (Masota et al. 2014) conforms with our results, 
while a study in India (Adekunle et al. 2013) found volume 

estimates using mean form factors similar to estimates using 
volume models. However, in our case, the use of form fac-
tors should be avoided since the models provide much better 
results.

Since no other appropriate options exist, we recommend 
the general models developed in this study also to be applied 
for dry Afromontane forests elsewhere in the country. The 
fact that the test of the general Model GT2 on data from the 
two specific sites did not reveal significant MPEs for any of 
the sites, is also indicating that this could be a viable option. 
Still, however, it is important to carefully evaluate species 
composition, and growing conditions related to altitude, 
rainfall, temperature and edaphic factors before utilizing our 
models. We also recommend applying Models GT2, GMS2 
and GB2, based on only dbh as independent variable, in 
volume predictions for total, merchantable stem and branch, 
respectively. This will provide reasonably accurate predic-
tions, and since these models do not require ht data, the 
inventory costs will be reduced. However, it is important 
to note that for branch volume, more accurate predictions 
can be made using Model GB6 if crw data are available 
besides dbh.

Wood basic density data

The wbd data of this study (Table 6) together with data from 
other studies (e.g. Ubuy et al. 2018a; Tesfaye et al. 2019) 
will help to develop a national wbd database for Ethiopia. 
Wood basic density data for 420 tree species have previ-
ously been compiled in Ethiopia’s FRL report (UN-REDD 
2017), but only a few of the wbd values were based on data 
from Ethiopia. The remaining was obtained mainly from 
the GWD database. In addition, the locally determined wbd 
values in the national database were determined at air dry 
basis (Desalegn et al. 2012), which means that some distor-
tion may occur when converting them into oven dry basis 
(Vieilledent et al. 2018). Among the locally determined 
wbd values in the national database, we noted that for the 
12 species also found in our study sites, they all had larger 
values as compared to our values. We have also recognized 
that 11 of the species in our list were not included in the 
GWD database (Chave et al. 2009; Zanne et al. 2009). Since 
our procedure in wbd determination is congruent with the 
requirement stated by Chave et al. (2006) and Williamson 
and Wiemann (2010), there is a possibility to incorporate the 
new Ethiopian wbd values into the GWD database.

The wbd values in our study varied significantly among 
species. The same was reported in some previous studies 
in Ethiopia (Ubuy et al. 2018a; Tesfaye et al. 2019). It is 
so because all species have inherent genetic makeup that 
governs its characteristics (Chave et al. 2006). Interestingly, 
there was no significant difference between our two sites in 
terms of mean wbd; perhaps due to the fact that they both 
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belong to the same forest type. This is in fact a good indica-
tion that the wbd values also can be applied elsewhere in a 
similar forest type. This can be further consolidated by com-
paring wbd of two species A. abyssinicus (0.510 g cm−3) and 
O. rochetiana (0.560 g cm−3) from Tesfaye et al. (2019), a 
study conducted in a dry Afromontane forest of central Ethi-
opia, with our findings that happened to be quite similar (i.e. 
0.509 and 0.544 g cm−3, respectively). On the other hand, 
when comparing the wbd of seven common species from 
Ubuy et al. (2018a), the values were generally larger than 
ours and the differences ranged from 0.001 to 0.218 g cm−3. 
Although some studies (e.g. Chave et al. 2009; Tesfaye et al. 
2019) stated that wbd varies along the stem, we did not find 
any significant wbd differences along the stems, or among 
different branch sizes. Similarly, the overall stem and branch 
wbd values were not significantly different. This finding was 
contrary to some studies (e.g. Okai et al. 2003), while being 
in agreement with others (e.g. Swenson and Enquist 2008).

Many previous studies have found that wbd is influenced 
by growing conditions (e.g. Muller-Landau 2004; Ubuy et al. 
2018a). In our study, no significant parameter estimates were 
found when we tested a few variables describing growing con-
ditions by means of regression analysis (Table 7). Still, the signs 
of the parameter estimates might provide an indication of the 
effects. Elevation, for example, influenced wbd negatively. This 
confirms our hypothesis that both precipitation and growth will 
increase with elevation, and accordingly wbd will be smaller. 
Such a result is also in agreement with previous findings (Chave 
et al. 2006). Similarly, the effect of slope confirms our hypoth-
esis, because increasing slope inclination might be associated 
with moisture stress, as water drains quickly, leading to slow 
growth and higher wbd. A similar finding was reported by Barij 
et al. (2007). Furthermore, we hypothesized that as basal area 
increases, the competition among trees becomes more intense, 
leading to slower growth and higher wbd. The results from the 
analyses, however, showed an opposite effect. Similarly, the 
result derived from the effect of aspect was the opposite of our 
hypothesis since trees on south facing slopes tended to have 
higher wbd than trees on north facing slopes. This could be 
due to more moisture stress due to higher evapotranspiration 
caused by longer exposure to sunlight for south facing slopes, 
implying slow growth, but denser wood. The work by Diaconu 
et al. (2016) also showed that south-west facing trees tend to 
have larger wbd.

Conclusions

This study provided the first comprehensive biometric data-
sets and models that can be used when working towards sus-
tainable forest management including REDD + MRV prac-
tices in the dry Afromontane forests of south-central Ethiopia. 
Applying the ht–dbh model may have dual advantages of 

obtaining accurate ht estimates and of reducing costs in ht 
measurements while the dbh–dsh model may significantly 
contribute to estimation of biomass loss from forest degrada-
tion. The volume models are the first ones developed based 
on destructive sampling for natural forests in Ethiopia and 
facilitate a significant step forward for the management. The 
models may also be applied to dry Afromontane forest areas 
outside the present study sites. It is, however, important to 
carefully evaluate the growing conditions in such areas before 
model application. The documented wbd data were based on 
a robust sampling scheme that represented the whole tree. 
The absence of significant differences between the two sites 
in terms of wbd and comparisons with findings from other 
studies indicate that the wbd data are applicable to other dry 
Afromontane forests as well. The wbd data from the present 
study will be useful for building up a national wbd database 
and may potentially also be included in the GWD database.
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Appendix

See Fig. 3, Table 8.

Fig. 3  Scatter plot of total 
volume against dbh (left) and 
ht (right) panel for both study 
sites, Degaga–Gambo and 
Wondo Genet (from top to 
bottom)
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