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Abstract

Key message Crown width models developed using

nonlinear simultaneous equations with a two-step pro-

cedure provided the best performance and are recom-

mended to predict the crown components and crown

width of Prince Rupprecht larch.

Abstract Crown width (CW) is defined as an average of

two crown diameters at two cardinal directions: east–west

and south–north, obtained from measurements of four

crown radii (crown components) at four directions: east,

west, south, and north. CW is one of the important tree

variables in forest growth and yield modeling, and forest

management. Reliable estimates of CW are central ele-

ments of forest management. However, the additivity of

CW and crown components and their inherent correlations

have not been addressed in existing CW models. In this

study, two alternative procedures for nonlinear simultane-

ous equations (NSE) were used to develop CW models.

The procedures included a disaggregation model structure

with one- and two-step, proportional weighting systems,

and two commonly used additivity methods, adjustment in

proportion (AP) and ordinary least squares with separating

regression (OLSSR). These methods were compared using

data from a total of 3369 Prince Rupprecht larch (Larix

principis-rupprechtiiMayr.) trees in 116 permanent sample

plots in northern China. It was found that these methods

effectively ensured that the sum of the crown components

was equal to twice the total CW. The NSE accounted for

the inherent correlations among the crown components and

CW. The CW models developed using the NSE with the

two-step procedure provided the best performance, fol-

lowed by the models developed with AP and OLSSR. This

methodology can be adapted to develop a system of CW

models for other tree species.

Keywords Adjustment in proportion � Additivity � Crown
width � Nonlinear simultaneous equations � Ordinary least

squares with separating regression

Introduction

Crown width (CW) is defined as an average of two crown

diameters at two cardinal directions: east–west and south–

north, obtained from measurements of four crown radii

(crown components), namely east crown radius (CRE),

west crown radius (CRW), south crown radius (CRS), and

north crown radius (CRN) (Bragg 2001). It is a useful

measure of tree vigor (Assman 1970; Hasenauer and

Monserud 1997; Hynynen et al. 2002), mortality (Mon-

serud and Sterba 1996), and above-ground biomass
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(Carvalho and Parresol 2003; Fu et al. 2016). CW can be

also used in ecological modeling to predict light intercep-

tion in tree canopy (Oker-Blom et al. 1989; Pukkala et al.

1991). However, despite its numerous benefits, measuring

the CW of every sampled tree is costly and time-consum-

ing (Bragg 2001; Sönmez 2009; Fu et al. 2013; Sharma

et al. 2016). Thus, accurate CW models are required for

accurate predictions of CW.

CW estimates obtained from measurements of stand

and tree characteristics serve as input information to

deterministic or stochastic CW models (Biging and

Wensel 1990; Baldwin and Peterson 1997; Bragg 2001;

Sönmez 2009; Fu et al. 2013; Hao et al. 2015; Sharma

et al. 2016). Methods of developing CW models have

evolved from simple ordinary least squares (OLS)

regression to linear mixed-effects (LME) modeling, and

then to nonlinear mixed-effects (NLME) modeling (Sán-

chez-González et al. 2007; Fu et al. 2013; Hao et al.

2015; Sharma et al. 2016; Fu et al. 2017a). All existing

CW models have been developed using the average of

two crown diameters as a function of tree variables (e.g.,

diameter at breast height, total tree height, height to

crown base, and the height–diameter ratio) and stand

variables (e.g., dominant height, site index, and stand

density measures) using OLS regression or an LME/

NLME modeling approach.

For each tree in a specific stand, especially for natural

forests, the differences among the crown components

(CRE, CRW, CRS, and CRN) are usually very large because

of vigorous competition with neighboring trees (Power

et al. 2012). The CW and crown components are also

strongly correlated with each other (Power et al. 2012).

However, none of the CW models that were developed

using existing methods have accounted for the differences

among the relationships between each of four crown

components and predictor variables of the CW models. In

addition, correlations among the crown components have

also been ignored. Thus, these CW models are not esti-

mated efficiently, and they do not account for additivity

among the crown components (Parresol 1999). The lack of

additivity in existing modeling methods results in an

inconsistency, as the sum of the predicted values from the

crown components models does not equal the predicted

value from the CW models (Kozak 1970). In addition,

these CW models also have fallen short of statistical effi-

ciency in terms of parameter estimation. These limitations

might result in low prediction accuracies of the CW models

(Tang et al. 2015).

A potential solution to the problem is the use of non-

linear simultaneous equations (NSEs) that not only ensure

the additivity of nonlinear CW and crown components

models, but also account for the correlations among the

crown components (Fuller 1987; Kangas 1998; Tang and

Zhang 1998; Tang et al. 2001, 2015; Carroll et al. 2006).

For example, Tang et al. (2000) proposed a disaggregation

model structure using an NSE, namely a one-step, pro-

portional weighting system, in which an above-ground

biomass model is first developed, and then the estimated

above-ground biomass is disaggregated into tree compo-

nents (e.g., wood, bark, branch, and foliage) based on their

proportions in the above-ground biomass. Furthermore, if

subtotal biomass estimates are also desirable, the estimated

above-ground biomass is first disaggregated into subtotals

(e.g., stem and crown) based on their proportions in the

above-ground biomass. Then, the estimated stem biomass

is divided into wood and bark based on their proportions in

the stem biomass, and the estimated crown biomass is

divided into branch and foliage based on their proportions

in the crown biomass. This constitutes a two-step, pro-

portional weighting system (Tang et al. 2000). Tang et al.

(2000) found that the system of biomass equations devel-

oped using this method effectively ensured additivity, and

had high prediction accuracy.

In recent years, NSE has been increasingly used in

forestry to develop various additive models, especially

additive biomass equations (Parresol 1999; Bi et al. 2004;

Dong et al. 2015, 2016; Fu et al. 2016, 2017b). It has been

found that NSE ensures high additivity efficiencies of the

forest models, and strong abilities of accounting for cor-

relations among the components. NSE increases the pre-

diction accuracy of the models, compared with other non-

additive methods, such as OLS methods (Lindstrom and

Bates 1990; Vonesh and Chinchilli 1997). To our knowl-

edge, however, no study has used NSE to ensure the

additivity of crown components during the estimation of

CW.

In addition to NSE, two other methods, adjustment in

proportion (AP) and an OLS with separating regression

(OLSSR), are commonly used for forcing the additivity of

a set of nonlinear models (Parresol 1999, 2001; Tang et al.

2001, 2015; Tang and Wang 2002; Fu et al. 2016). AP

directly partitions the total CW of a tree into its four basic

crown components (CRE, CRW, CRS, and CRN) by

weighting, whereas for OLSSR, a total CW regression

function is defined as the half sum of the separately cal-

culated regression functions of the crown components.

However, neither the AP nor OLSSR models account for

inherent correlations among the components. Regarding

the NSE, no study has used these two methods to develop a

system of nonlinear CW models.

The objectives of this study were: (1) to develop non-

linear CW models using NSE under two disaggregation

procedures (a one-step, proportional weighting system and

a two-step, proportional weighting system) for Prince

Rupprecht larch (Larix principis-rupprechtii Mayr.) in

natural stands in northern China, and (2) to compare the AP
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and OLSSR procedures with respect to their abilities to

predict CW and estimate crown components.

Materials and methods

Data

We used data from 116 permanent sample plots (PSPs) that

were established in natural stands of Prince Rupprecht

larch in the state-owned Guandi mountain forest (67 PSPs)

and the state-owned Boqiang forest (49 PSPs) of northern

China (Fig. 1). Each PSP was a 0.04 ha square. The PSPs

were selected in such a way that they provided represen-

tative information for a variety of stand structures and

densities, tree heights and ages, and site productivity.

Within each PSP, for all standing and living trees with

diameter at breast height (D) C5 cm, we measured total

tree height (H), height to crown base (height above ground

to crown base, HCB), and the four crown radii (CRE, CRW,

CRS, and CRN). Tree HCB was defined as the height from

the ground to the base of the first normal green branch as a

part of the crown; this excluded the secondary branches

(epicormics and adventitious) (Hasenauer and Monserud

1996). Furthermore, a single green branch was not the base

of tree crown if there were at least three whorls above it

(Hasenauer and Monserud 1996). The forked trees with

the forks below 1.3 m were treated as separate trees and

otherwise, as a single tree. The positions of four crown

radii of each tree were determined by two cardinal direc-

tions (Bragg 2001). The first cardinal direction was defined

as the direction from south to north (the corresponding

Fig. 1 Location of the study area consisting of the Guandi mountain forest and the Boqiang forest in northern China (lower left and right), and

the spatial distribution of permanent sample plots (upper left)
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crown width was defined as the south–north crown width,

CWSN), and the second cardinal direction was perpendic-

ular to the first, namely the direction from east to west (the

corresponding crown width is defined as the east–west

crown width, CWEW) (Fig. 2). The crown radii were

measured as the horizontal distances between the center of

a tree bole and the greatest extent of the crown from the

bole (Fig. 2). The branch tip was located by vertical

sighting with a clinometer (Marshall et al. 2003). CW was

computed by (CRS ? CRN ? CRE ? CRW)/2. Four dom-

inant or codominant trees were identified and measured in

each PSP (the proportion of the 100 thickest trees per ha)

(Raulier et al. 2003). The ages of the selected dominant or

codominant trees were recorded by counting the growth

rings based on increment cores taken from the stem at a

height of 0.1 m (above ground) (Rozas 2003). For each

PSP, plot dominant tree diameter at breast height DD, plot

dominant tree height DH, and dominant mean age DA were

obtained from the averages of these attributes (Du et al.

2000). The relationships among CW, CRE, CRW, CWEW,

CRS, CRN, and CWSN and the five tree variables, including

D, H, HCB, DH, and DD, are shown in Fig. 3.

The PSPs were randomly divided into two groups:

model-fitting and model-validation groups. The model-fit-

ting group contained 2250 trees from 69 PSPs, while the

model-validation group consisted of 1119 trees from 37

plots. The statistics and relevant stand characteristics of the

measurements are summarized in Table 1.

Base model

Fu et al. (2013) developed a logistic model for Chinese fir

(Cunninghamia lanceolata) CW estimation based on D, H,

HCB, and DH. They reported that their CW model pro-

vided higher predictive accuracy than other tested CW

models. To account for the differences between the Guandi

mountain and Boqiang forests, one additional dummy

variable, P, was created; P ¼ 0 denotes the Guandi

mountain forest, and P ¼ 1 denotes the Boqiang forest.

After imposing the P on b1 and b2, the modified Fu’s CW

model took the following form:

CW ¼ f ðx;P; bÞ ¼ ½b1 þ k1Pþ ðb2 þ k2PÞDH�
= 1þ ðb3 þ b4HCBÞ expð�ðb5 þ b6HÞDÞ½ � þ e

ð1Þ

where x is the covariate vector, including D, H, HCB, and

DH, b ¼ ðb1; b2; b3; b4; b5; b6; k1; k2Þ is an eight-dimen-

sional parameter vector, and e is an error term. Model (1)

was used as the base function to develop the nonlinear CW

models.

Fig. 2 The positions of the east

crown radius (CRE), west crown

radius (CRW), south crown

radius (CRS), north crown

radius (CRN), south–north

crown width (CWSN), and east–

west crown width (CWEW) of a

sample tree, E, W, S and N

represent the east, west, south

and north, respectively
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NSE

Following Tang et al. (2001), a general NSE can be for-

mulated as follows:

fðyi; xi; bÞ ¼ 0; i ¼ 1; . . .; n
Yi ¼ yi þ ei
EðeiÞ ¼ 0; VarðeiÞ ¼ R

8
<

:
ð2Þ

where n is the total number of observations; xi is the

observed value of a q-dimensional, error-free variable

(exogenous variable); Yi is the observed value of a p-di-

mensional, endogenous variable with error; yi is the true

value of Yi; R is the p� p dimensional, positive definite

variance–covariance matrix of the error term ei, and the

general expression of the matrix is given by R ¼ r2w; r2 is
the scaling factor for the error dispersion, which is given by

the residual variance of the model; w is the p� p dimen-

sional error structure matrix; and b is the npar � 1 dimen-

sional parameter vector. f ¼ ðf1; f2; . . .; fPÞT , with T

indicating the transpose of a matrix or vector, is a p-di-

mensional vector function, and in this study, it was com-

posed of the CW and crown radii equations that were used

in the base model (1) for the components.

Model (2) intrinsically ensures the compatibility of

parameters for any data structure, and it does not require

the specification of dependent and independent variables,

as is required by the OLS model. Model (2) can be solved

by a two-stage, errors-in-variables model (TSEM) algo-

rithm (Tang and Li 2002; Fu et al. 2016). The details of

NSE, TSEM estimation algorithm, and their computer

implementation can be found in the studies of Tang et al.

(2001, 2015).

Fig. 3 The relationships among east crown radius (CRE), west crown

radius(CRW), south crown radius (CRS), north crown radius (CRN),

east–west crown width (CWEW), south–north crown width (CWSN),

and crown width (CW) with five tree variables, including diameter at

breast height (D), total tree height (H), height to crown base (HCB),

total height of the dominant tree (DH), and D of the dominant tree

(DD) for two forests: the Guandi mountain forest denoted with black

circles and the Boqiang forest denoted with gray circles

Trees (2017) 31:1959–1971 1963
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Within the aforementioned NSE framework, there are

two alternative procedures for ensuring additivity: one

directly partitions the total CW of a tree into its four basic

components, including CRE, CRW, CRS, and CRN, which is

called a one-step, proportional weighting system; and the

other, which is called a two-step, proportional weighting

system, first divides the total tree biomass into subtotals,

CWEW and CWSN, and then it partitions the subtotals into

four basic components.

One-step, proportional weighting system

The one-step, proportional weighting system ensures that

the summation of the crown radii values from all the

components is equal to twice the total CW. For

i ¼ 1; . . .; n, CWi, CREi, CRWi, CRSi, and CRNi represent

the observed biomass values of CW, CRE, CRW, CRS, and

CRN for the ith tree, respectively, and their values contain

random errors. cwi, cwEi, cwWi, cwSi, and cwNi are the true

values of CWi, CREi, CRWi, CRSi, and CRNi, respectively.

Their expressions in the NSE are given by

where the functions fEðxi;Pi; bEÞ, fWðxi;Pi; bWÞ,
fSðxi;Pi; bSÞ, fNðxi;Pi; bNÞ, and fTðxi;Pi; bTÞ are obtained

from the base model (1) for CRE, CRW, CRS, CRN, and

CW, respectively; bE, bW , bS, bN , and bT are the

parameter vectors for CRE, CRW, CRS, CRN, and CW,

respectively; and Pi is the value of the dummy variable

for the ith tree. The structure matrix, w, with a size of

5� 5, is used to account for the inherent correlations

among the total CW and crown components (Tang et al.

2015, 2008).

Table 1 Summary of the statistics for the model-fitting and model-validation datasets

Variable Model-fitting data Model-validation data

Min Max Mean SD Min Max Mean SD

D (cm) 5 60.5 22.2 10.1 5 57.0 21.8 9.8

H (m) 1.5 37.8 17.5 7.2 1.9 33.9 16.9 7.3

HCB (cm) 0.1 25.3 7.1 4.5 0.2 22.1 7.1 4.4

DH (m) 11.5 32.1 23.0 5.1 10.7 31.9 22.4 5.4

DD (m) 20.9 57.5 31.0 5.5 16.4 47.3 29.8 5.6

CRE (m) 0.0 7.4 1.9 0.9 0.4 7.9 1.8 0.9

CRW (m) 0.1 6.9 1.9 0.9 0.3 6.3 1.8 0.9

CRS (m) 0.5 8.2 2.0 1.0 0.1 7.8 1.9 0.9

CRN (m) 0.1 7.2 2.0 0.9 0.1 6.8 1.9 0.9

CWEW (m) 0.7 12.5 3.7 1.5 0.7 10.6 3.6 1.4

CWSN (m) 0.6 11.1 4.0 1.6 0.5 9.4 3.8 1.5

CW (m) 0.7 11.7 3.9 1.4 0.6 9.5 3.7 1.3

Min minimum, max maximum, mean average value, SD standard deviation, D diameter at breast height, H total tree height, HCB height to crown

base, DH plot dominant tree height, DD plot dominant tree diameter at breast height, CRE east crown radius, CRW west crown radius, CRS south

crown radius, CRN north crown radius, CWEW east–west crown width, CWSN south–north crown width, CW total crown width

cwEi ¼
fEðxi;Pi; bEÞ

fEðxi;Pi; bEÞ þ fWðxi;Pi; bWÞ þ fSðxi;Pi; bSÞ þ fNðxi;Pi; bNÞ
cwi

cwWi ¼
fWðxi;Pi; bWÞ

fEðxi;Pi; bEÞ þ fWðxi;Pi; bWÞ þ fSðxi;Pi; bSÞ þ fNðxi;Pi; bNÞ
cwi

cwSi ¼
fSðxi;Pi; bSÞ

fEðxi;Pi; bEÞ þ fWðxi;Pi; bWÞ þ fSðxi;Pi; bSÞ þ fNðxi;Pi; bNÞ
cwi

cwNi ¼
fNðxi;Pi; bNÞ

fEðxi;Pi; bEÞ þ fWðxi;Pi; bWÞ þ fSðxi;Pi; bSÞ þ fNðxi;Pi; bNÞ
cwi

cw ¼ fTðxi;Pi; bTÞ
Yi ¼ yi þ ei;Yi ¼ ðCWEi;CWWi;CWSi;CWNi;CW)T; yi ¼ ðcwEi; cwWi; cwSi; cwNi; cwÞT ;
EðeiÞ ¼ 0; varðeiÞ ¼ r2w; i ¼ 1; . . .; n

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

ð3Þ
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Two-step, proportional weighting system

The two-step, proportional weighting system not only

ensures that the sum of the crown radii values is equal to

twice the total CW, but it also guarantees that the values of

the basic components for CWEW and CWSN are summed

and that the summations are equal to the corresponding

subtotals. The expressions of the NSE for this procedure

are given by

where the functions fEWðxi;Pi; bEWÞ and fSNðxi;Pi; bSNÞ are
obtained from the base model (1) for CWEW and CWSN,

respectively. The inherent correlations among the total CW

and crown components in this case are accounted for by the

structure matrix w with a size of 5� 5. All other variables,

parameters, and variance–covariance structures in this

model were as defined in the nonlinear CW model (3).

AP

The AP approach ensures that the sum of the values of all

the crown components is equal to twice the total CW. The

total CW of a tree is divided into four basic crown com-

ponents, including CRE, CRW, CRS, and CRN, by propor-

tional weights. In this approach, the base model (1) was

separately fitted by nonlinear OLSs for CW, CRE, CRW,

CRS, and CRN. The estimates of CW, CRE, CRW, CRS, and

CRN were calculated by

where CW
^

, CR
^

E, CR
^

W, CR
^

S, and CR
^

N are estimates of

CW, CRE, CRW, CRS, and CRN, respectively. b̂, b̂E,b̂W ,b̂S,

and b̂N are estimates of the parameters obtained by fitting

the base model (1) separately for CW, CRE, CRW, CRS,

and CRN, respectively.

OLSSR

The basemodel (1)was separately fitted by nonlinearOLSs for

CRE, CRW, CRS, and CRN, and the CW estimate was obtained

by obtaining the half sum of the four crown components:

CW
^

¼ ðCR
^

E þ CR
^

W þ CR
^

S þ CR
^

NÞ=2 ð6Þ

cwEi ¼
fEðxi;Pi; bEÞ

fEðxi;Pi; bEÞ þ fWðxi;Pi; bWÞ
fEWðxi;Pi; bEWÞ

fEWðxi;Pi; bEWÞ þ fSNðxi;Pi; bSNÞ
cw

cwWi ¼
fWðxi;Pi; bWÞ

fEðxi;Pi; bEÞ þ fWðxi;Pi; bWÞ
fEWðxi;Pi; bEWÞ

fEWðxi;Pi; bEWÞ þ fSNðxi;Pi; bSNÞ
cw

cwSi ¼
fSðxi;Pi; bSÞ

fSðxi;Pi; bSÞ þ fNðxi;Pi; bNÞ
fSNðxi;Pi; bSNÞ

fEWðxi;Pi; bEWÞ þ fSNðxi;Pi; bSNÞ
cw

cwNi ¼
fNðxi;Pi; bNÞ

fSðxi;Pi; bSÞ þ fNðxi;Pi; bNÞ
fSNðxi;Pi; bSNÞ

fEWðxi;Pi; bEWÞ þ fSNðxi;Pi; bSNÞ
cw

cw ¼ fTðxi;Pi; bTÞ
Yi ¼ yi þ ei;Yi ¼ ðCWEi;CWWi;CWSi;CWNi;CW)T; yi ¼ ðcwEi; cwWi; cwSi; cwNi; cwÞT
EðeiÞ ¼ 0; varðeiÞ ¼ r2w; i ¼ 1; . . .; n

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

ð4Þ

CR
^

E ¼ 2fEðx;P; b̂EÞ
fEðx;P; b̂EÞ þ fWðx;P; b̂WÞ þ fSðx;P; b̂SÞ þ fNðx;P; b̂NÞ

CW
^

þeE

CR
^

W ¼ 2fWðx;P; b̂WÞ
fEðx;P; b̂EÞ þ fWðx;P; b̂WÞ þ fSðx;P; b̂SÞ þ fNðx;P; b̂NÞ

CW
^

þeW

CR
^

S ¼ 2fSðx;P; b̂SÞ
fEðx;P; b̂EÞ þ fWðx;P; b̂WÞ þ fSðx;P; b̂SÞ þ fNðx;P; b̂NÞ

CW
^

þeS

CR
^

N ¼ 2fNðx;P; b̂NÞ
fEðx;P; b̂EÞ þ fWðx;P; b̂WÞ þ fSðx;P; b̂SÞ þ fNðx;P; b̂NÞ

CW
^

þeN

CW
^

¼ f ðx;P; b̂Þ þ e

ð5Þ
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where CR
^

E, CR
^

W, CR
^

S, and CR
^

N are obtained from the

base model (1) with known parameter values.

Model evaluation

We first assessed the accuracy of the base model for CRE,

CRW, CWEW, CRS, CRN, CWSN, and CW based on the

mean bias (�e), the variance of the residuals (d), the root

mean square error (RMSE), the total relative error (TRE),

and the adjusted coefficient of determination (R2
a), using

both the model-fitting and model-validation datasets. Then,

the fitting and predictive ability of the systems of CW

models (3) and (4) and the two additive models (AP and

OLSSR) were evaluated by the statistics �e, d, RMSE, and

TRE, using both the model-fitting and model-validation

datasets. These evaluation statistics were defined as:

�e ¼
X

ðYi � ŶiÞ=n ð7Þ

d ¼
X

ðYi � ŶiÞ2=ðn� 1Þ ð8Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�e2 þ d

p
ð9Þ

TRE ¼ 100
Xn

i¼1
ðYi � ŶiÞ2=

Xn

i¼1
Ŷi ð10Þ

R2
a ¼ 1� ðn� 1Þ

Pn
i¼1 ðYi � ŶiÞ2

ðn� PÞ
Pn

i¼1 ðYi � �YÞ2
ð11Þ

where Yi and Ŷi are the observed and predicted CW or

crown radius values, respectively, for the ith observation;

RMSE, which combines the mean bias and the variation of

the residuals, was used as the primary criterion for the CW

model evaluations. All the calculations were carried out

using ForStat 2.2 software (Tang et al. 2008).

Results

Base model

The parameter estimates of the base model (1) that was

separately fitted by nonlinear OLSs for CRE, CRW, CWEW,

CRS, CRN, CWSN, and CW are listed in Table 2. Except for

b6, all the other parameter estimates in the base model (1)

for each crown component and CW were significantly

different from 0 (p\ 0.05). The fit and prediction statistics

of the base model (1) for each crown component and CW

are provided in Table 3.

A Student’s t test indicated that the �e statistics for the

base model (1) for CRE, CRW, CRS, CRN, CWEW, CWSN,

and CW were not significantly different from 0 (p\ 0.05).

Table 3 shows that the differences of the fit and prediction

accuracies among the different crown components and CW

were significant (p\ 0.05). The base model (1) showed the

best overall performance for CW prediction.
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Comparison between the different CW models

The fit statistics of CW models (3) and (4) and the AP and

OLSSR models are presented in Table 4. All the models

guaranteed that the sum of CRE, CRW, CRS, and CRN was

equal to twice the total CW. A Student’s t test indicated

that the mean biases (�e) for all the models for CRE, CRW,

CRS, CRN, and CW were not significantly different from 0

(p[ 0.05). Except for the fact that the OLSSR under-

predicted CRE, CRS, and CW in the model fitting, all the

other predictions for each model—in terms of both model

fitting and validation—showed over-predictions.

Table 3 Evaluation indices of

the base model (1) for east

crown radius (CRE), west crown

radius (CRW), south crown

radius (CRS), north crown

radius (CRN), east–west crown

width (CWEW), south–north

crown width (CWSN), and total

crown width (CW)

Variables Model-fitting data Model-validation data

�e d RMSE TRE R2
a �e d RMSE TRE

CRE 0.0020 0.5750 0.7583 30.4955 0.2851 -0.0943 0.5779 0.7660 31.0410

CRW -0.0006 0.5307 0.7285 28.5253 0.3531 -0.0953 0.5205 0.7277 28.3095

CRS 0.0004 0.6228 0.7892 31.0224 0.3763 -0.0919 0.5622 0.7554 28.2862

CRN -0.0010 0.5558 0.7455 28.0731 0.3310 -0.1241 0.5894 0.7777 30.3775

CWEW 0.0006 1.1059 1.0516 29.5135 0.4731 -0.1916 1.2734 1.1446 34.8162

CWSN -0.0008 1.2116 1.1007 30.3841 0.5038 -0.2173 1.2431 1.1359 32.1787

CW -0.0001 0.8481 0.9209 21.9292 0.5664 -0.2043 0.9651 1.0034 25.9071

�e mean of the prediction error, d variance of residuals, RMSE root mean square error, TRE total relative

error, R2
a adjusted coefficient of determination

Table 4 Evaluation indices for

the system of nonlinear

simultaneous equation (NSE)

with both one- and two-step

procedures, and the adjustment

in proportion (AP) and the

ordinary least squares with

separating regression (OLSSR)

models

Variables Model-fitting data Model-validation data

�e d RMSE TRE R2
a �e d RMSE TRE

NSE with one-step procedure

CRE -0.0120 0.6935 0.8329 27.0650 0.2510 -0.0175 0.5088 0.7135 26.8541

CRW -0.0047 0.5149 0.7176 21.4326 0.3587 -0.0569 0.4037 0.6379 19.4227

CRS -0.0115 0.6044 0.7775 21.8867 0.3859 -0.0733 0.4152 0.6485 20.6815

CRN -0.0061 0.7325 0.8559 24.2362 0.2854 -0.0894 0.4550 0.6804 23.0218

CW -0.0162 0.9543 0.9770 18.1091 0.5372 -0.1214 0.6946 0.8422 17.8430

NSE with two-step procedure

CRE -0.0017 0.2596 0.5095 24.4184 0.2837 -0.0120 0.4626 0.6803 25.1048

CRW -0.0021 0.3285 0.5732 17.426 0.3905 -0.0131 0.3649 0.6042 18.3002

CRS -0.0119 0.4427 0.6655 19.3670 0.3971 -0.0647 0.3568 0.6008 18.7875

CRN -0.0025 0.4813 0.6938 21.7485 0.3026 -0.0538 0.3715 0.6119 23.4323

CW -0.0113 0.6749 0.8216 16.4427 0.5930 -0.1135 0.5530 0.7523 17.0049

AP

CRE -0.0056 0.9795 0.9897 30.6119 0.1769 -0.1010 0.5706 0.7621 30.6172

CRW -0.0061 0.6338 0.7961 28.6063 0.3060 -0.0994 0.5087 0.7201 27.6631

CRS -0.0048 0.727 0.8527 31.1538 0.3385 -0.0954 0.5491 0.7471 27.6209

CRN -0.0087 0.8605 0.9277 28.2029 0.2322 -0.1301 0.5675 0.7645 29.2625

CW -0.0001 0.8481 0.9209 21.9292 0.5664 -0.2043 0.9651 1.0034 25.9071

OLSSR

CRE 0.002 0.975 0.9874 30.4955 0.1804 -0.0943 0.5779 0.7660 31.0411

CRW -0.0006 0.6307 0.7942 28.5247 0.3097 -0.0953 0.5205 0.7277 28.3094

CRS 0.0004 0.7228 0.8502 31.0224 0.3427 -0.0919 0.5622 0.7554 28.2862

CRN -0.001 0.8558 0.9251 28.0731 0.2378 -0.1241 0.5894 0.7777 30.3775

CW 0.0006 1.2488 1.1175 21.9498 0.4705 -0.2026 0.9657 1.0034 25.9165

CRE east crown radius, CRW west crown radius, CRS south crown radius, CRN north crown radius, CW total

crown width, �e mean of the prediction error, d variance of residuals, RMSE root mean square error, TRE

total relative error, R2
a adjusted coefficient of determination
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CW model (4) had the better statistics for the crown

components and CW, compared with CW model (3) and

the AP and OLSSR models. For example, based on the

fitting results, the statistics d, RMSE, TRE, and R2
a of CW

model (4) were 29.28, 15.91 and 9.20% smaller, and

10.39% larger, respectively, than those of CW model (3);

20.42, 10.78 and 25.02% smaller, and 4.70% larger,

respectively, than those of the AP model; and 45.96, 26.48

and 25.09% smaller, and 26.04% larger, respectively, than

those of the OLSSR model. Based on the validation results,

the values of d, RMSE, and TRE from CW model (4) for

CW were 20.39, 10.67 and 4.70% smaller, respectively,

than those of CW model (3); 42.70, 25.02 and 34.36%

smaller, respectively, than those of the AP model; and

42.74, 25.02 and 34.39% smaller, respectively, than those

of the OLSSR model.

The parameter estimates for CW model (4) are listed in

Table 5. The estimates of k1 and k2 in CW model (4) were

significant (p\ 0.05), indicating that there was a pro-

nounced difference between the values of CRs from the

Guandi mountain forest and the Boqiang forest. All the

other parameter estimates of CW model (4) were also

highly significant (p\ 0.05), and their magnitudes and

signs were also biologically plausible. Based on the vali-

dation data, the plots in Fig. 4 show that there was no

serious trend in the residuals when the CW components

were predicted with CW model (4); the model-fitting

dataset resulted in similar patterns of the residuals.

Therefore, CW model (4) is ultimately recommended for

predicting the crown components and CW of Prince Rup-

precht larch.

Discussion

Additivity of crown radii is a desirable characteristic for

CW models used to predict CW. Moreover, if CW models

can account for the inherent correlations among the crown

components and CW, they will possess a great statistical

efficiency (Parresol 1999, 2001). In this study, NSE was

first time applied to develop CW models and also com-

pared with other two additive models (the AP and OLSSR

models) that are widely used to develop CW models. These

methods effectively ensured that the sum of CRE, CRW,

CRS, and CRN was equal to twice the total CW. For the

NSE, the correlations among the components were effec-

tively accounted for by the covariance matrix of random

errors. In the AP and OLSSR models, however, the crown

component models because of the assumption of homo-

geneous random error variances were fitted separately.

Thus, both AP and OLSSR models could not account for

the correlations.

Based on the results of Table 4, both the one- and

two-step procedures maintained the property of addi-

tivity for the CW models. The prediction accuracies of

each crown component and CW using the two-step

Table 5 Parameter estimates of

crown width (CW) model (4)
Parameters CW model (4)

(SE) CRE CRW CRS CRN CWEW CWSN CW

b1 5.9024 19.0275 9.7025 6.3208 21.2372 18.0562 18.3077

(0.7431) (6.8164) (1.0849) (1.0241) (3.1059) (1.4913) (1.9012)

b2 -0.0618 -0.2136 -0.1864 -0.0684 -0.2975 -0.2550 -0.2763

(0.0132) (0.1221) (0.0270) (0.0249) (0.0403) (0.0417) (0.0397)

b3 4.5238 10.6839 4.1643 4.8531 6.4628 4.4823 5.8682

(0.5174) (4.7230) (0.5064) (0.7650) (1.0874) (0.4295) (0.5784)

b4 0.1745 0.5327 0.3548 0.2446 0.1905 0.2136 0.2149

(0.0362) (0.1481) (0.0487) (0.0415) (0.0243) (0.0210) (0.0205)

b5 0.0613 0.0602 0.0797 0.0908 0.0482 0.0640 0.0695

(0.0085) (0.0063) (0.0084) (0.0091) (0.0047) (0.0041) (0.0042)

b6 -0.0005 -0.0008 -0.0006 -0.0014 -0.0005 -0.0007 -0.0007

(0.0002) (0.0001) (0.0002) (0.0002) (0.0001) (0.0001) (0.0001)

k1 -0.7937 -4.4671 -4.1821 -0.2245 -1.4340 -2.2105 -1.9144

(0.5824) (2.3045) (0.6651) (0.6345) (1.0483) (0.8449) (0.8510)

k2 0.0544 0.2219 0.1549 0.0563 0.9758 0.1078 0.1025

(0.0249) (0.1064) (0.0261) (0.0260) (0.0464) (0.0214) (0.0328)

CRE east crown radius, CRW west crown radius, CRS south crown radius, CRN north crown radius, CWEW

east–west crown width, CWSN south–north crown width, CW crown width, b1–b6, k1, k2 model parameters,

SE standard error
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procedure were much higher than those for the corre-

sponding components using the one-step procedure.

Model specification for a two-step procedure is more

complicated than that for a one-step procedure (Zeng

and Tang 2010; Fu et al. 2016). Therefore, in practice,

researchers prefer the use of a one-step procedure to

develop a system of additive biomass equations (Zeng

and Tang 2010; Fu et al. 2014, 2016). However, in this

study, because the prediction accuracies of the devel-

oped CW models were not very high overall (Table 4),

the model with the most powerful predictive ability

with the same predictors is of greater interest to us.

Thus, CW model (4) was selected to predict the crown

components and CW.

In some studies that developed additive biomass equa-

tions using one- and two-step procedures, e.g., Zeng and

Tang (2010), Dong et al. (2015), and Fu et al. (2016), the

biomass equation of the total tree was not included, and

estimated separately using OLS. These models also resul-

ted in high prediction accuracies. In this study, we devel-

oped CW models, without including the total CW model,

using one- and two-step procedures. The results showed

that although the previously developed models were sim-

pler than the CW models (3) and (4), their prediction

accuracies were much lower than those of the CW models

(3) and (4). In addition, the prediction accuracies of the

previously developed models were similar to that of the

base model (1) in this case, which is meaningless for

applying one- and two-step procedures to improve the

accuracy of CW prediction.

The results in Table 4 showed that the NSE more

accurately predicted the crown components and the total

CW, compared with the AP and OLSSR models. Particu-

larly, when NSE was used, the prediction accuracies of the

crown components and the total CW were the highest.

These results indicated that CW model (4) was a more

effective additive model for crown components and total

CW predictions. For the AP model, the total CW was

estimated from a separately fitted model (model (1), and

therefore, the prediction accuracy of the total CW was

equal to that of the CW from the base model (1) (see

Table 3). Similarly, in the OLSSR model, CRE, CRW, CRS,

and CRN were estimated by the separately fitted base

model (1), and therefore, the prediction accuracies of the

crown components of the OLSSR were equal to those of

the base model (1) (see Table 3). Relative to the base

model (1), the prediction accuracy of the total CW obtained

from the OLSSR was reduced. Over-predictions took place

for all the estimations using the AP and NSE from both

model-fitting and model-validation datasets and using the

OLSSR from the model-validation dataset, and for the

estimations of the CRW and CRN using the OLSSR from

the model fitting dataset. This may be because the base

model (1) used in this study has a characteristics of over-

prediction for the total CW and crown components for trees

with the corresponding large CW or crown components

Fig. 4 Residuals graphed

against predicted responses of

crown width (CW) model (7)

based on the model-fitting data

for east crown radius (CRE),

west crown radius (CRW), south

crown radius (CRS), north

crown radius (CRN), and total

crown width (CW)
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(Fig. 3). Therefore, this model needs to be further

improved in future study. The numbers of the PSPs allo-

cated in both the state-owned Guandi mountain forest and

Boqiang forest (Fig. 1) were approximately proportional to

their contributions and total stock volumes of the natural

stands of Prince Rupprecht larch in the entire northern

China. The trees in the PSPs had a range of diameters from

5 to 60.5 cm. For Prince Rupprecht larch, the trees with

diameter greater than 50 cm belong to super large diameter

class group in the forest management (Zhang, 2008). Thus,

the developed models in this study were also validated for

the trees with diameter greater than 50 cm.

Measuring tree crown components (CRE, CRW, CRS,

and CRN) may be subject to errors, even though stand and

tree variables are commonly assumed to be measured

without errors (Omule 1980; Gertner 1990). Measurement

errors made by field crews or faulty instruments, or both,

can be substantial (Omule 1980). For example, HCB is

generally measured with a standard height measurement

instrument, but when a crown is uneven, one often visually

rearranges crown branches to obtain a value for HCB.

There is ample evidence in the literature about the ambi-

guity of the visual estimation of tree variables. Nicholas

et al. (1991) and Ghosh et al. (1995) highlighted the vari-

ations that could arise from the subjective measurements of

tree and stand variables. In all existing CW models (Sán-

chez-González et al. 2007; Fu et al. 2013; Sharma et al.

2016), including those developed in this study, it is

assumed that (i) CW and crown components (crown radii)

are random variables, and (ii) other independent variables

are fixed and measured without errors. It is well known that

violations of the second assumption may lead to biased

parameter estimates and standard errors, which conse-

quently misleads the hypothesis test (Fuller 1987; Rencher

and Schaalje 2008). When the covariate predictors in CW

model (4) are likely to have significant errors, a new

modeling approach, such as a nonlinear error-in-variable

model (Fu et al. 2016), needs to be developed. We are in

the process of developing CW models to solve such

problems.

Conclusion

In this study, NSE, AP, and OLSSR approaches were used

to develop CW models based on the CW datasets of Prince

Rupprecht larch that were collected in northern China.

One- and two-step procedures were applied to ensure the

additivity for the NSE. We found that the model (1) pro-

posed by Fu et al. (2013) could be used as a base model for

effectively developing CW models. CW model (4) with a

two-step proportional weighting system performed better

than with a one-step proportional weighting system for

predictions of crown components and total CW. NSE

accounted for the inherent correlations among the crown

components and CW, whereas the AP and OLSSR models

did not. The prediction accuracy of CW model (4) was the

highest among these methods. In summary, this study

developed a system of nonlinear, additive CW models in

which the correlations among the crown components and

CW were accounted for during the modeling and prediction

of the CW of the individual trees and their crown com-

ponents. The obtained results can be generalized. Thus, it is

expected that this methodology can be applied to any

model system in which a quantity can be partitioned into

additive components.
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