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Abstract
Key message The proposed height–diameter model applicable to many tree species in the multi-layered and mixed 
stands across Czech Republic shows a high accuracy in the height prediction. This model can be useful for estimating 
forest yield and biomass, and simulation of the vertical stand structures.
Abstract We developed a generalized nonlinear mixed-effects height–diameter (H–D) model applicable to Norway spruce 
(Picea abies (L.) Karst.), European beech (Fagus sylvatica L.) and other conifer and broadleaved tree species using the 
modelling method that includes dummy variables accounting for species-specific height differences and random component 
accounting for within- and between-sample plot height differences and randomness in the data. We used two large datasets: 
the first set (model fitting dataset) originated from permanent research sample plots and second set (model-testing dataset) 
originated from the Czech national forest inventory (NFI) sample plots. The former dataset comprises 224 sample plots with 
29,390 trees and the latter dataset comprises 14,903 sample plots with 382,540 trees, each representing wide variabilities of 
tree size, ecological zone, growth condition, stand structure and development stage, and management regime across the 
country. Among the four versatile growth functions evaluated as base functions with diameter at breast height (DBH) included 
as a single predictor, the Chapman-Richards function showed the most attractive fit statistics. This function was then extended 
through the integration of other predictor variables, which better describe the stand density (stand basal area), stand develop-
ment and site quality (dominant height), competition (ratio of DBH to quadratic mean DBH), that would act as modifiers of 
the original parameters of the function. The mixed-effects H–D model described a large part of the variations in the H–D 
relationships ( R2

adj
 = 0.9182; RMSE = 2.7786) without substantial trends in the residuals. Testing this model against model-

testing dataset confirmed the model’s high accuracy. The model may be used for estimating forest yield and biomass, and 
therefore will serve as an important tool for decision making in forestry.

Keywords Chapman-Richards function · National forest inventory · Dummy variable modelling · Stand density · Stand 
structure · Random effects · Species-specific height difference

Introduction

Tree height and diameter at breast height (DBH) are impor-
tant in forest inventories and timber management, as these 
variables are necessary for estimating stand volume and bio-
mass. Tree height data modeled from DBH can be employed 
as an input variable in various forest models, together with 
DBH, such as growth and yield models, site productivity 
models, crown models, biomass models, and carbon budget 
models. These models serve as important tools in forest 
management decision making. Compared to the DBH meas-
urement, measuring height is more tedious, time-consuming, 
costly, and has relatively larger errors, as it is affected by 
visual obstruction due to uneven landforms and crowded 
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stands. Tree height is often measured for few trees per sam-
ple plot and height of the remaining trees is imputed using 
height–diameter model (H–D model) (MacPhee et al. 2018; 
Sharma and Breidenbach 2015; Vargas-Larreta et al. 2009). 
The H–D models are used to minimize the cost associated 
with inventories and to reduce the problems associated with 
height measurement errors (MacPhee et al. 2018). A realistic 
description of stand growth and stem volume, and simulation 
of stand structure and dynamics is possible only with use of 
the stand-specific H–D models (Mehtätalo et al. 2015). The 
H–D models may be used to evaluate site productivity (Duan 
et al. 2018; Fu et al. 2018; Vanclay 1994).

Based on the number of predictors used, there can be 
two types of H–D models: model that expresses height as 
a function of DBH (Fang and Bailey 1998; Robinson and 
Wykoff 2004), and model that includes DBH and other vari-
ables describing stand characteristics (Calama and Montero 
2004; Paulo et al. 2011; Temesgen and Gadow 2004). The 
former model is known as a local model and appropriate 
for homogenous stands, while the latter model is known as 
a generalized model and appropriate for forests comprising 
heterogonous stands. The H–D relationship differs from one 
stand to another, and even within the same stand due to dif-
ferent competitive effects among trees (Clutter et al. 1983). 
Furthermore, site quality, stand structure, and development 
stage also significantly affect the H–D relationships (Calama 
and Montero 2004; Liu et al. 2017; Saud et al. 2016; Sharma 
and Parton 2007; Sharma and Breidenbach 2015; Schmidt 
et al. 2011; Vargas-Larreta et al. 2009). The height predic-
tion accuracy can be increased through the integration of 
variables describing these stand characteristics into the 
model. In addition to this, an unstructured random compo-
nent describing natural variability of tree heights, caused 
by stochastic factors must be included into the H–D models 
using the mixed-effects modelling approach. This allows 
for sample plot-specific height prediction, and enables the 
inclusion of correlations among the hierarchically structured 
random effects that account for correlations of the height 
measurements per sample plot (Pinheiro and Bates 2000; 
West et al. 1984; Vargas-Larreta et al. 2009). In contrast, 
a fixed-effect H–D model, also known as an ordinary least 
square (OLS) regression model, only provides unbiased 
mean height prediction, even under the unbalanced sampling 
design, which may not be a precise mean height for each 
sample plot. The OLS regression violates the assumptions of 
independent errors and leads to biased parameter estimates 
and variances, causing invalidation of the hypothesis tests 
(Gregoire et al. 1995; Pinheiro and Bates 2000; Fu et al. 
2017a).

A large dataset acquired with a high measurement accu-
racy is necessary to develop the H–D model with robust 
parameter estimates. This dataset is often made avail-
able from forestry research projects, which would have 

established permanent sample plots covering all possible 
growth conditions and silviculture treatments. Measurement 
accuracy of the individual tree attributes on these sample 
plots may be relatively higher than that on other types of 
inventory sample plots, for example, national forest inven-
tory (NFI) sample plots. The NFI may provide database 
for modelling H–D relationships; however, this database 
is not intended for modelling growth and other individual 
tree attributes, but for monitoring forests in general (Law-
rence et al. 2010; Sharma et al. 2011). All empirical models 
including H–D models are developed based on the assump-
tions that all predictor variables are free from systematic 
errors. If they have such errors, the error-in-variable mod-
elling approach (Kangas 1998; Sharma et al. 2011) must 
be applied, which is computationally complex. Developing 
forest models using research sample plot data and testing 
against NFI data is often carried out (Sharma et al. 2017c). 
Testing the models against NFI dataset increases credibility 
and confidence about the model, as NFI data cover wider 
environmental variabilities and growth conditions. In recent 
years, the NFI data have been used to develop various forest 
models despite their errors (Adame et al. 2008; Bollandsås 
and Næsset 2009; Crecente-Campo et al. 2010; Huuskonen 
and Miina 2007; Mehtatalo 2005; Monserud and Sterba 
1996; Hasenauer and Monserud 1996; Nanos et al. 2004; 
Sharma and Breidenbach 2015; Sharma and Brunner 2017; 
Sharma et al. 2011, 2012).

Developing accurate H–D models for the multi-layered 
mixed forests is more challenging, as H–D relationships 
vary more in these stands than in a single species and/or a 
single-layered stands due to the effects of species-specific 
differences and vertical stand structural differences that 
also causes increased competitive interactions among trees 
(Eerikäinen 2009; Sharma et al. 2016b; Temesgen et al. 
2014; Vargas-Larreta et al. 2009). When adequate meas-
urements are not available to develop species-specific H–D 
models, a single model applicable to several tree species 
can be developed based on the species-specific data pooled 
together using the dummy variable modelling approach. This 
study aims (1) to develop a generalized mixed-effects H–D 
model applicable to several tree species using permanent 
research sample plot data with application of the dummy 
variable modelling approach, and (2) to evaluate the predic-
tion performance of the H–D model using an independent 
dataset acquired from the Czech NFI sample plots. Variables 
describing effects of stand characteristics, dummy variables 
describing effects of species-specific differences, and ran-
dom component describing the effects of sample plot-level 
variability on the H–D relationships were included into the 
model. The proposed model can be used for precise predic-
tions of the tree height for several tree species from a mini-
mum set of predictors that can be easily derived from forest 
inventory database.
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Materials and methods

Data materials

Two different datasets were used in this study: one origi-
nating from permanent research sample plots (model fit-
ting dataset, hereafter named as a training dataset) and 
another originating  from the Czech NFI sample plots 
(model-testing dataset, hereafter named as a validation 
dataset). Dataset differs from each other in terms of sam-
pling design, measurement methods and accuracy, sta-
tistical characteristics, and extent of the coverage of tree 
population. We briefly describe each of these datasets in 
the following sub-sections.

Training dataset

This dataset originates from 224 permanent research 
sample plots, hereafter termed as sample plots, which are 
squared-shaped and size varies from 2500 to 4900 m2. 
Sample plots are located in various parts of the Czech 
Republic (Fig. 1a), covering most of the forested parts 
of the country. All sample plots were established by 
considering criteria, such as canopy structure, status of 
regeneration, piles of dead wood, and stand development 
stage and site quality. It was assumed that sample plots 
represented the full range of variabilities in site quality, 
stand development stage, stand density, species mix-
ture, stand structure, and management regime. Sample 
plot locations varied from 240 to 1370 m a.s.l., where 
mean climate characteristics and growing season length 
largely vary [i.e., annual temperature (4–9.5 °C), mean 
annual precipitation (500–1450 mm), and growing sea-
son length (45–180 days)]. Most of the studied stands, 
especially European beech and other broadleaved tree spe-
cies stands originated from natural regeneration and about 
20% Norway spruce and 60% Scots pine stands originated 
from plantation (Sharma et al. 2017d). About 70% stands 
aged between 20 and 165 years were left for spontaneous 
development where minimum selection felling was done, 
and this included salvage cutting and sanitary interven-
tions, e.g., extraction of the trees affected by bark beetles 
and diseases. Management of the rest of studied forests 
included a mainly shelter wood selection system (mini-
mum share of clear-cut), which involved formation of the 
5% gap (Sharma et al. 2017b). Measurements from those 
sample plots, which were substantially damaged by natural 
epidemics such as air pollution, wind, bark beetles, fungal 
pathogens and diseases in 1980s (Vacek et al. 2013), were 
excluded. Description of the study sites is also available 
in the literature (Sharma et al. 2017a, 2016a, b, d; Vacek 

et al. 2016). In total, 23 tree species were included into 
the training dataset, comprising 25% monospecific sample 
plots (Scots pine 7%, Norway spruce 8% European beech 
8% and others 2%) and 75% mixed species sample plots. 
Definition of the monospecific stands considered the inclu-
sion of all individuals other than a species of interest if 
they had over-bark diameter at breast height (DBH, 1.3 m 
above ground) ≥ 4 cm (Sharma et al. 2016c). All indi-
viduals with DBH ≥ 2 and height ≥ 1.5 m were measured 
on each sample plot. Following the inventory protocols 
developed by Forest Management Institute (FMI 2003), 
all dendrometric measurements were made between April 
2007 and March 2016. However, no repeated measure-
ments were involved, meaning that no temporal variation 
was included into the data. DBH and total height were 
measured with precisions of 1 mm and 0.1 m, respectively. 
The numbers of height sample trees by species used in this 
study are presented in Appendix-T1.

Validation dataset

The validation dataset originates from the Czech NFI sam-
ple plots. Laying out of the NFI sample plots (Fig. 1b) 
involves two main steps: first, squared-shaped basic plots 
(inventory squares) were located in each 2 × 2 km grid, 
which were generated randomly for the territory of the 
Czech Republic. Second, two circular plots (of size 500 m2 
and radius 12.62 m, hereafter, termed as sample plots) 
were located within each squared-shaped plot. The center 
of the first sample plot was located by generator of the ran-
dom numbers either in the center of an inventory square or 
in its vicinity (0–3600), however, no further than 300 m. 
The center of the second circular plot was located by gen-
erator of the random numbers in the vicinity (0–3600) of 
the center of the first sample plot in a distance equaling 
300 m. All sample plots were located by following the 
Field-Map technology of the IFER-Monitoring and Map-
ping Solutions Ltd (Šmelko and Merganič 2008). Loca-
tions of the NFI sample plot vary from 120 to 1405 m 
a.s.l. The first inventory was carried out between 2001 
and 2004 and second inventory between 2011 and 2015. 
All trees with DBH ≥ 7 cm were measured on each sam-
ple plot. We used all measurements from both inventory 
cycles, which resulted in a selection of 14,903 sample 
plots with 382,540 trees, representing large variabilities 
in site quality, stand structure and development stage, 
stand density, species mixture, silvicultural tending, and 
other management interventions and natural disturbances. 
All tree and stand characteristics were measured follow-
ing the inventory protocols developed by Forest Manage-
ment Institute (FMI 2003). Details of sampling design and 
measurement methods applied to the NFI sample plots are 
reported in the literature (FMI 2007; Kučera 2016; Sharma 
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et al. 2017c) or on the website (http://www.nil.uhul.cz). 
Conifer tree species predominate with a share of 58.9% 
(Norway spruce 44.1%), while broadleaved tree species 
occupy 41.1% (European beech 10.3%). The numbers of 

height sample trees by each species used in this study are 
presented in Appendix-T2. Graphs of the total height ver-
sus DBH in the training and validation datasets are shown 
in Fig. 2.

Fig. 1  Location of sample plots: 
sample plots in training dataset 
(a) and national forest inven-
tory sample plots in validation 
dataset (b)

http://www.nil.uhul.cz
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Data analysis

Tree and stand variables

Variables describing stand characteristics (e.g., site quality 
and stand development stage, stand density) would have 
significant influences on the H–D relationships (Calama 
and Montero 2004; Castedo-Dorado et al. 2006; Crecente-
Campo et al. 2010; Sharma and Parton 2007). We evalu-
ated many measured stand variables for their potential 
effects on the H–D relationships. However, we could not 
use site index as a site quality measure in our H–D model, 
as this could not be estimated due to lack of stand age 
in our data. Instead, we used dominant height (HDOM, 
m), which was calculated using methods suggested by 
Sharma et al. (2011, 2016a), to describe the combined 
effects of stand development and site quality (Fu et al. 
2013, 2017c; Sharma et al. 2016a, c, 2017a, b, d). For 
mixed stands, where numbers of dominant trees of spe-
cies or species group were inadequate as per the definition 
(i.e., 250 largest trees per hectare), height measurements 
of the largest trees per sample plot regardless of species 

were used to calculate HDOM. We assumed that HDOM 
in such a mixed stand would also reflect stand development 
stage. We also calculated dominant diameter (DDOM—an 
average DBH of dominant trees, cm). Both DDOM and 
HDOM are considered independent of thinning, except in 
the case of thinning from above. Most of forest stands in 
the Czech Republic were thinned from below. We evalu-
ated the potential contributions of stem crowding (N,  ha−1) 
and stand basal area (BA,  m2  ha−1) to the H–D model. We 
evaluated other sample plot-level measures, such as total 
DBH (DBHsum, cm), arithmetic mean DBH (AMD, cm), 
arithmetic mean height (AMH, m), and quadratic mean 
DBH (QMD, cm), DBH difference between the thick-
est and thinnest trees (DBHrange, cm), height difference 
between the tallest and shortest trees (Hrange, m), and tall-
est tree per sample plot (HTALL, m). We also evaluated 
the tree-centred competition measures, such as ratio of 
DBH to QMD (dq) and basal area of trees larger in diam-
eter than a subject tree (BAL,  m2  ha−1) for their potential 
contributions to the H–D model. All aforementioned vari-
ables were calculated using all living trees per sample plot 
regardless of species. Summary statistics including mean, 

Fig. 2  Total height plotted against diameter at breast height (DBH) (upper panel) and plots of the mean height calculated by DBH class with 
interval of 10 cm (lower panel) [TS = 1: Norway spruce; 2: other conifers; 3: European beech; 4: other broadleaved]
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minimum, maximum, and standard deviation of the main 
tree and stand variables in the training and validation data-
sets are presented in Table 1.

Selection of a base model

The relationship between height and diameter of a tree 
through time is a nonlinear, because growth of the height 
with respect to diameter increases rapidly in earlier age and 
slowly in the latter age, thereby exhibiting a sigmoidal pat-
tern (Clutter et al. 1983; Lei and Parresol 2001). Thus, selec-
tion of a functional form for modelling H–D relationship 
should not be restricted to the ease-of-fit to the data, but 
also should consider characteristics of a chosen function, 
i.e., sigmoidal pattern that has an inflection point, mono-
tonic increment, and asymptote (Castedo-Dorado et al. 2005; 
Lei and Parresol 2001). We considered only those growth 
functions, which possess these important characteristics, in 
our preliminary analyses, and they are Chapman-Richards 
function (Chapman 1961; Richards 1959), Weibull function 
(Yang et al. 1978), Schnute function (Schnute 1981), and 
Korf function (Zeide 1989). These functions have frequently 
been used for modelling H–D relationships (e.g., Peng 2001; 
Zhang 1997; Sharma and Zhang 2004; Sharma and Parton 
2007; Li et al. 2015) and modelling other individual tree 
attributes (Burkhart and Tomé 2012; Carmean and Lenthall 
1989; Goelz and Burk 1992; Huang and Titus 1994; Lei and 
Parresol 2001; Tewari and Kishan Kumar 2002). We fitted 
the functions using OLS method, and following the form of 
the Chapman-Richards function (Eq. 1) was found the most 

appropriate to our data, as it showed the least residual vari-
ations (i.e., smallest sum of squared errors). Henceforth, this 
model is termed as a base model.

where Hij, and  DBHij are total height (m) and diameter at 
breast height (cm) of the jth tree on the ith sample plot, 
respectively, b1, b2, b3 are parameters to be estimated, and 
�ij is an error term. In the context of H–D modelling, it is 
a common practice to force the H–D curve to pass through 
(0, 1.3) to prevent the negative estimate of height for small 
trees, and therefore 1.3 was added to avoid the illogical esti-
mates when DBH would approach zero.

Extension of a base model

The H–D relationship is significantly influenced by other 
tree and stand characteristics, such as tree health and vigor, 
site quality and stand development stage, and stand den-
sity or competition, and species mixture in a stand (Calama 
and Montero 2004; Sharma and Zhang 2004). Consider-
ing this, we evaluated several variables (Table 1) for their 
potential contributions to description of the variations in 
the H–D relationships. Evaluation was based on whether 
variables were suited to the model fitting procedure begin-
ning with graphical exploration of the data and examination 
of the correlation statistics (Fu et al. 2017a; Sharma and 
Breidenbach 2015; Uzoh and Oliver 2008). The interaction 
effects between predictor variables and their transformations 

(1)Hij = 1.3 + b1
{

1 − exp
(

−b2DBHij

)}b3 + �ij

Table 1  Summary statistics of 
data

Variables Statistics [mean ± standard deviation (range)]

Training data Validation data

Number of sample plots 224 14,903
Total number of height sample trees 29,390 382,540
Number of height sample trees per sample plot 232.2 ± 168.2 (8–664) 36.1 ± 14.9 (4–91)
Number of stems (N  ha−1) 934 ± 683 (32–4700) 747 ± 337 (28–2880)
Stand basal area (BA,  m2 ha−1) 42.1 ± 15 (0.1–81.1) 37.2 ± 14.7 (0.08–87.1)
BA of trees larger than a subject tree (BAL,  m2 ha−1) 32.2 ± 17.6 (0–79.2) 28.7 ± 15.2 (0–85.8)
Quadratic mean DBH per sample plot (QMD, cm) 28.2 ± 9.9 (9.6–87.4) 26.3 ± 7.5 (7–84.2)
Ratio of individual tree DBH to QMD (dq) 0.86 ± 0.5 (0.04-7) 0.99 ± 0.31 (0.12–4.52)
Arithmetic mean DBH per sample plot (AMD, cm) 24.5 ± 10.2 (9.1–84.4) 26.1 ± 7.6 (7.7–74.6)
DBH sum per sample plot (DBHsum, cm) 4446 ± 1823 (508–9333) 894 ± 313 (51–1897)
DBH range per sample (DBHrange, cm) 65.4 ± 50.4 (14.5-108.9) 31.6 ± 12.5 (7.5–102.8)
Arithmetic mean height per sample plot (AMH, m) 17.3 ± 6.5 (4.6–42.8) 20.9 ± 5.7 (4.5–41.5)
Height of tallest tree per sample plot (HTALL, m) 32 ± 9.6 (10.5–48.7) 27.8 ± 6.3 (5.1–47.8)
Height range per sample plot (Hrange, m) 27.1 ± 11 (5.4–43.3) 15.2 ± 5.6 (1.7–39.5)
Dominant height per sample plot (HDOM, m) 27.3 ± 6.7 (8-42.8) 24.3 ± 6.4 (3.8–45.2)
Total height (H, m) 17.4 ± 9.1 (1.5–48.7) 20.8 ± 7.1 (3.1–47.8)
Diameter at breast height (DBH, cm) 24.4 ± 16.7 (2–116.1) 26.1 ± 11.6 (7–119.7)
Dominant diameter (DDOM, cm) 46.7 ± 16.4 (8.9–73.7) 43.2 ± 14.9 (5.6–76.8)
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(logarithmic, inverse, and square) were also evaluated. We 
identified HDOM, BA, and dq as more significantly con-
tributing predictors than others based on the results from 
the stepwise variable selection procedures (Montgomery 
et al. 2001). The model provided the greatest fitting improve-
ment to the data when b1 of Eq. 1 was modeled as a function 
of HDOM, BA, and dq as below:

where HDOM = dominant height (m); BA = stand basal 
area  (m2  ha−1); dq = ratio of DBH to quadratic mean DBH. 
For the purpose of simplicity (i.e., ease-of-fit to the data, 
and easy application of the developed H–D model), two 
individual species (Norway spruce, European beech) and 
two species groups were considered from a total of 23 tree 
species recorded from research sample plot inventory (see 
Appendix-T1). Following the principles of modelling indi-
cator variables (Bates and Watts 1988; Sharma et al. 2012), 
we formed three dummy variables (S1, S2, S3) for four tree 
species to describe the effect of species-specific differences 
on the H–D relationships.

Species S1 S2 S3

Norway spruce (TS1) 0 0 0
Other conifers (TS2) 1 0 0
European beech (TS3) 0 1 0
Other broadleaved (TS4) 0 0 1

The effect of species-specific differences was best 
described when b1 of a base model (Eq. 1) was expressed as 
a linear function of dummy variables as below:

Our database contained multiple sampling units (multi-
ple species, multiple trees and measurements within each 
sample plot), and therefore we formulated the mixed-effects 
H–D model using Eq. 1 (with Eq. 2a, 2b included) through 
inclusion of the sample plot random effects. The objective of 
inclusion of the random effects into the fixed-effect model is 
to secure a higher prediction accuracy (Pinheiro and Bates 
2000; Sharma et al. 2017d; Vargas-Larreta et al. 2009). Vari-
ous mixed-effects model variants formed with all possible 
combinations of the random effects and three fixed param-
eters in Eq. 1 were fitted to the data. However, convergence 
with the smallest Akaike information criterion (AIC) was 
found only with the random effects added to b1 and b3 in 
Eq. 1 (with Eq. 2a, 2b included). The mixed-effects model 
formulation steps are available in the standard textbooks 
(Pinheiro and Bates 2000; Vonesh and Chinchilli 1997), and 
therefore, only final form of our mixed-effects H–D model 
is presented here (Eq. 3) that best described the variations 
of the H–D relationships in our data:

(2a)b1 = f
(

HDOM, BA, dq
)

(2b)b1 = f
(

S1, S2, S3
)

where Sk is tree species or species group (k = 1, 2, 3); bk 
(k = 1, 2, 3) and αk (k = 1,2,...,7) are parameters to be esti-
mated, and �ij is an error term; and all other abbreviations are 
the same as in Eq. 1, 2a, and 2b. In this equation, vectors of 
error �ij and sample plot random effects (ui1, ui2) are defined 
by �

i
∼ N(0, R) and u

i
∼ N(0, D) , respectively, meaning 

that error vector εi is assumed to have a normal distribution 
with zero mean and within-sample plot variance–covariance 
matrix R, defined by Eq. 4.

A vector ui of the random effects (ui1, ui2) in Eq. 3 was 
assumed to have a multivariate normal distribution with 
zero mean and sample plot variance–covariance matrix D, 
defined by Eq. 5.

In Eq. 4, σ2 is a scaling factor for error dispersion (Gre-
goire et al. 1995) and it is equivalent to the residual vari-
ance of the estimated H–D model and common to all sample 
plots. A matrix Гi accounts for within-sample plot autocor-
relations of the residual errors, but this was assumed to be 
an identity matrix, Ii, because our data lacked the repeated 
measurements. A matrix Gi accounts for a within-sample 
plot variance heteroscedasticity, and its diagonal elements 
are provided by variance function introduced into the H–D 
model. Since our preliminary analyses showed a within-
sample plot heteroskedasticity in the residuals even after 
inclusion of the random effects, we added a power variance 
function of the following formulation (Eq. 6) to the mixed-
effects H–D model (Eq. 3). This function reduced the hetero-
scedasticity most effectively among three-variance functions 
evaluated, such as exponential, power, and constant plus 
power functions (Fu et al. 2013; Pinheiro and Bates 2000).

where � is a parameter to be estimated; Ĥij is the estimated 
height of jth tree on the ith sample plot using fixed part 
of the mixed-effects model (Eq. 3); and σ2 is the same as 
defined in Eq. 4.

Model estimation and evaluation

We estimated the generalized mixed-effects H–D model 
with the restricted maximum likelihood in the SAS 
macro NLINMIX (SAS Institute Inc. 2012) using the 

(3)

Hij = 1.3 +
(

b1 + ui1
){

1 − exp
(

−b2DBHij

)}(b3+ui2) + �ij

with b1 = �1HDOM
�2
i
+ �3BAi + �4dqij + �5S1 + �6S2 + �7S3

(4)R
i
= �2

G
0.5
i
Γ
i
G

0.5
i
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expansion-around-zero method (Littell et al. 2006). How-
ever, we estimated all base models with OLS method using 
PROC NLIN in SAS (SAS Institute Inc. 2012). We used 
most common goodness-of-fit statistics to evaluate the fit-
ted model alternatives, and they are root mean squared error 
(RMSE) that analyses precision of estimation, coefficient of 
determination (R2) that reflects total variability described 
by model considering total numbers of the parameters to be 
estimated, and AIC. The AIC is based on minimizing the 
Kullback–Lieber distance and it imposes the penalty for the 
number of parameters of the model (Akaike 1972; Burnham 
and Anderson 2002). The formulae of these three statisti-
cal measures are available in the statistical textbooks, e.g.. 
Montgomery et al. (2001). The R2 for mixed-effects model 
is often expressed into two different coefficient of deter-
minations: marginal coefficient of determination ( R2

m
 ) and 

conditional coefficient of determination ( R2
c
 ). The former 

is concerned with variance described by fixed-effect fac-
tors, but latter is concerned with variance described by both 
fixed and random effect factors (Nakagawa and Schielzeth 
2013; Sharma et al. 2017b). We also analyzed the residual 
graphs and simulated H–D curves overlaid on the measured 
data. Unless otherwise specified, we used 1% level of signifi-
cance in all analyses. We tested the H–D model using NFI 
dataset. We examined the sample plot-specific H–D curves 
produced with a calibrated mixed-effects H–D model using 
the random effects that were estimated with the empirical 
best linear unbiased prediction (EBLUP) method (Pinheiro 
and Bates 2000).

Calibration of the mixed‑effects model 
and subject‑specific height prediction

Tree height can be predicted with or without using random 
effects in the mixed-effects H–D model. A prediction with 
the estimated random effects included is known as calibra-
tion or localization of the mixed-effects model (Pinheiro 
and Bates 2000). This requires the prior measurements of 
a response variable (tree height) for every sample plot in 
addition to the information of other predictors of the model. 
Height measurements of any number of trees per sample 
plot may be used for estimation of the random effects and 
adjusted to a fixed part of the mixed-effects H–D model. We 
calibrated the mixed-effects H–D model using the random 
effects estimated from the randomly selected trees that var-
ied from one to four, depending on the numbers of trees of a 
particular species or species group available on the plot. We 
applied the following EBLUP equation (Pinheiro and Bates 
2000) to predict the sample plot-specific random effects 
using PROC IML in SAS (SAS Institute Inc. 2012).

(7)u
i
= DZ

T

i

(

�
i
DZ

T

i
+ R

i

)−1
�
i

where ui is a random effect vector accounting for sample plot 
variations of the mean H–D relationships for the ith sam-
ple plot. The values of R

i
and D were obtained from Eq. 4, 

5, respectively. A vector �
i
 containing residual errors was 

obtained from fixed part of the mixed-effects H–D model. 
The elements of a designed matrix Zi, were obtained from 
partial derivatives of Eq. 3 with respect to its fixed parame-
ters (b1 and b3) (Calama and Montero 2004; Castedo-Dorado 
et al. 2005; Crecente-Campo et al. 2010; Pinheiro and Bates 
2000; Sharma and Parton 2007) as shown below.

where ln is a natural logarithm, all other abbreviations and 
symbols are the same as in Eqs. 1, 2a, 2b and 3. Since our 
objective of developing the mixed-effects H–D model was 
for subject-specific height prediction, we evaluated the 
prediction performance of the model in both training and 
validation datasets using the following statistical measure 
(Huang et al. 2009; Sharma et al. 2017d):

where ēi is a mean prediction error for tree heights on the ith 
sample plot, Hij and Ĥij are measured and predicted heights 
for the jth tree on the ith sample plot, H̄ij is a mean of meas-
ured height for the jth tree on the ith sample plot, and ni 
is the number of observations for the ith sample plot. In 
addition to this, we also examined other common prediction 
statistics, such as RMSE and R2, and sample plot-specific 
H–D curves produced with a calibrated model.

Results

The base model described less than 81% variations in the 
H–D relationship for each species or species group 
( R2

adj
 = 0.81: Norway spruce; 0.74: other confers; 0.79: Euro-

pean beech; 0.74: other broadleaved) while applying the 
OLS method to estimate its parameters. When covariate pre-
dictors: dominant height (HDOM), stand basal area (BA), 
ratio of DBH to quadratic mean DBH (dq) were added to 
base model, there was a substantial improvement on the 
model fits ( R2

adj
 = 0.89: Norway spruce; 0.81: other confers; 

0.88%: European beech; 0.78%: other broadleaved). Model 
fits were further improved when sample plot random effect 
parameters (ui1, ui2) and power variance function (Eq. 6) 
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were included into the model, i.e., model described the larg-
est part of the variations in the H–D relationship for each 
species or species group (92.4%: Norway spruce; 88.3%: 
other confers; 91.6%: European beech; 84.4%: other broad-
leaved). Since our main interest of developing H–D model 
is for sample plot-specific prediction, only results of the 
mixed-effects model are presented in Table 2. All parameter 
estimates of the mixed-effects model (Eq. 3) were highly 
significant, even p value of the least significant estimate of 
α3 was less than 0.0002, and all estimated values and signs 
are biologically plausible and interpretable. Differences of 
the parameter estimates of dummy variables indicated clear 
differences in the H–D relationships among tree species or 
species groups. The reduction of unexplained variance (i.e., 
mean squared errors, σ2) in the mixed-effects model relative 
to its OLS model variant was about 44%. A larger value of 
ui1 indicated that b1 in Eq. 3 was more strongly correlated to 
sample plot variations than b3 (Table 2).

Within-sample plot heteroskedasticity in the residuals 
was substantially reduced by a power variance function that 
was expressed as a function of the predicted height [Eq. 6, 
with ϕ = 0.4529, estimated from data] (Fig. 3). A large 

deviation in the residuals was seen only for a few trees of 
Norway spruce (TS1) and other conifers (TS2), which were 
caused by extreme outlier observations. Histograms of the 
residuals showed the Gaussian distribution patterns, indicat-
ing that significant skewness was absent in the residuals.

The effects of HDOM, BA, and dq on the H–D rela-
tionship for each species or species group were simulated 
(Fig. 4). As expected, HDOM provided the largest contribu-
tion to the H–D model, followed by dq and BA. The simu-
lation showed that tree heights increased with increasing 
effect of stand development and site quality described by 
HDOM and competition effect described by dq. However, 
tree height decreased with increasing BA when all other 
conditions were assumed the same.

The calibrated H–D model described the H–D relation-
ships adequately well in the validation dataset when ran-
dom effects were predicted from height measurements of 
the randomly selected trees that varied from one to four, 
depending on the numbers of trees of a particular species or 
species group available on the plot. The prediction statistics 
R2 and RMSE for validation data were much promising, i.e., 
R2 varied from 0.93 to 0.97 with the largest R2 for Norway 
spruce and smallest R2 for other broadleaved species (TS4). 
The prediction statistics and graphs of the prediction errors 
of the calibrated H–D model applied to few major species or 
species groups in validation data are presented in Appendix-
T3 and Appendix-F1, respectively. Testing the model against 
the data from four major tree species (Norway spruce, Euro-
pean beech, Scots pine, European larch) and two major spe-
cies groups (fir species, oak species) confirmed the model’s 
high accuracy. We also analyzed prediction statistics and 
graphs of the prediction errors for several tree species falling 
under TS2 and TS4 in the validation dataset, and found high 
precisions (i.e., R2 > 0.91 and absence of substantial trends 
in the prediction errors).

Most of the prediction biases were found falling within 
± 20% range for more than 96% sample plots in each species 
or species group, indicating that the calibrated H–D model 
for the majority of sample plots in both training and valida-
tion datasets performed adequately well (Fig. 5). However, 
a large bias (bias > 20%) still remained to be described for 
less than 4% sample plots in both datasets. A slightly larger 
negative skewness in the prediction bias was present in both 
datasets, indicating that our model slightly over-predicted 
the height for some extremely small trees on those sample 
plots where taller trees existed in abundance.

We examined the sample plot-specific H–D curves pro-
duced by calibrated mixed-effects model and overlaid them 
on the measured height–DBH pairs of both datasets (Fig. 6). 
Except for few sample plots, where there were outlier meas-
urements, the height curves produced with a calibrated 
model showed a complete coverage to the measured data 
for each species or species group. For mixed species sample 

Table 2  Parameter estimates, variance components, and fit statistics 
of the mixed-effects H–D model (Eq. 3) [ R2

m
 : marginal coefficient of 

determination; R2

c
 : conditional coefficient of determination; RMSE: 

root mean squared errors; AIC: Akaike’s information criterion; 
α1,...,α5, b1, b2: fixed parameters; ui1, ui2 = random effect parameters; 
σ2

ui1: variance of ui1; σ2
ui2: variance of ui2; σ2: residual variance; other 

symbols are the same as in Eqs. 1, 2a, 2b, and 3]

Components Parameter esti-
mates

Standard errors t-value p-value

Fixed
 α1 1.8446 0.2446 7.54 < 0.0001
 α2 0.8183 0.03420 23.92 < 0.0001
 α3 − 0.04592 0.01234 − 3.72 0.0002
 α4 1.4611 0.2199 6.64 < 0.0001
 α5 1.0848 0.1544 7.03 < 0.0001
 α6 1.9619 0.1260 15.57 < 0.0001
 α7 1.2824 0.1528 8.39 < 0.0001
 b2 0.04515 0.001577 28.63 < 0.0001
 b3 1.0456 0.03105 33.68 < 0.0001

Variance
 �2

ui1
7.3293

 σui1ui2 0.4591
 �2

ui2
0.1584

 σ2 0.5040
Fit statistics
 R2

m
0.8679

 R2

c
0.9182

 RMSE 2.7486
 AIC 137568
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plots, H–D curves were clearly differentiated, i.e., curves 
passed through the middle of the measured data for each 
species or species group.

Discussion

Based on the evaluation of four versatile growth functions, 
the Chapman-Richards function was selected as a base 
function to include covariate predictors and random effect 
parameters. Selection of the base functions should be based 
on the principles of functions’ logical behavior, high accu-
racy, and suitability in the practical application (Borders 
1989; Castedo-Dorado et al. 2005; Goelz and Burk 1992; 
Liu et al. 2017), and all functions we used to fit our data 
would meet these requirements. The Chapman-Richards 
function is flexible not only for modelling H–D relation-
ships (Lei and Parresol 2001; Fang and Bailey 1998; Huang 
et al. 2000; Sharma and Parton 2007; Sharma and Zhang 
2004; Vargas-Larreta et al. 2009; Zhang 1997), but also for 
modelling other individual tree attributes (Burkhart and 
Tomé 2012; Carmean and Lenthall 1989; Goelz and Burk 

1992; Huang and Titus 1994; Lei and Parresol 2001; Tewari 
and Kishan Kumar 2002). Compared to various predictors 
evaluated (Table 1), stand basal area (BA), ratio of DBH to 
quadratic mean DBH (dq) and dominant height (HDOM) 
more significantly contributed to the model. Among them, 
HDOM appeared the most influencing one (Fig. 4). This 
is commonly used in the H–D model, because it describes 
the combined effects of site quality and stand development 
stages on the H–D relationships (Calama and Montero 2004; 
Castedo-Dorado et al. 2006; Crecente-Campo et al. 2010; 
Eerikainen 2003; Sharma and Parton 2007; Vargas-Larreta 
et al. 2009). The HDOM indicates site quality in terms of 
growth and yield capacity of a stand. Therefore, HDOM is 
not used only in the H–D models, but also in other individual 
tree models, such as crown models (Fu et al. 2013, 2017a, 
2017b; Sharma et al. 2016a, 2017a; Soares and Tomé 2001), 
height-to-diameter ratio models (Sharma et  al. 2016c); 
height to crown base models (Fu et al. 2017c; Sharma et al. 
2017d), crown-to-bole diameter ratio models (Sharma et al. 
2017b), and crown height increment model (Short III and 
Burkhart 1992). However, HDOM cannot be considered as 
an effective measure as a site index in describing site quality, 

Fig. 3  Standardized residuals of the mixed-effects height–diameter model for training dataset [TS = 1: Norway spruce; 2: other conifers; 3: Euro-
pean beech; 4: other broadleaved]
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because the same HDOM can be achieved by younger stands 
on better site quality and older stands on poorer site quality.

With advancing stand stages through time, tree height 
also increases for a given stand density and competition 
level. The dq and BA describe the effects of stand density 
and competition on the H–D relationships, also contributed 
significantly to fitting improvement of the H–D model; 
however, contribution of each of them was less than that of 

HDOM (Fig. 4). Our data indicate that competition among 
individual trees increases with increasing dq, and this takes 
into account a level of the competition, as there is a close 
relationship between dq and number of trees per hectare. 
More dense stands tend to result in taller trees considering 
the same diameter, provided that all other conditions are the 
same (Vargas-Larreta et al. 2009). However, with increasing 
BA, tree height decreases and its contribution to the H–D 

Fig. 4  Effects of dominant height (HDOM), stand basal area (BA), 
and ratio of DBH to quadratic mean DBH (dq) on the height–diameter 
relationships for different species and species  groups. Curves were 
produced using the parameter estimates in Table  2. Mean values of 

the data were used for predictors except the variable of interest in the 
figure, which varied from approximately  minimum to maximum in 
the measured data [TS = 1: Norway spruce; 2: other conifers; 3: Euro-
pean beech; 4: other broadleaved]
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model becomes smaller, and this may be due to the abun-
dance of thicker trees on the majority of sample plots, where 
stand is relatively more sparse and tree heights are shorter. 
Since stand density is the most obvious influencing factor 
on the H–D relationships, particularly for trees growing in 
the mixed stands (Huang and Titus 1994; Vargas-Larreta 
et al. 2009).

A description of a large part of the variations in the H–D 
relationships without substantial trends in the residuals 
(Table 2; Fig. 3) indicates that chosen base model (Eq. 1) 
and covariate predictors (Eq. 2a), species grouping and 
dummy variables formed (Eq. 2b), and variance function 
(Eq. 6) introduced were all suited to our data. The H–D 
model behaves significantly differently in a particular spe-
cies or species group (Fig. 4). This is due to a large effect 
of species-specific difference that was modeled. Only few 
observations could not be properly described, because they 
are extreme outliers (Figs. 3, 6). Each of the two species 
groups (TS2, TS4) contains several tree species in both 
datasets (Appendix-T1, T2), and therefore model may not 
be as accurate as that for other two tree species (TS1, TS3). 
This may be due to the height differences that are larger in 
TS2 and TS4 than in TS1 and TS3. It would be worthwhile 
to develop the species-specific H–D models; however, it 
was not possible due to the limited observations of some 
species (Appendix-T1). A common H–D model applicable 
to several tree species can be more appropriate than using 
separate species-specific models, as former model increases 
the work efficiency. The calibrated H–D model (localized 
model) is able to describe most of the variations in the H–D 
relationships for each species or species group in the valida-
tion dataset. The sample plot-specific H–D curves produced 
with a localized model for a particular species or species 

group cover most of the height measurements in each data-
set (Fig. 6), indicating that our model may be adequate for 
precise predictions of tree heights. The calibrated curves 
would be very similar to the curves that would result from 
separately fitting of the sample plot-specific data, especially 
when number of trees per sample plot is  adequate.

Even though the mixed-effects H–D model without cali-
bration (only fixed part of the mixed model) could be used 
to predict height, prediction accuracy would be significantly 
low. Therefore, only calibrated mixed-effects H–D models 
are recommended for more accurate predictions (Calama 
and Montero 2004; Crecente-Campo et al. 2010; Robinson 
and Wykoff 2004; Sharma and Parton 2007; Sharma and 
Breidenbach 2015). However, prediction accuracies of these 
models depend on the application conditions of stands, such 
as vertical stand structure and chosen number of sample trees 
and representativeness of the measurements of heights that 
are used in calibration (Adame et al. 2008; Crecente-Campo 
et al. 2010; Mehtätalo et al. 2015). For a stand with homog-
enous structures, using height measurement of a single tree 
per sample plot in calibration may provide a high prediction 
accuracy (Trincado et al. 2007). The prediction errors could 
be significantly reduced for multi-layered stands, no matter 
whether they are monospecific or mixed stands, when height 
measurements of at least four trees of the same species or 
species group were used in calibration (Crecente-Campo 
et al. 2010; Sharma and Breidenbach 2015; Sharma et al. 
2016b). The calibration based on a small sample size can 
be the most efficient while applying the model (Calama and 
Montero 2004; Sharma and Parton 2007). Except on less 
than 4% sample plots, only small prediction bias was pre-
sent when calibration was done using height measurements 
from the randomly selected trees that varied from one to 

Fig. 5  Prediction bias of a calibrated model was calculated using 
Eq.  10 in both  training and validation datasets. The mixed-effects 
model was calibrated with the random effects predicted using height 
measurements of the randomly selected trees that varied from one 

to four, depending on the number of trees of a particular species or 
species group available on the plot [TS = 1: Norway spruce; 2: other 
conifers; 3: European beech; 4: other broadleaved]
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four, depending on the number of trees of a particular spe-
cies or species group available on the plot (Fig. 5). Larger 
prediction biases for some sample plots are due to the multi-
layered canopy of trees, where height differences are rela-
tively larger. The prediction accuracies for these sample 
plots could be increased with increasing number of sample 
trees used in calibration. The higher the number of sample 
trees used for calibration of the mixed-effects H–D model 
is, the higher the prediction accuracy would be (Calama 
and Montero 2004; Castedo-Dorado et al. 2006; Crecente-
Campo et al. 2010; Sharma and Breidenbach 2015; Sharma 
et al. 2016b; Temesgen et al. 2008). Existing H–D modelling 
studies (Calama and Montero 2004; Crecente-Campo et al. 
2010; Sharma and Breidenbach 2015; Sharma et al. 2016b) 
and many other tree attributes modelling studies (Fu et al. 
2013, 2017a, 2017c; Sharma et al. 2017a, d) show that four 
or five trees per sample plot are optimum for model calibra-
tion. Using more than four trees per sample plot in cali-
bration may lead to a higher inventory cost with very little 
accuracy gain. Using one to four trees per sample plot may 
compromise between inventory cost and prediction accuracy.

Developing a simple and accurate H–D model makes it 
possible for model users to predict tree heights by relying on 
measurements of DBH and other covariate predictors that 
can be derived from forest inventory databases. Existing 
H–D models (Adamec 2015; Adamec and Drápela 2015; 
Sharma et al. 2016b) are based on small datasets acquired 
from few forest stands that are confined to small localities 
in the Czech Republic, and therefore these models cannot 
be used for forest stands of other localities. The inventory 
crew have been compelled to measure the heights of all trees 
on the NFI plots, permanent research plots, and temporary 
sample plots due to lack of a composite H–D model that 
can be applicable to several tree species. Our model will be 
useful for the inventory crew, who may measure the heights 
of only a few trees per plot and predict the heights of the 
remaining trees using this model. This may save time and 
cost required for subsequent cycles of the Czech NFI and 
permanent research plot inventory. For stand conditions 
more or less similar to the basis of this study, our model 
may be applicable to the forests across other European coun-
tries. However, it needs to be tested before application, as 
various factors that may vary from country to country, even 
within the same country from region to region, significantly 
affect the H–D relationships. Our model is parsimonious, 
as it has only three covariate predictors, and therefore it can 
be efficient for practical application. The inclusion of many 
predictors into the model increases forest inventory costs.

Even though tree and stand variables are assumed to be 
measured without systematic errors, tree height measure-
ments may be subject to errors. These errors may be sub-
stantial (Omule 1980). In all H–D models cited in this article 
and others, including the model developed in our study, it 
is assumed that (1) tree height is a random variable and (2) 
other covariate predictors are fixed and measured without 
errors. It is known that violation of the second assumption 
leads to biased parameter estimates and variance, which 
causes invalidation of the hypothesis tests (Fu et al. 2017b; 
Fuller 1987; Rencher and Schaalje 2008). When predictors 
in the H–D model (Eq. 3) are considered to have significant 
errors, a complex modelling—an error-in-variable model-
ling approach (Kangas 1998; Sharma et al. 2011) needs to 
be applied.

Conclusion

Based on the modelling methods and results presented in 
this article, we conclude that a single generalized mixed-
effects H–D model (a composite model) developed from 
research sample plot data using the combined approach of 
the mixed-effects modelling and dummy variable modelling 
can be used for precise height predictions for the same tree 
species and species groups in the NFI data. The generalized 
mixed-effects H–D model, which includes three covariate 
predictors (dominant height, ratio of individual tree DBH 
to quadratic mean DBH, stand basal area), and sample plot-
level random effects estimated using height measurements 
of one to four trees depending on the number of trees of 
a particular species or species group available on the plot, 
significantly improved the prediction accuracy. The methods 
and model recommended in this article are based on the in-
depth analyses of various graphs (residuals, prediction errors 
and biases, simulated height curves), goodness-of-fit statis-
tics and prediction statistics. Unlike in the past, measuring 
heights of all trees on each sample plot will not be necessary 
in any forest inventory in the future. Instead, only heights of 
selected trees per sample plot may be measured and missing 
height measurements for the remaining trees will be imputed 
using our model. This will reduce the forest inventory cost. 
The presented model can be used for characterization of the 
vertical stand structures, estimation of volume and biomass, 
and simulation of stand dynamics. Our model will serves as 
an important tool in forest management decision making.
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