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Abstract
Tissue culture experiments were performed to investigate the impacts of silicon dioxide nanoparticles  (SiO2 NPs) on the 
improvement of plant growth and development in a bamboo species (Pleioblastus pygmaeus) under an experimentally 
controlled condition contaminated with phytotoxic levels of lead (Pb). Fifteen treatments were administered in the primary 
trial consisting of 50 µM, 250 µM, 500 µM, 1000 µM, or 1500 µM  PbSO4 without and with 100 µM or 500 µM  SiO2 NPs. 
The results showed that antioxidant enzyme activity first increased at low levels of Pb and then decreased with increasing 
concentrations of Pb. The addition of  SiO2 NPs increased the capacity of the antioxidant enzymes superoxide dismutase 
(SOD), catalase (CAT), glutathione reductase (GR) and phenylalanine ammonia-lyase (PAL) in plants under Pb stress. 
Additionally, our findings indicated that  SiO2 NPs may protect the bamboo plant plasma membrane and preserve the integ-
rity of cells against Pb-induced oxidative stress by reducing the contents of hydrogen peroxide  (H2O2) and soluble protein 
(SP), and polyphenol oxidase (PPO) activity. Regarding impacts on indexes of plant photosynthesis, the results revealed 
that  SiO2 NPs were able to regulate plant growth by increasing chlorophyll and carotenoid contents, which led to increased 
plant biomass and plant dry weight under Pb toxicity. We conclude that  SiO2 NPs improve plant growth (plant biomass) by 
increasing antioxidant enzyme capacity in bamboo under Pb stress. Our results also revealed that 500 µM  SiO2 NPs was 
much more effective than 100 µM  SiO2 NPs at maintaining plant growth under Pb toxicity.

Keywords Silicon dioxide nanoparticles  (SiO2 NPs) · Lead (Pb) · Bamboo · Antioxidant capacity · Photosynthesis indexes · 
Plant biomass

Introduction

Among heavy metals, Pb is one of the most hazardous 
metals in air and soil and poses a major threat to human 
health and life (Krzesłowska et al. 2016; Li et al. 2016). 
The root surfaces of plants are one of the main absorption 
sites of lead, which can bind Pb to carboxylic acid forms 
of mucilage uronic acids. (Peralta-Videa et al. 2009). An 
excess of Pb in plants stimulates ROS production in the cell 
wall, which disrupts cell processes such as cell signaling 
and cell adhesion by affecting ion balance and superseding 
vital ions in cells (Lyer et al. 2015). Additionally, in cell 
nuclei, Pb binds DNA, impacts mitosis, prolongs interphase, 
and increases the time required for the cell cycle (Dikilitas 
et al. 2016). Regarding plant morphology, Pb inhibits root 
and shoot growth and increases the level of suberin in the 
roots (Salazar et al. 2016). In photosynthesis, Pb impacts the 
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antenna and photoreaction center, which inhibits photosys-
tem II and consequently decreases photosynthetic capacity 
in the plant under metal stress (Dao and Beardall 2016).

Silicon, the second most abundant element in the Earth’s 
crust, is beneficial for plant growth and development (Shi 
et al. 2005a, b; Liang et al. 2007). It has been reported that 
silicon can increase plant resistance in various species by 
ameliorating heavy metal stress(Liang et al. 2001; Neumann 
and Zur Nieden 2001; Rogalla and Römheld 2002;Liang 
et al. 2005)and is an ameliorator of abiotic stress in higher 
plants (Liang et al. 2003, 2005). The alleviating effects of 
silicon nanoparticles on heavy metal toxicity in plants are 
achieved through both external and internal mechanisms as 
follows: (1) externally, silicon forms complexes with toxic 
metals outside the root, resulting in the reduced availability 
and uptake of metal ions by the plant; (2) internally, silicon 
alters cell wall composition to control metal ion transport 
across the plasma membrane, enhances vacuolar compart-
mentalization of metal ions, synthesizes complexes with 
metals and eventually induces antioxidant enzyme activity 
within the plant. (Tubana and Heckman 2015). These mech-
anisms can maintain ROS at low levels, regulate the redox 
signaling network and increase plant resistance, allowing 
plant development to withstand ROS accumulation (Potters 
et al. 2010; Foyer and Noctor 2011).

In recent years, nanoparticles have been widely used to 
improve human life in different fields (Geiger 2009; Karimi 
and Mohsenzadeh 2016). Nanoparticles exist in three 
dimensions with sizes of between 1 and 100 nm and either 
molecular or atomic aggregates (Whitesides 2005; Karimi 
and Mohsenzadeh 2016). Among various types of nano-
particles,  SiO2 NPs are well documented to stimulate plant 
growth and ameliorate stress in various plant species (Bao-
shan e al., 2004; Yuvakkumar et al. 2011; Haghighi et al. 
2012; Suriyaprabha et al. 2012; Slomberg and Schoenfisch 
2012; Siddiqui and Al-Whaibi. 2013). Yuvakkumar et al. 
(2011) reported that  SiO2 NPs can increase seed germina-
tion, chlorophyll indexes and water balance efficiency in Zea 
mays, while Haghighi et al. (2012) reported a reduction in 
the damaging impacts of salt stress on the growth indexes 
of tomato seedlings by using SiO2 NPs. Bao-shan et al. 
(2004) exposed potato roots to various  SiO2 NP concentra-
tions (60 µM, 125 µM, 250 µM, 500 µM, 1000 µM, and 
2000 µM) and reported that the  SiO2 NPs improved growth 
indexes of the potatoes, concluding that 500 µM  SiO2 NPs 
induced the highest plant growth.

Bamboo (Bambusoideae) plants, occupying more than 6 
million hectares of Chinese forestlands, are a rich source of 
nutrients and provide livelihood as well as medicine for a 
large number of local families in southern and western China 
(Hogarth and Belcher 2013). Pleioblastus pygmaeus is an 
evergreen dwarf bamboo with a height of about 30–50 cm, 
which is used for gardening and landscaping. It is in leaf 

all year around and can grow in acidic, neutral and basic 
(alkaline) soils. Heavy metal contamination (frequently Pb, 
Cu, and Zn) caused by anthropogenic activities is one of 
the major problems in the agricultural forestlands in the 
south-west regions of China (Zhang et al. 2015). Therefore, 
it is important to find appropriate applications to improve 
bamboo plant growth and development under heavy metal 
toxicity. This need has led to the selection of silicon as the 
ameliorating factor in this study. Bamboo stands can accu-
mulate silicon in the form of amorphous silicon (Umemura 
and Takenaka 2014). However, there is a lack of knowledge 
regarding the impact of silicon nanoparticle forms on bam-
boo species under heavy metal stress. The aims of this paper 
were the following: (1) evaluate the impact of  SiO2 NPs on 
antioxidant enzyme activity of bamboo plant under various 
concentrations of Pb and (2) determine the optimum levels 
of  SiO2 NPs that can increase plant growth and biomass 
under toxic metal conditions.

Materials and methods

Plant material and growth conditions

Ten mm-long nodal explants were collected from 1-year-
old branches of a single clone of P. pygmaeus, which has 
been growing in the bamboo garden of Nanjing Forestry 
University since 1982. To induce axillary shoot production 
and proliferation, explants were cultured on MS medium 
(Murashige and Skoog 1962) supplemented with 4 µM  
6-benzylaminopurine (6-BA) and 0.5 µM kinetin (KT), 
together with 30 g/L sucrose, and 7–10 g/L agar. The roots 
were induced from the proliferated young shoot. For this 
purpose, MS medium, placed in 60-mm-diameter glass Petri 
dishes in an incubator, was supplemented with 1.2 µM of thi-
amine–HCl, 4 µM of nicotinic acid, 0.6 mM of myo-inositol, 
3 µM of pyridoxine, 30 g/L sucrose, and 7–10 g/L agar and 
was adjusted to pH 5.8 ± 0.1 in which 0.1 mg/L IAA was 
used as growth hormone regulator. The MS medium was 
sterilized in a microwave oven at 120 °C for 30 min. Then, 
the plantlets were transferred to the tissue culture chamber 
to grow as research materials (Fig. 1).

The treatments consisted of five replicates of each of 
five concentrations of  PbSO4 (50 µM, 250 µM, 500 µM, 
1000 µM, and 1500 µM) alone or with two concentrations 
of SiO2 NPs (100 µM and 500 µM). After preparing 1 L of 
medium, 30 g of sucrose with different concentrations of Pb 
in combination with different concentrations of  SiO2 NPs 
was added to the solution and then the pH was adjusted to 
5.8. Next, an adequate amount of agar was added, and the 
solution was transferred to a microwave oven for 10 min. The 
solution was sterilized in an autoclave (HiClave HVE-50). 
The bamboo plant was placed in glass Petri dishes (60 mm 
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diameter and 90 mm height) containing 100 mL culture 
medium in the ultraviolet-sterilized inoculation incubation 
hood (Air Tech) with white fluorescent lamps (wavelength 
350–750 nm) at 25 °C for 4 h. The pre-incubated bamboo 
plants were then transferred to and maintained in a plant tis-
sue culture chamber with the same light source and intensity 
as in the incubator, a photoperiod of 16 h and temperatures 
of 30/25 °C and 17/22 °C during the light and dark periods, 
respectively, for 25 days. These growth conditions mimicked 
those of natural environment typically experienced by the 
bamboo plant in its habitat. The  SiO2 NPs were provided by 
Nanjing Jiancheng Company in Jiangsu Province, China. 
The  SiO2 NPs were a 95% pure nano silica powder. NPs 
were approximately 20 nm and had a spherical shape. The 
concentrations of Pb and  SiO2 NPs were chosen according to 
the preliminary studies conducted by our research group that 
established high and low levels within the tolerance range of 
the bamboo species (Fig. 2).

After the end of the incubation period, the samples col-
lected from the bamboo shoot were sent to the laboratory for 
analysis. The antioxidant enzyme activities, including the 
activities of superoxide dismutase (SOD), catalase (CAT), 
glutathione reductase (GR) and phenylalanine ammonia-
lyase (PAL), were thoroughly measured. Total soluble 
protein (Sp), hydrogen peroxide  (H2O2) and polyphenol 
oxidase (PPO) levels were estimated. Then, chlorophyll a, 
chlorophyll b, total chlorophyll and carotenoid contents were 

calculated. After measuring the indexes, the biomass of the 
bamboo sample was determined based on the dry weight 
(DW) of the shoots and roots.

Sampling

To prepare for the experiment, 0.5 g of the sample (leaves) 
was carefully cut with scissors. After checking the weight, 
the samples were pulverized following the exposure to liq-
uid nitrogen, which quickly froze the samples. This was 
followed by crushing the samples using mortar and pestle. 
After thawing, the samples were preserved at 2–8 °C. Then, 
2 mg pH 7.8 phosphate buffer was added to the resulting 
powder in the test tube. The samples were centrifuged for 
20 min at the optimum speed of 2000–3000 RPM and then 
the supernatant was removed.

Antioxidant activities

Superoxide dismutase enzyme activity (SOD, EC 1.15.1.1) 
was quantified based on photoreduction in nitro blue tetra-
zolium (NBT) according to the method of Zhang (1992). In 
this method, the SOD content was determined by using the 
following materials: 1 g/50 mL MET, 0.01 g/100 mL rib, 
0.1 g/1000 mL NBT, and 2.1 g/100 mL EDTA. To quantify 
soluble SOD in the samples, 0.2 mL MET, 0.2 mL NBT, 
0.2 mL Rib, 0.2 mL EDTA, and 3.1 mL pH 7.0 buffer as 
well as 0.1 mL of the sample were added to a test tube. Then, 
in the next stage, the test tubes were exposed to light for 
10–20 min. After changing color, the soluble samples were 
transferred to a spectrometer for OD measurement. Catalase 
(CAT, EC 1.11.1.6) activity was determined based on two 
 H2O2 reactions analyzed at 240 nm. According to Aebi’s 
method (Aebi 1984), the soluble samples were prepared by 
adding 1.6 mL water, 1 mL Tris–HCl, and 0.2 mL  H2O2 to 
0.1 mL sample, and then the soluble sample was measured 
two or three times at 230 nm by a spectrometer (Beijing 
Purkinje TU-1810 UV–vis Spectrometer) to determine the 
CAT content. Glutathione reductase (GR) was quantified by 
using a commercial chemical assay kit (Nanjing Jiancheng 
Company). For this experiment, the material used con-
sisted of 0.5% (w/v) Triton-100, 0.1 mm EDTA, and 2% 
PVP, which were added to the sample. The mixture was 
centrifuged at 10,000 RPM and 4 °C for 10 min. For the 
determination of bamboo concentration or the analysis of 
enzyme activity, the supernatant was quantified based on 
the manufacturer’s instructions.

Phenylalanine ammonia-lyase (PAL) activity was 
assessed based on the method of Cai et al. (2008). The leaf 
samples from our experiment (0.5 g) were homogenized 
with a mortar and pestle. Then, the samples were placed in 
an ice bath containing 5 mL 50 mM borate buffer (pH 8.8) 
with 1 mM EDTA and 5.0 mM thioalcohol. The homogenate 

Fig. 1  Bamboo species (Pleioblastus pygmaeus) as affected by dif-
ferent Pb concentrations (50  µM, 250  µM, 500  µM, 1000  µM, and 
1500 µM) in combination with 100 µM and 500 µM  SiO2NPs appli-
cation levels
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was centrifuged at 13,000 RPM for 10 min at 4 °C. Then, 
the reagents, including 2 mL 50 mM borate buffer (pH 8.8) 
and 1.0 ml 20 mM l phenylalanine, were added to 0.2 mL 
crude homogenate, which was termed as the reaction mix-
ture. Then, the reaction mixture was incubated for 30 min 
at 40 °C and fixed by exposure to 0.25 mL 5 M HCl. Then, 
the increase in absorbance at 290 nm was measured with 
the spectrometer.

Hydrogen peroxide  (H2O2), soluble protein (SP), 
and polyphenol oxidase (PPO)

To determine the concentration of hydrogen peroxide 
 (H2O2), the chemical reaction from a commercial assay 
kit (Nan Jing Jian Cheng Company) was employed. To 

determine the  H2O2 content, the tissue was prepared by cut-
ting leaf discs from the treated leaves and submerging them 
in liquid nitrogen (LN2) until the beginning of the analysis. 
Storage at higher temperatures (− 80 °C or − 20 °C) resulted 
in the loss of as much as 60% of the  H2O2 within 7 days. For 
analysis, the samples were removed from the LN2 and then 
quickly weighed without thawing. Then, the samples were 
ground under LN2 with a prechilled mortar and pestle. In 
the next step, a modified ferrous ammonium sulfate/xyle-
nol orange (FOX) method was used to estimate the content 
of  H2O2 in the extracts. The soluble protein content was 
measured based on the change in protein concentration with 
Coomassie Brilliant Blue (G25). According to the Bradford 
method (Bradford 1976), a soluble protein test was con-
ducted in 50 mL 90% ethanol, 0.1 Coomassie Brilliant Blue 

Fig. 2  Root induction from the proliferated young shoot in bamboo species (Pleioblastus pygmaeus)
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G25, 100 mL  H3PO4, and 1000 mL water. After preparation, 
the soluble samples were transferred to a spectrometer to 
determine the content of soluble protein. Polyphenol oxidase 
(PPO) was quantified with the method of Cai et al. (2008). 
A 0.25 g sample was homogenized and placed in an ice bath 
with 5 ml 50 mM borate buffer (pH 8.7) containing 0.1 g 
PVP and 5.0 mM sodium hydrogen sulfite. Then, the solu-
ble sample was centrifuged at 13,000 RPM for 10 min at 
4 °C. The final soluble samples were obtained by combining 
0.1 mL of the final mixture with 3 mL of a solution including 
0.5 mL 0.15 mM catechol and 50 mM potassium phosphate 
buffer (pH 6.5). In the next step of determining polyphenol 
oxidase (PPO) activity, the soluble samples were measured 
at 420 nm with a spectrophotometer for 10 min at 30 °C 
(Gauillard et al. 1993).

Measurements of chlorophyll a, chlorophyll b, total 
chlorophyll, and carotenoids

Chlorophyll a, chlorophyll b, and carotenoids were quanti-
fied according to the method of Arnon (1949). According to 
this method, a 0.5 g leaf sample was ground in a porcelain 
mortar, pulverized in liquid nitrogen, and squeezed to pre-
pare liquid sample extract. Then, 20 ml 80% acetone was 
added to the sample at 0 to 4 °C. Then, the sample was trans-
ferred for centrifugation at 6000 RPM for 10 min. In the next 
step, the supernatant was transferred to a glass balloon. In 
the final step, some samples were placed inside the balloon 
in a cuvette of the spectrophotometer, and the absorbance 
of each sample was determined by a spectrophotometer at 
663 nm for chlorophyll a content, 645 nm for chlorophyll b 
content, and 470 nm for carotenoid content. After calculat-
ing the indexes, we used the following formulas, in which 
the levels of chlorophyll a, b, and carotenoids are in mg/g 
fresh weight:

where V is the volume of the filtered solution (supernatant 
obtained from centrifugation); A is the absorbance at 663, 
645, or 470 nm; and W is the fresh weight of the sample in 
grams.

Biomass determination

After exposure to  SiO2 NPs-Pb, the plant roots and shoots 
were carefully cleaned and washed with deionized water. 
All surface water was removed by oven drying (vacuum dry 
ovenDZF-6090). Sample fixation was conducted at 110 °C 

Chlorophyll a = (19.3 × A663 − 0.86 × A645)V∕100W,

Chlorophyll b = (19.3 × A645 − 3.6 × A663)V∕100W,

Carotenoids = 100 (A470) − 3.27(mg chl. a) − 104(mg chl. b)∕227,

for 20 min. The treated samples were then dried at an opti-
mum temperature of 80 °C to a constant dry weight. The 
dry weight represented our experimental biomass and was 
determined for five replicates in each treatment.

Statistical analysis

The experiment was performed using a completely rand-
omized design (CRD) arranged in a two-way factorial layout 
with five replicates. Analysis of variance (ANOVA) was car-
ried out with the statistical software package R. The mean 
differences were compared using Tukey’s test at the p < 0.05 
probability level.

Results

The effect of Pb–(SiO2 NP) combination treatment 
on antioxidant enzyme activities

The results obtained by comparing the average change in 
antioxidant enzyme activities (SOD, CAT, PAL, and GR) 
showed that there was a significant difference among the dif-
ferent concentrations of Pb–(SiO2 NPs) (p < 0.001). Accord-
ing to Fig. 3, in almost all indexes, the response curve of 
antioxidant enzyme activity was in the shape of a curve. 
Thus, there was a significant increase at low concentrations 
and then a decrease with increasing concentrations, indicat-
ing Pb toxicity. As shown in Table 2, the greatest increases 
in antioxidant activity occurred at 250 µM and 500 µM Pb; 
the activities of the enzymes SOD, CAT, PAL, and GR first 
increased with 250 µM and 500 µM Pb and then decreased 
with high levels of Pb (1000 µM and 1500 µM Pb). However, 
the evaluation of  SiO2 NP treatment in combination with 
Pb revealed the triggering effect of  SiO2 NPs on enzymatic 
activity; with increasing levels of  SiO2 NPs, the antioxidant 
activities of all the indicator enzymes increased. In this case, 
the results indicated that the highest levels of antioxidant 
activity were associated with 500 µM Pb + 500 µM  SiO2 
NPs in three indexes; CAT, GR, and PAL activity increased 
by 48%, 53%, and 35%, respectively. Additionally, SOD was 
impacted by treatment with 250 µM Pb + 500 µM  SiO2 NPs, 
showing a 31% increase in antioxidant activity (Table 2). 
The results indicated that  SiNO2 NPs had less of an effect 
at the high concentrations of Pb; the antioxidant enzyme 
activities remained constant at 1000 µM and 1500 µM Pb. 
In many cases, there was no significant difference between 
treatments, demonstrating the remarkable reduction in  SiO2 
NP efficiency at high concentrations of Pb. In general, the 
results indicated that GR activity was influenced the most 
by the addition of  SiO2 NPs, with an increase of 1.24-fold. 
PAL, CAT, and SOD activity increased by 1.17-, 1.15-, and 
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1.14-fold, respectively, in the presence of  SiO2 NPs across 
all the tested Pb concentrations.

The effect of Pb–(SiO2 NP) combination treatment 
on the content of hydrogen peroxide  (H2O2), soluble 
protein (SP), and polyphenol oxidase (PPO)

According to Table 1, Pb treatment had the deleterious effect 
of increasing the levels of free radicals and soluble proteins 
in plant tissue and inside the cell. This injurious effect was 
mitigated by adding  SiO2 NPs; however, at higher con-
centrations of Pb, this reduction was not evident. The data 
describing the effect of Pb on the indexes of hydrogen per-
oxide  (H2O2), soluble protein (SP), and polyphenol oxidase 
(PPO) indicated a significant linear increase in their contents 

with increasing Pb levels (p < 0.01). Therefore, the highest 
level of injury was observed at high concentrations of Pb 
(1000 µM and 1500 µM), while the lowest level of injury 
occurred at lower concentrations of Pb (50 µM, 250 µM, and 
500 µM). However,  SiO2 NPs had a significant role in reduc-
ing the deleterious effects of metals; thus, increasing  SiO2 
NP levels in combination with Pb decreased the negative and 
toxic effects caused by Pb. The results indicated that 500 µM 
 SiO2 NPs were more effective than 100 µM  SiO2 NPs at 
ameliorating Pb toxicity. As shown in Table 2, the highest 
percent reduction in the  H2O2 and SP indexes was observed 
in the combination treatment of 500 µM Pb + 500 µM  SiO2 
NPs, with reductions of 29.1% and 24.7%, respectively, and 
250 µM Pb +500 µM  SiO2 NPs resulted in the highest per-
cent reduction in the PPO index, with a 64.7% reduction. 

Fig. 3  Effects of the combination of Pb–(SiO2 NPs) on antioxi-
dant enzymes activities of Pleioblastus pygmaeus. The treatments 
included different concentrations of Pb alone or in combination with 
various levels of  SiO2 NPs (100 µM and 500 µM). The capital letters 
indicate statistically significant differences across different concen-

trations of Pb treatment alone or in combination with  SiO2 NPs (the 
bars with the same colors), while the lowercase letters indicate statis-
tically significant differences within each concentration of Pb treat-
ment alone or in combination with  SiO2 NPs (the bars with different 
colors) according to Tukey’s test (p < 0.05)
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Additionally, the results showed that at  PbSO4 concentra-
tions above 1000 uM,  SiO2 NPs did not reduce the deleteri-
ous effects of Pb. In general, according to the results,  SiO2 
NPs can ameliorate Pb toxicity in this species by reducing 
the levels of hydrogen peroxide  (H2O2), soluble protein (SP), 
and polyphenol oxidase (PPO) by 15.2%, 15.7%, and 30.7%, 
respectively, compared with their controls.

The effect of Pb–(SiO2 NP) combination treatment 
on the content of chlorophyll a, chlorophyll b, total 
chlorophyll, and carotenoids

The results obtained from our photosynthesis index data 
showed that with increasing concentrations of Pb, the 

contents of chlorophyll a, chlorophyll b, total chlorophyll, 
and carotenoids were significantly decreased (p < 0.01), 
which demonstrated the negative impact of Pb on the metab-
olism of this bamboo species. However, the results revealed 
an increasingly important role of  SiO2 NPs in photosynthe-
sis and plant metabolism. Therefore, with increasing levels 
of  SiO2 NPs, the contents of chlorophyll and carotenoids 
increased. Additionally, this increasing trend was consider-
able at 250 µM and 500 µM Pb in combination with 500 µM 
 SiO2 NPs. In this study, compared with controls, the most 
effective  SiO2 NP concentration was 500 µM Pb + 500 µM 
 SiO2 NPs, which induced a 28% increase in chlorophyll 
a content, a 50% increase in chlorophyll b content, and a 
37% increase in total chlorophyll content. A 12.7% increase 

Table 1  The effect of the 
combination of Pb–(SiO2 NPs) 
on the content of hydrogen 
peroxide  (H2O2), soluble protein 
(SP), and polyphenol oxidase 
(PPO) of Pleioblastus pygmaeus 

Each data point is the mean ± SE of five replicates. The treatments included different concentrations of Pb 
alone or in combination with various levels of  SiO2 NPs (100 µM and 500 µM). The capital letters indicate 
statistically significant differences across different concentrations of Pb treatment alone or in combination 
with  SiO2  NPs, while the lowercase letters indicate statistically significant differences within each concen-
tration of Pb treatment alone or in combination with  SiO2  NPs according to Tukey’s test (P < 0.05)

Pb (SiO2 NPs) H2O2 SP PPO

µM µM µg/g.Fw µg/g.Fw U g−1

50 − Si 3.7187 ± 1.3391Aa 0.0605 ± 0.0080Aa 0.0480 ± 0.0078Aa

+ Si 100 2.9512 ± 0.7721Aa 0.0498 ± 0.0045Aa 0.0338 ± 0.0052Ab

+ Si 500 2.3559 ± 0.4365Aa 0.0498 ± 0.0022Aa 0.0261 ± 0.0067Ab

250 − Si 5.8593 ± 0.8493Aa 0.07256 ± 0.0071Ba 0.0659 ± 0.0054ABa

+ Si 100 4.1950 ± 0.9661Ba 0.0610 ± 0.0062Bab 0.0410 ± 0.0060Ab

+ Si 500 4.4056 ± 0.9345Ba 0.0601 ± 0.0047Bb 0.0313 ± 0.0035Bb

500 − Si 8.7956 ± 0.8276Aa 0.0917 ± 0.0041BCa 0.0795 ± 0.0044BCa

+ Si 100 6.6518 ± 0.6021Cb 0.0722 ± 0.0093Cab 0.0531 ± 0.0029Bb

+ Si 500 6.222 ± 0.3015Cb 0.0686 ± 0.0147Cb 0.0402 ± 0.0070Cc

1000 − Si 9.3656 ± 0.7506Ba 0.1059 ± 0.0117CDa 0.0989 ± 0.0048CDa

+ Si 100 8.8425 ± 0.2811Da 0.1053 ± 0.0102CDa 0.0846 ± 0.0054BCb

+ Si 500 8.9862 ± 0.6929Da 0.1003 ± 0.0027CDa 0.0743 ± 0.0033CDc

1500 − Si 10.9046 ± 1.2132Ba 0.145 ± 0.0129Da 0.1086 ± 0.0164 Da

+ Si 100 10.5378 ± 0.7120Da 0.135 ± 0.0057Da 0.0936 ± 0.0108Ca

+ Si 500 10.6950 ± 0.9250Ea 0.145 ± 0.0040Da 0.0996 ± 0.0067Da

Table 2  The percentage of 
change in antioxidant enzymatic 
activities under the various 
concentrations of Pb–(SiO2 
NPs) compared to their control 
treatments (Pb)

Concentration of Pb–
(SiO2NPs) Combination

SOD CAT GR PAL PPO SP H2O2

50 × 100 µM 2.6% 5.5% 17.1% 9.31% 19.63% ↓ 17.3% ↓ 16.2% ↓
50 × 500 µM 5.7% 10.7% 28.1% 28.43% 39.2% ↓ 20% ↓ 24.4% ↓
250 × 100 µM 25% 18.29% 35% 12.5% 39.2% ↓ 20% ↓ 19.3% ↓
250 × 500 µM 31.1% 30.6% 51% 29.1% 64.7% ↓ 23.6%↓ 24.3% ↓
500 × 100 µM 14.6% 28% 32.8% 23.55% 35.7% ↓ 23.7%↓ 22.5% ↓
500 × 500 µM 25.8% 48.5% 53.6% 35.29% 49.7% ↓ 24.7%↓ 29.1% ↓
1000 × 100 µM 9% 5/01% 6.38% 6% 11.3% ↓ 6% ↓ 5% ↓
1000 × 500 µM 10% 5/01% 6.38% 10.4% 19.2% ↓ 6% ↓ 5% ↓
1500 × 100 µM 6.6% 3.5% 9.52% 8.33% 14.6% ↓ 6.8% ↓ 3.2% ↓
1500 × 500 µM 11% 4.3% 7.90% 8.33% 14.6% ↓ 6.8% ↓ 3.00% ↓
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over controls in the content of carotenoids was observed 
with 250 µM Pb + 500 µM  SiO2 NPs (Table 3). However, 
at high levels of Pb (1000 µM and 1500 µM), the addition 
of  SiO2 NPs did not have a significant effect on chlorophyll 
and carotenoid contents. This result is an indicator of the 
inhibition threshold of this plant when exposed to nones-
sential heavy metals such as Pb. In general, in the present 
experiment,  SiO2 NPs improved the photosynthetic proper-
ties of plants under Pb stress by increasing the chlorophyll 
a, chlorophyll b, total chlorophyll, and carotenoid contents 
by 1.12-, 1.21-, 1.14-, and 1.05-fold, respectively, compared 
with their controls.

The effect of Pb–(SiO2 NP) combination treatment 
on the biomass production of shoots and roots

The biomass was determined by measuring the dry weight 
of plant roots and shoots. These results showed a significant 
reduction in dry weight with increasing Pb concentration in 
both shoots and roots (p < 0.01) (Fig. 4). Therefore, the high-
est plant dry weight was observed under treatment with low 
concentrations of Pb (50 µM–500 µM), with 0.74 g in shoots 
and 0.99 g in roots; the lowest plant dry weight was observed 
with high concentrations of Pb (1500 µM), with 0.23 g in 
shoots and 0.30 g in the roots. These results demonstrated 
the role of Pb toxicity in the reduction of plant biomass. In 
contrast, the analysis of the results obtained with the com-
bination treatment of Pb–(SiO2 NPs) indicated that the  SiO2 
NP levels had a significantly positive effect on dry weight 

of the bamboo plant. The combination of 500 µM Pb with 
500 µM  SiO2 NPs showed the largest dry weight of plant 
shoots and roots, with 1.41- and 1.43-fold increases, respec-
tively, compared with the control. In general, the application 
of 500 µM  SiO2 NPs had the greatest impact on the increase 
in dry weight; the increases observed with 500 µM  SiO2 
NPs were 21% in the shoot and 26% in the root, while the 
increases observed with 100 µM  SiO2 NPs were 10% and 
13% in the shoot and root, respectively (Table 4).

Discussion

Antioxidant enzymes scavenge ROS in the intercellular 
organs of plants, such as the chloroplast, cytosol, apoplast, 
mitochondria, and peroxisomes, through several chemical 
reactions that involve peroxisomal glutathione peroxidase, 
water–water, and ascorbate–glutathione (Foyer and Noc-
tor 2011; Hasanuzzaman et al. 2012). This kind of defense 
mechanism can preserve the integrity of plants, enabling 
them to cope with metal stress through chloroplasts, mito-
chondria, and nuclei (Nwugo and Huerta 2008; Song et al. 
2009). Among the antioxidant enzymes, SOD plays a role 
in the first line of ROS scavenging (Takahashi, and Asada 
1983), catalyzing the change in superoxide anions to perox-
ide (Neumann et al. 1997). CAT functions to convert  H2O2 
to water and  O2 (Das and Roychoudhury 2014; Singh et al. 
2017). Glutathione reductase (GR, EC, 1.6.4.2) contains 
disulfide groups (Trivedi et al. 2013) and can regulate the 

Table 3  The effect of the 
combination of Pb–(SiO2 NPs) 
on the content of chlorophyll a, 
chlorophyll b, total chlorophyll, 
and carotenoids

Each data point is the mean ± SE of five replicates. The treatments included different concentrations of Pb 
alone or in combination with various levels of  SiO2 NPs (100 µM and 500 µM). The capital letters indicate 
statistically significant differences across different concentrations of Pb treatment alone or in combination 
with  SiO2 NPs, while the lowercase letters indicate statistically significant differences within each concen-
tration of Pb treatment alone or in combination with  SiO2 NPs according to Tukey’s test (P < 0.05)

Pb (SiO2 NPs) Chla Chlb T. Chl Carotenoids

µM µM (µg g−1 F.w.) (µg g−1 F.w.) (µg g−1 F.w.) (µg g−1 F.w.)
50 − Si 3.710 ± 0.627Aa 2.599 ± 0.065Aa 6.310 ± 0.571Aa 54.525 ± 5.766Aa

+Si 100 3.920 ± 0.600Aa 3.453 ± 0.280Aab 7.374 ± 0.858Aa 52.45 ± 8.019Aa

+Si 500 4.131 ± 0.161Aa 3.224 ± 0.445Ab 7.354 ± 0.290Aa 54.43 ± 5.508Aa

250 − Si 3.398 ± 0.262Aa 2.188 ± 0.264ABa 5.587 ± 0.140ABa 49.055 ± 5.279Aa

+Si 100 3.837 ± 0.249Aab 2.520 ± 0.170Bab 6.358 ± 0.345ABa 48.181 ± 3.416Aab

+Si 500 4.009 ± 0.309Ab 2.847 ± 0.442ABb 6.788 ± 0.487Ab 55.80 ± 2.085Ab

500 − Si 3.131 ± 0.331ABa 1.863 ± 0.215ABa 4.994 ± 0.492BCa 44.96 ± 9.195Aa

+Si 100 3.238 ± 0.128ABb 2.367 ± 0.279Bab 5.605 ± 0.348BCb 51.72 ± 3.622Aa

+Si 500 3.785 ± 0.221Ab 2.779 ± 0.196ABb 6.633 ± 0.558Ab 49.70 ± 5.302ABa

1000 − Si 2.387 ± 0.308BCa 1.940 ± 0.332ABa 4.328 ± 0.115CDa 41.69 ± 7.298Aa

+Si 100 2.865 ± 0.292BCa 2.095 ± 0.280BCa 4.960 ± 0.374CDa 41.01 ± 7.574Aa

+Si 500 2.737 ± 0.421Ba 2.237 ± 0.454BCa 4.974 ± 0.208Bb 43.52 ± 5.546Ba

1500 − Si 2.018 ± 0.590Ca 1.617 ± 0.596Ba 3.636 ± 0.480Da 39.185 ± 9.090Aa

+Si 100 2.117 ± 0.338Ca 1.729 ± 0.187Ca 3.847 ± 0.452Da 40.91 ± 6.881Aa

+Si 500 2.266 ± 0.462Ba 1.665 ± 0.557Ca 3.932 ± 0.925Ba 40.36 ± 5.378Ba
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major mechanism controlling  H2O2 concentration (Li and 
Jin 2007); it can scavenge ROS using the sulfhydryl group 
of GSH by reducing disulfide bonds in glutathione (Zitka 
et al. 2012). PAL plays an important role in the biosynthesis 
of lignins, phytoalexins, and phenolics (Ryals et al. 1996). 
PAL is an important indicator of plant stress (Leyva et al. 
1995; Sanchez-Ballesta et al. 2000) and can be effective in 
determining abiotic (heavy metals, UV, and temperature) 
and biotic (viruses, bacteria, fungi) stresses, as demon-
strated by increasing PAL accumulation in many phenolics 
in a variety of different experiments (Solecka and Kacper-
ska 2003; Sgarbi et al. 2003). The results of our experi-
ment indicated that antioxidant enzyme activities increased 
with the addition of  SiO2 NPs. Many researchers studying 
various plants have confirmed that silicon increases anti-
oxidant enzyme activities. These different plants include 
rice (Song et al. 2011), barley (Gunes et al. 2007), cotton 
(Farooq et al. 2013), peanut (Shi et al. 2010), soybean (Miao 
et al. 2010), ramie (Tang et al. 2015), Brassica chinensis 
L. (Song et al. 2009), A. thaliana (Khandekar and Leisner 

2011), and banana (Li et al. 2012). The efficiency of the 
effect of  SiO2 NPs on antioxidant activity is directly related 
to the specific concentration of heavy metals. Thus, with 
high levels of heavy metals, antioxidants may be unable to 
efficiently reduce the ROS caused by heavy metals (Adrees 
et al. 2015). This pattern occurred in our bamboo species; 
the greatest impact of  SiO2 NPs on antioxidants was in com-
bination with a low level of Pb and, undoubtedly, the  SiO2 
NPs could not help plants ameliorate Pb toxicity by stimulat-
ing antioxidant activities at high concentrations (or the effect 
was negligible). In general, the level of antioxidant activity 
under stressful conditions could be related to plant species, 
plant genotype (Hall 2002), the type of metal element, and 
growth conditions (Adrees et al. 2015).

Singlet oxygen (1O2) and hydrogen peroxide  (H2O2) are 
two known nonradical ROS molecules that can increase with 
rising ROS levels due to heavy metal stress (Gill and Tuteja 
2010; Sharma et al. 2012). In one experiment, the results 
showed that silicon can increase the activities of enzymes, 
including CAT, SOD, and APX in rice exposed to Zn and 

Fig. 4  Effects of the combination of Pb–(SiO2 NPs) on dry weight 
(DW) of shoot and root in Pleioblastus pygmaeus. The treatments 
included different concentrations of Pb alone or in combination with 
various levels of  SiO2 NPs (100 µM and 500 µM). The capital letters 
indicate statistically significant differences across different concen-

trations of Pb treatment alone or in combination with  SiO2 NPs (the 
bars with the same colors), while the lowercase letters indicate statis-
tically significant differences within each concentration of Pb treat-
ment alone or in combination with  SiO2 NPs (the bars with different 
colors) according to Tukey’s test (p < 0.05)

Table 4  The rate of increase in bamboo shoot and root biomass production under the various concentrations of Pb–(SiO2 NPs) compared to their 
control treatments (Pb)

Concentration of  (SiO2 
NPs) combination

50 µM 250 µM 500 µM 1000 µM 1500 µM

100 µM 500 µM 100 µM 500 µM 100 µM 500 µM 100 µM 500 µM 100 µM 500 µM

Shoot (fold) 1.08 1.13 1.14 1.26 1.21 1.41 1.02 1.14 1.04 1.13
Root (fold) 1.08 1.23 1.10 1.25 1.24 1.43 1.11 1.24 1.16 1.16
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reduce MDA and  H2O2 (Song et al. 2011). This effect has 
also been reported in cucumbers exposed to Mn; silicon 
has the ability to reduce the lipid peroxidation caused by 
ROS such as  H2O2 (Feng et al. 2009). Similar results were 
obtained in maize exposed to Mn (Zlatimira et al. 2008) 
and Brassica chinensis L. exposed to cadmium (Song et al. 
2009). In other experiments on rice exposed to Zn, silicon 
could decrease  H2O2 content and lipid peroxidation. Addi-
tionally, researchers concluded that the amelioration of Zn 
toxicity by silicon is related to increased antioxidant activity 
and membrane integrity. However, they mentioned the role 
of silicon in the reduction of Zn transport from the roots to 
the shoots (Song et al. 2011). The results obtained from the 
analysis of our bamboo species data indicated that  SiO2 NPs 
were able to control and scavenge ROS by reducing  H2O2 
levels. Additionally, it is clear that the high concentration of 
 SiO2 NPs (500 µM) had a significant impact. Silicon played 
an ameliorative role regarding plasma membrane and tono-
plast functions, preserving the integrity of cellular struc-
tures, such as the stability of protein and lipids involved in 
cell membranes, leading to decreasing lipid peroxidation and 
soluble protein content in plants under ion stress (Gong et al. 
2005). In our experiment, the results confirmed that  SiO2 
NPs preserve cell membrane integrity by reducing the con-
tent of soluble proteins incorporated in the cell membrane, 
which is exposed to Pb stress. Additionally, different concen-
trations of  SiO2 NPs can have an essential role in reducing 
the soluble protein content, and the effect was larger with a 
high dose of  SiO2 NPs than with low concentrations of  SiO2 
NPs. However, under high levels of Pb toxicity (1000 µM 
and 1500 µM),  SiO2 NPs did not have a considerable impact 
on the reduction of metal stress. The ameliorative effect of 
silicon on the increase in soluble proteins has been reported 
in many experiments, including in maize (Moussa 2006) and 
Cnaphalocrocis medinalis (Han et al. 2016). PPO and POD 
are two enzymes that are involved in several responses to cell 
damage (Michalak 2006; Ashry and Mohamed 2011). These 
enzymes are involved in oxidation processes and play an 
important role in catalyzing the formation of lignin and other 
oxidative phenols (Avdiushko et al. 1993). PPO has the abil-
ity to catalyze the oxidation of polyphenols and the hydroxy-
lation of lignins and monophenols in plant cells (Trivedi 
et al. 2013; Hajiboland et al. 2017). PPO is one indicator of 
the oxidation process in plant cells. In the case of PPO, the 
results obtained by analyzing our data indicated that  SiO2 
NPs reduce the oxidation of polyphenols in plant cells by 
decreasing the PPO activity in the plant under Pb stress. 
This happened in the ‘latent form’, and it can be concluded 
that the increase in PPO content activates and stimulates a 
‘latent phenolase’ in plant cells (Aery and Mali 2012). This 
effect can preserve the integrity of plant cells, allowing them 
to cope with metal stress. However, at high concentrations 
of Pb (1000 µM and 1500 µM), this trend decreased. The 

reduction of PPO by silicon has been reported in some stud-
ies (Gomes et al. 2005; Ranger et al. 2009).

It appears that silicon, through a mechanism such as guid-
ing light to the mesophyll tissue, increases the light absorp-
tion efficiency (Hattori et al. 2005). Increased chlorophyll 
content and chlorophyll fluorescence induced by silicon 
have been reported in sorghum under water deficit (Ma and 
Takahashi 2002), in wheat under drought stress (Maghsoudi 
et al. 2016) and metal stress conditions, and in maize under 
Zn stress (Kaya et al. 2009). The results obtained in one 
study on rice indicated that silicon can increase chlorophyll 
(a + b) content in the plant under Zn stress; the researchers 
mention that this improvement in chlorophyll content was 
related to an increase in the antioxidant activity caused by 
silicon, which can inhibit the transport of Zn from the root 
to the shoot. Additionally, they mention that silicon protects 
photosynthesis by upregulating the photochemical reaction, 
which is evidenced by increased chlorophyll fluorescence 
parameters (Song et al. 2014). Similar to the results obtained 
in rice plants under cadmium treatment with added silicon, 
these authors concluded that silicon can ameliorate toxic-
ity associated with low concentrations of Cd by increasing 
light-use efficiency (Nwugo and Huerta 2008). The results 
obtained in our experiment indicated that  SiO2 NPs can lead 
to improved chlorophyll contents and carotenoids, resulting 
in higher total Chla + Chlb in bamboo under Pb stress. As a 
result, the considerable increase observed in the chlorophyll 
content of the  SiO2 NPs-treated bamboo plant under low 
levels of Pb was associated with enhanced photosynthetic 
activities. This finding is related to increased antioxidant 
enzyme activity at the low and middle concentrations of Pb 
in combination with  SiO2 NPs, which is consistent with the 
results obtained by Song et al. (2014). The results revealed 
that the application of  SiO2 NPs at 500 µM had a greater 
effect than at 100 µM on the increase in chlorophyll content 
and, eventually, photosynthesis metabolism in bamboo spe-
cies under Pb stress.

Many studies have reported that silicon can increase bio-
mass in plants under metal stress, including maize (Zea mays 
L.) under cadmium stress (Liang et al. 2005; da Cunha et al. 
2008) and Zn stress (Da Cunha and Do Nascimento 2009), 
strawberry under cadmium stress (Treder and Cieslinski 
2005), rice (Oryza sativa L.) seedlings under Zn (Gu et al. 
2012) and arsenate (As) stress (Guo et al. 2005, 2007), and 
barley under AL stress (Liang et al. 2001). There are some 
important mechanisms of the silicon-induced improvement 
in biomass under heavy metal toxicity. One of the main 
mechanisms of silicon in the response to heavy metal stress 
is the reduction of metal uptake by plants and the reduc-
tion of silicon transport from roots to shoots (Sivanesan 
and Park 2014). In an experiment in wheat, silicon reduced 
the CD concentration in shoots and the CD uptake in roots, 
which led to an increase in plant biomass in shoots and roots 
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(Rizwan et al. 2012). Similar results have been reported in 
Brassica chinensis L. (Song et al. 2009), maize (Liang et al. 
2005), and rice (Shi et al. 2005a, 2005b) under cadmium 
stress. In contrast, silicon can help elongate leaves in the 
basal zones through several mechanisms, including the fol-
lowing: (1) the enhancement of cell wall extensibility, which 
occurs in roots by strengthening endothermal cell walls; or 
(2) maintenance of the extensibility of young cell walls in 
mature and apical–basal regions (Taleahmad and Haddad 
2011), which can help increase plant biomass under stress-
ful conditions. The results obtained in our study indicated 
that  SiO2 NPs can increase biomass as measured by both dry 
and wet weight indexes, reversing the effect of Pb toxicity on 
plants. It seems that the increases in the antioxidant capacity 
and photosynthetic properties induced by  SiO2 NP applica-
tion play important roles in increasing plant biomass and 
yield, with considerable positive effects at low and medium 
Pb levels in combination with  SiO2 NP application.

Conclusion

SiO2 NPs may play an essential physiological role in improv-
ing plant growth and in the amelioration of toxicity of plants 
under Pb stress. However,  SiO2 NPs have a different effect 
in various plants and different levels of heavy metals. In 
the present study, we report that  SiO2 NPs increased plant 
growth in this bamboo species under Pb toxicity via mecha-
nisms such as increasing antioxidant enzyme activities, 
reducing lipid peroxidation and protecting plant cells, which 
are related to scavenging ROS in cells with reduced  H2O2 
content. In the current experiment,  SiO2 NPs improved pho-
tosynthetic efficiency and increased plant biomass, which 
were related to increased antioxidant activity in plants under 
Pb stress. It can be concluded that  SiO2 NPs at a concentra-
tion of 500 µM have a significant effect on plant growth 
under Pb toxicity. Additionally, the results showed that  SiO2 
NPs had considerable detoxification effects at 250 µM and 
500 µM Pb. We conclude that the efficiency of  SiO2 NPs 
depends on the heavy metal concentration, as we observed 
in our experiment, and that the effect of  SiO2 NPs at high 
concentrations of Pb (1000 µM and 1500 µM) is negligible. 
Therefore, we consider that the optimal level of  SiO2 NPs as 
the main contributing factor to improving plant growth and 
ameliorating Pb toxicity in the present experiment.
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