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the F stands was significantly higher (46) than that in the 
L forecrops (25), and 34% of taxa were common to both 
stands. The dominant ECM species in F were unidenti-
fied fungus 1, Piloderma sp., Tylospora asterophora and 
Russula integra. Fir seedlings regenerating in L forecrops 
formed ectomycorrhizas mostly with unidentified fungus 1, 
Tomentella sublilacina, Tylospora sp., Hydnotrya bailii and 
T. asterophora. Based on ANOSIM analysis, ECM com-
munities have shown significant differences between study 
sites. The diversity of ECM fungal partners and the high 
colonization rate of silver-fir seedlings regenerating in larch 
forecrop stands should be sufficient to provide efficient 
afforestation of post-arable lands and gives the opportunity 
for their successful rebuilding.

Keywords  Ectomycorrhiza · Abies alba seedlings · Fir 
stands · Larch forecrops · ITS rDNA

Introduction

Since the middle of the last century, some of the former 
arable lands in the Carpathians (Poland) have been affor-
ested with forecrop stands. These stands provide the neces-
sary shade for low light (shade preferring) seedlings, such 
as Abies alba, which cannot be introduced as the first gen-
eration in open areas. Silver-fir is one of the most important 
forest trees in the mountainous regions of Central Europe 
(Jaworski 2011). One of the essential environmental fac-
tors that determines seed germination (Bormann 1983) and 
plant growth and subsequently regeneration and survival 
of silver-fir is the understory light regime. Seedlings and 
saplings require only 15–25% of full light (Jaworski 2011), 
which determine the methods available for regeneration 
and cultivation during the juvenile stage of the fir beneath 
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the understory. Among tree species recommended to be 
utilized as a forecrop, larch is one of the best known can-
didates due to its ability to provide appropriate light con-
ditions for fir seedlings. It was documented that the opti-
mal conditions for silver-fir seedlings development in the 
Karkonosze Mountains (Poland) were found under larch 
canopy (Dobrowolska 2008), demonstrated by the highest 
increment of height, diameter, and offshoots. Photosyn-
thetically active radiation (PAR) reached 20% under larch 
crowns, which positively affected growth of fir needles 
(Robakowski et al. 2004). Spruce (Picea abies) and beech 
(Fagus sylvatica) forecrops are unsuitable, because they do 
not provide recommendable light conditions for fir regener-
ation (Dobrowolska 2008). Taking into account this aspect 
larch has become one of the most popular forecrop tree spe-
cies in the middle of the 20 century for the afforestation of 
the post-agricultural areas in the Polish Carpathians. Cur-
rently, these stands have reached the rebuilding phase—
mature trees provide habitat for shade preferring silver-fir 
and these forests are gradually being converted by natural 
seed regeneration of silver-fir from adjacent stands or plant-
ing fir seedlings under the larch canopy. Rebuilding of fore-
crop stands may take 30–50 years.

Abies alba is an obligate mutualist with ectomycorrhizal 
(ECM) fungi (Trappe 1962). Formation of ECM on tree roots 
protects them against root diseases, ensuring healthy seedling 
growth (Marx 1969) and increases the survival rate of silver-
fir seedlings (Kowalski 1982). Studies of ECM communities 
of silver-fir grown under Scots pine (Pinus sylvestris) canopy 

documented that the diversity of ECM symbionts was lower 
in these stands than in mature silver-fir stands (Farfał 2008; 
Kowalski et al. 1996; Ważny 2014). To our knowledge, the 
fungal symbionts of A. alba seedlings regenerating under 
larch canopy have not been investigated. Moreover, the myco-
bionts of A. alba ectomycorrhizas are still poorly identified. 
The current knowledge of silver-fir symbionts is predomi-
nantly based on morphological and anatomical descriptions 
of ectomycorrhizas (Agerer 1987–2007; Berndt et al. 1990; 
Comandini et al. 2001; De Román et al. 2005; Dominik 1961; 
Farfał 2008; Kowalski 1982; Pachlewski 1955; Stępniewska 
and Rębisz 2004) and fungal fruiting bodies (Laganà et  al. 
1999, 2002). Only a few molecular investigations of the 
ECM symbionts that associate with silver-fir have appeared 
in the literature (Cremer et  al. 2009; Eberhardt et  al. 2000; 
Rudawska et al. 2015; Ważny 2014). In our study, we aimed 
to evaluate the diversity of ECM communities of 1-year-old 
silver-fir seedlings regenerating under canopy of larch and 
to compare these communities to those found in adjacent 
mature silver-fir stands.

Materials and methods

Study sites

Six stands located in the Experimental Forestry Unit in 
Krynica (Poland) were selected for the study: three sil-
ver-fir (A. alba) stands (F1, F2, and F3) and three larch 

Table 1   Localization, tree species composition, and soil parameters of the examined silver-fir and larch stands

a Data published by Ważny (2011, 2014)

Silver-fir stands Larch forecrops

F1 F2a F3a L1 L2 L3

GPS 49°26′27.9"N 
20°57′18.2"E

49°26′23.6"N 
20°57′37.6"E

49°21′26.7"N 
20°59′30.8"E

49°26′26.7"N 
20°57′14.2"E

49°26′22.1"N 
20°57′40.1"E

49°21′25.9"N 
20°59′41.0"E

Tree species compo-
sition

Silver-fir (100%) Silver-fir (100%) Silver-fir (100%) Larch (70%), 
Pine (20%), 
Spruce (10%)

Larch (90%), Spruce 
(10%)

Larch (100%)

Tree age (years) 45–140 45–130 75–95 50 55 50
Area (ha) 19.9 6.3 5.4 1.7 3.2 8.1
Soil type Acid brown (cambic)
pH in H2O 4.1 4.3 4.3 4.0 4.0 4.5
pH in KCl 3.3 3.4 3.3 3.1 3.2 3.5
C (%) 3.78 3.58 4.38 4.15 3.75 3.38
N (%) 0.24 0.24 0.28 0.25 0.22 0.24
C/N 15.8 15.0 15.5 16.3 16.8 14.3
Ca (mg/kg) 165.6 302.7 441.3 187.3 197.4 468.0
K (mg/kg) 64.2 57.8 80.6 53.7 50.2 93.2
Mg (mg/kg) 26.6 39.7 59.2 34.9 37.3 74.3
Na (mg/kg) 7.5 8.7 6.8 8.1 7.1 6.9
P (mg/kg) 1.3 1.3 1.2 1.9 1.6 2.6
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(L. decidua) stands (L1, L2, and L3) with natural regen-
eration of silver-fir seedlings. Their detailed description 
is presented in Table  1. Larch stands were treated as 
forecrop stands. The paired, L and F, stands were neigh-
bored. Each larch forecrop was established on an aban-
doned area after cultivation. The results from site F2 
and F3 were presented in the previous papers by Ważny 
(2011, 2014) and are included here due to the fact that 
fir stands were used as a reference fir stand for L2 and 
L3 forecrop stands. For ECM analysis, 30 1-year-old 
seedlings were sampled along parallel transects spaced 
10–20 m apart with minimum intervals of 10 m between 
particular seedlings. To avoid edge effect in fir stands, 
seedlings were collected at least 20  m from the stand 
edges. If the seedlings were not abundant in forecrop 
stands, minimum intervals (10 m) between samples were 
omitted. All the seedlings sampled in fir stands were the 
result of natural regeneration. In the case of larch stands, 
the number of fir seedlings naturally regenerated was 
not always enough and sampled seedlings were also the 
result of artificial regeneration by direct seeding. In fore-
crops, the places with other tree species were excluded 
from sample collection. The seedlings were collected 
together with adjacent soil surrounding the roots 
(approx. 250 ml), placed in plastics bags, and stored at 
−20 °C until analysis. In each stand, one bulk soil sam-
ple (each being composed of ten subsamples) was col-
lected for chemical analysis.

Seedling parameters

Average values of a number of mycorrhizal seedlings, num-
ber of alive and dead ectomycorrhizas and non-mycorrhizal 
roots, height and diameter of shoot, and dry weight of shoot 
and root were assessed.

ECM assessment

The root system was gently washed in tap water to remove 
organic and mineral matter. All the root tips per seedling 
were assessed for mycorrhizal colonization (2520 root 
tips per 180 seedlings). Ectomycorrhizas were described 
according to Agerer (1987–2007) based on morphology 
features (color, shape, and texture of mantle, ectomycor-
rhiza ramification, presence and appearance of extramatri-
cal hyphae, rhizomorphs, and cistidia). For each morpho-
type from each site, two-to-six root tips were transferred 
for molecular identification of the fungal symbiont. DNA 
extraction was performed according to the modified 
method by Lanfranco et  al. (1998). Amplification of the 
internal transcribed spacer (ITS) rDNA region was carried 
out with ITS1F (Gardes and Bruns 1993) and ITS4 (White 
et al. 1990) primers. The polymerase chain reaction (PCR) 
was performed as follows: 1× Pol Buffer; 0.2 mM dNTPs 
(each); 50 pmol of each primer; and 1 unit Taq DNA poly-
merase (Eurx). Amplification was carried out as follows: 
initial denaturation at 93 °C for 10  min followed by 35 
cycles of 1-min denaturation at 95 °C, 1-min annealing at 
60 °C, 2-min extension at 72 °C, and 10-min final extension 
at 72 °C. PCR products were separated by electrophoresis 
in 1.5% agarose gel stained with Midori Green. Sequencing 
was carried out at the Laboratory of Molecular Biology of 
Adam Mickiewicz University in Poznan, Poland. The ITS4 
primer was used for reading sequences. The sequences 
were edited using BioEdit (Hall 1999) and Chromas (http://
www.technelysium.com.au) software and then compared 
with published sequences in UNITE (Abarenkov et  al. 
2010) and NCBI (http://www.ncbi.nlm.nih.gov) databases. 
A positive identification of a mycorrhizal species was con-
firmed if they shared ≥98% ITS region sequence identity 
with the most similar (reference) sequence from UNITE 
or NCBI databases. The obtained sequences within 2% 

Table 2   Biometric parameters and mycorrhizal colonization of Abies alba seedlings regenerating in fir stands (F) and larch forecrops (L)

a Data published by Ważny (2011, 2014); different letters between F and L mean statistically significant differences (t test, p ≤ 0.05)
b Data are presented as a mean ± SE (n = 3)

Parameters F1 F2a F3a L1 L2 L3 Fb Lb

Height (cm) 4.8 ± 0.1 4.8 ± 0.1 5.1 ± 0.1 4.8 ± 0.1 4.9 ± 0.1 4.2 ± 0.1 4.9 ± 0.1a 4.6 ± 0.2a
Diameter (mm) 0.9 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.9 ± 0.0 0.9 ± 0.0 1.0 ± 0.0 1.0 ± 0.0a 0.9 ± 0.0a
Dry weight (g) 0.028 ± 0.003 0.034 ± 0.003 0.040 ± 0.003 0.025 ± 0.003 0.026 ± 0.003 0.030 ± 0.003 0.033 ± 0.003a 0.027 ± 0.001a
Mycorrhizal seed-

lings (%)
100.0 100.0 100.0 80.0 70.0 90.0 100.0 ± 0.0b 80.0 ± 5.8a

Live mycorrhizas 
(%)

87.3 86.4 100.0 96.5 68.5 96.1 91.2 ± 4.4a 87.0 ± 9.3a

Non-mycorrhizal 
roots (%)

12.7 13.6 0.0 2.8 30.6 3.9 8.8 ± 4.4a 12.5 ± 9.1a

Dead mycorrhizas 
(%)

0.0 0.0 0.0 0.7 0.9 0.0 0.0 ± 0.0a 0.5 ± 0.3a

http://www.technelysium.com.au
http://www.technelysium.com.au
http://www.ncbi.nlm.nih.gov
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Table 3   Relative abundance 
(RA) and frequency (FR) of 
ectomycorrhizal taxa on the 
roots of 1-year-old Abies alba 
seedlings regenerating in fir 
stands (F1, F2, and F3) and 
larch forecrops (L1, L2, and L3)

Fungal species F1 F2a F3a L1 L2 L3

RA FR RA FR RA FR RA FR RA FR RA FR

Amanita muscaria 1.6 13.3
Amanita rubescens 3.3 3.3
Boletus edulis 0.7 6.7
Boletus pruinatus 0.5 6.7 2.0 6.7 3.9 13.3 1.3 6.7
Cenococcum geophilum 1.9 10.0 5.6 13.3 2.7 16.7 0.3 3.3
Clavulina cristata 11.8 23.3
Clavulina sp. 1 5.3 23.3 1.4 10.0 12.0 6.7
Cortinarius sp. 1 0.5 10
Cortinarius sp. 2 5.8 6.7
Cortinarius sp.3 1.4 10
Elaphomyces muricatus 1.4 3.3 2.1 6.7 0.7 3.3
Entoloma sp. 1.4 3.3
Hydnotrya bailii 23.1 20.0
Hydnotrya sp. 2.8 6.7
Hydnotrya tulasnei 2.9 10.0
Hydnum rufescens 2.3 3.3
Laccaria laccata 7.7 13.3
Laccaria maritima 1.4 3.3
Lactarius aurantiacus 8.2 30.0
Lactarius lignyotus 1.1 3.3
Lactarius necator 13.4 23.3
Leotiomycetes 6.2 13.3
Mycena galopus 2.0 3.3
Paxillus involutus 1.1 3.3
Piloderma cf. byssinum 0.9 3.3
Piloderma fallax 0.3 3.3 2.5 13.3
Piloderma sp. 1 32.2 20.0
Pseudotomentella sp. 1 5.1 20.0 1.6 6.7
Pseudotomentella sp. 2 7.7 6.7 2.2 3.3
Russula amethystina 7.1 6.7 4.8 20.0
Russula cyanoxantha 1.0 6.7
Russula fellea 2.5 3.3
Russula integra 18.1 26.7 11.1 20.0 4.3 6.7
Russula ochroleuca 15.2 20.0
Russula olivacea 1.0 3.3 5.7 23.3
Russula puellaris 0.8 3.3 5.2 6.7
Russula sp. 1 6.9 6.7 0.3 3.3
Russula vesca 0.8 3.3
Sebacina sp. 1 0.8 3.3 3.6 3.3
Sebacina sp. 2 0.7 3.3
Sebacina sp. 3 12.1 26.7 2.9 6.7
Thelephora sp. 1.1 6.7 5.4 6.7
Thelephora terrestris 1.3 3.3 2.9 6.7
Tomentella stuposa 7.3 30.0
Tomentella sublilacina 2.5 3.3 45.6 56.7
Tomentellopsis sp. 0.5 6.7 0.5 3.3
Tylospora asterophora 11.8 40 8.1 20.0 6.8 16.7 17.8 30.0
Tylospora fibrillosa 4.6 10.0 5.9 13.3
Tylospora sp. 3.0 10.0 20.2 26.7 23.9 30.0
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nucleotide difference were categorized as a single opera-
tional unit and assigned an identical name.

Soil assessment

The pH was determined in H2O and KCl, the C content was 
analyzed by the Tiurin method, and the N content by the 
Kjeldahl method and the macronutrient (Ca, K, Mg, Na) 
content in the soil was determined in 1  M CH3COONH4 
with the ICP-OES Thermo iCAP 6500 DUO spectropho-
tometer (Ostrowska et al. 1991).

Data analysis

Statistical analysis of the seedling biometric data (height, 
diameter and dry weight) was performed with the paramet-
ric t test and nonparametric Mann–Whitney U test using 
Statistica 10.0 (StatSoft 2011) at the level of significance 
α = 0.05. The nonparametric test was used when Shap-
iro–Wilk normality and Levene’s homogeneity of variance 
were not found. To assess if a sufficient number of sam-
ples were collected, the observed species accumulation 
curve and jackknife first-degree estimator curve with 100 
randomization with sample replacement were plotted in the 
Estimates 9.1.0 software (Colwell 2006). Communities of 
ECM fungi were described by species richness (number of 
identified mycorrhizal taxa), relative abundance (number of 
mycorrhizas of a given mycorrhizal species per total num-
ber of mycorrhizas in each site), and frequency (ratio of 
number of seedlings with given ECM taxa to total number 
of seedlings in each stand). The ECM species diversity was 
evaluated by Shannon–Wiener’s (H′) and Simpson’s (1D) 
indicators. The variability of ECM composition among 
seedlings of different forest stands was visualized using 
non-metric multidimensional scaling (NMDS). Analysis of 
similarity ANOSIM was used to determine if relative abun-
dance of ECM symbionts differed between study sites. The 
above coefficients, ANOSIM, NMDS, and the cluster anal-
ysis were calculated in PAST 2.17 software (Hammer et al. 
2001) based on standardized, square root transformed data 
of each taxa. The Bray–Curtis dissimilarity coefficient was 
chosen for calculation in analyses (Bray and Curtis 1957).

Results

ECM colonization was observed in 100% silver-fir seed-
lings in F and was significantly higher than in L stands 
(80%). The fine roots were highly colonized, 91 and 87% 
of live ECM were found in seedlings from F and L stands, 
respectively (Table 2).

Sequencing analysis revealed a total 53 ECM taxa on 
silver-fir seedlings (Table  3). The observed number of 
ECM taxa in the F stands was significantly higher than that 
in the L forecrops; 46 taxa were present on seedlings in F 
stands and 25 taxa were present on seedlings in L stands 
(Fig. 1). Based on the jackknife first-degree estimator, the 
observed number of taxa was 77% of the estimated richness 
in fir stands and 78% of the estimated number of ECM spe-
cies in larch forecrops (Fig. 2). Thirty-three ECM morpho-
types were described to the species level. Three morpho-
types were unidentified to any taxa. Eighteen out of 53 taxa 
(34%) were common to both stands. The dominant ECM 
species identified in seedlings regenerating in fir stands 
were: unidentified fungus 1 (18.9%), followed by Pilo-
derma sp. (9.6%), Tylospora asterophora (8.6%) and Rus-
sula integra (8.3%). Fir seedlings regenerating under larch 
canopy formed ectomycorrhizas mostly with unidentified 
fungus 1 (24.8%), Tomentella sublilacina (17.1%), Tylo-
spora sp. (13.7%), Hydnotrya bailii (7.6%), and T. aster-
ophora (6.7%) (Fig. 1).

Species richness per site was twofold higher in studied 
F stands (18–22) compared to L stands (8–11) (Table  3). 
Similarly, species richness per one seedling was also higher 
in F stands (1.9–3.3 versus 1.4). The Shannon–Wiener and 
Simpson’s indices for the ECM assemblages were higher 
in F stands (2.28–2.58 and 0.85–0.90) than in L stands 
(1.61–1.81 and 0.73–0.79), respectively (Table 4).

Based on ANOSIM analysis, ECM communities have 
shown significant differences (R = 0.2771, p = 0.0001) 
between study sites. Non-metric multidimensional scal-
ing plot grouped L1, L2, and F3 sites closely (Fig.  3). 
This observation was confirmed in the similarity den-
drogram for the ECM fungi assemblages in study sites 
(Fig.  4). Here, the most similar (66%) ECM communi-
ties were found in L1 and L2 stands. Closely related to 
this clade was ECM communities noted in F3 stand.

a Data published by Ważny (2011, 2014)

Table 3   (continued) Fungal species F1 F2a F3a L1 L2 L3

RA FR RA FR RA FR RA FR RA FR RA FR

Unidentified 1 13.4 13.3 35.1 70.0 37.8 53.3 33.0 33.3 6.9 16.7
Unidentified 2 2.3 6.7
Unidentified 3 1.9 3.3
Xerocomus badius 1.1 3.3 1.1 3.3 0.7 3.3
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Fig. 1   Mean relative abun-
dance of ECM fungi on 
1-year-old Abies alba seedlings 
regenerating in fir stands and 
larch forecrops
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Soil parameters are presented in Table  1. The pH 
value was similar among study sites, ranging from 4.0 to 
4.5 in H2O and from 3.1 to 3.5 in KCl, C/N ratio ranged 
from 14.3 to16.8%. Content of K ranged from 1.2 to 1.3 
in F sites to 1.6–2.6 mg/kg in L sites.

Biometric parameters (height, diameter, and dry 
weight) of the seedlings did not differ between fir (F) 
and larch (L) stands (Table 2). However, in the sites with 
the lowest percentage of mycorrhizal seedlings (L1 and 
L2), diameter and dry weight of the seedlings were sig-
nificantly higher in mycorrhizal seedlings compared to 
non-mycorrhizal seedlings (data not published).

Discussion

To our knowledge, this is the first report concerning ECM 
of 1-year-old A. alba seedlings regenerating in larch fore-
crops using molecular approaches. Our study has shown 
that the diversity of ECM communities of 1-year-old silver-
fir seedlings regenerating in larch forecrops is lower than 
in neighboring mature silver-fir stands. This result supports 
our previous observation documented in Scots pine fore-
crops (Ważny 2014). Species richness, Shannon–Wiener 

and Simpson’s diversity indices were significantly higher in 
mature fir stands compared to forecrops. Fungal coloniza-
tion of fine roots in both stands (F and L) was very high (91 
and 87%, respectively). Species richness in larch forecrops 
(8–11) was similar to the one reported in Scots pine fore-
crops (7–12) (Ważny 2014).

Only 34% fungal symbionts of silver-fir seedlings were 
common to fir and larch stands. The vast majority (66%) 
of fungal symbiont of silver-fir seedlings in larch fore-
crops were not common with silver-fir in fir stands and 
may be shared with coexisting mature European larch. 
For instance, Abies homolepis, closely related to A. alba, 
grown in broadleaf forest initially shared ECM with 
broadleaf trees and become colonized be specific ECM 
many years after its establishment (Ishida et  al. 2007). 
Similarly, as it was suggested by Rudawska et al. (2015), 
tree species grown outside its range are readily colonized 
by available and compatible ECM fungi. CMN is likely to 
be the dominant form of infection for regenerating seed-
lings (Nara 2008).

In this study, we identified 53 ECM taxa [sampling 
intensity (SI) = 180 samples]. A similar ECM morpho-
type richness (48) was found on mature silver-fir trees 
in Apennines (Italy) by Comandini et  al. (2001). On 

Fig. 2   Ectomycorrhizal species 
richness estimation curves for 
1-year-old Abies alba seedlings 
regenerating in fir (F) and 
larch (L) stands. Sobs-species 
observed, Jack1-first order jack-
knife estimator (100 randomized 
runs with sample replacement 
were used)
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Table 4   Diversity indices 
of ECM communities 
colonizing Abies alba seedlings 
regenerating in fir stands (F) 
and larch forecrops (L)

a Data published by Ważny (2011, 2014); different letters between F and L mean statistically significant dif-
ferences (t test, p ≤ 0.05)
b Data are presented as a mean ± SE (n = 3)

Parameters F1 F2a F3a L1 L2 L3 Fb Lb

Richness per site 22 18 22 9 11 8 20.7 ± 1.3b (total 46) 9.3 ± 0.9a (total 25)
Richness per seedlings 2.1 1.9 3.3 1.4 1.4 1.4 2.4 ± 0.4a 1.4 ± 0.0a
Shannon–Wiener (H′) 2.58 2.28 2.44 1.65 1.81 1.61 2.43 ± 0.09b 1.69 ± 0.06a
Simpson (1-D) 0.90 0.85 0.85 0.76 0.79 0.73 0.87 ± 0.02b 0.76 ± 0.02a
Dominance (D) 0.10 0.15 0.15 0.24 0.21 0.27 0.13 ± 0.02b 0.24 ± 0.02a
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seedlings from the same locality, these authors (Comand-
ini et al. 1998) identified 25 ECM morphotypes (SI = 30). 
Based on anatomical and morphological features, Kow-
alski (2008) found 35 ECM types on silver-fir seedlings 
in the Karkonosze National Park (Poland). Based on 
ECM sporocarp identification, Laganà et al. (1999, 2002) 
observed over 40 ECM fungal species in silver-fir forests 
in Tuscany (Italy). However assemblages of ECM fungal 
symbionts based on aboveground sporocarp identification 
can be significantly different from belowground ECM 
communities (data not published). ECM symbionts of A. 
alba are still poorly examined with utilization of molec-
ular approaches. Based on DNA sequencing, sampled 
directly from ECM root tips, in German forests Cremer 
et  al. (2009) and Schirkonyer et  al. (2013) identified 33 
and 15 taxa (SI = 42) of A. alba symbionts, respectively, 
and Rudawska et al. (2015) observed 35 mycorrhizal fun-
gal taxa (SI = 64) on mature A. alba outside its natural 
range in Pomerania (northern Poland). In closely related 
to silver-fir Abies lasiocarpa, Kranabetter et  al. (2009) 
identified 74 ECM symbionts (SI = 95). Matsuda and 
Hijii (1999, 2004) revealed 37 morphotypes from Abies 
firma seedlings (SI = 142).

The relative abundance of fir symbionts documented 
in fir stands in our previous study and presented here 
was comparable, the relative abundance of fir symbionts 
documented in pine (Ważny 2014), and larch forecrops 
was completely different. Fir seedlings from the pine fore-
crops formed mycorrhizas mostly with Clavulina cristata, 
Tomentella sp., Tuber puberulum and Clavulina sp. How-
ever, fir seedlings regenerating under larch canopy formed 
ectomycorrhizas mostly with unidentified fungus 1, T. 
sublilacina, Tylospora sp., H. bailii, and T. asterophora. 
Only 6 of 48 fungal symbionts were common to pine and 
larch forecrops, including: Clavulina sp., Sebacina sp., 
Tomentella stuposa, Tomentellopsis sp., T. asterophora, 
and Xerocomus badius (Ważny 2014). Among 25 sym-
bionts of fir seedlings regenerating in larch forecrops, 8 
species were documented as symbionts of larch seedlings 
naturally regenerated under larch canopy documented by 
Leski and Rudawska (2012): Boletus pruinatus, Cenococ-
cum geophilum, Hydnotrya tulasnei, Russula ochroleuca, 
R. puellaris, Thelephora terrestris, T. sublilacina, and X. 
badius.

The most frequent fungal taxa was unidentified fungus 
1 (five sites), followed by B. pruinatus, C. geophilum and 
T. asterophora which were presented at least in four sites. 
Unidentified fungus 1 characterized brown mycorrhizas 
with the Hartig net and without a mantle. The Hartig net 
can appear before the fungal mantle (Nylund and Unes-
tam 1982). Molecular analysis revealed that this mor-
photype was formed by various taxa and this is probably 

an initially stage of mycorrhiza of many fungal species 
which differentiates later on. On 2-year-old A. alba seed-
lings, this morphotype was observed; however, was not 
as frequent (data not published). Boletus pruinatus was 
previously documented as fungal component of ECM on 
silver-fir (Cremer et  al. 2009; Schirkonyer et  al. (2013); 
Ważny 2014) and European larch symbiont (Leski and 
Rudawska 2012), but it was not revealed as a dominant 
species. On the other hand, C. geophilum is a common, 
dominating fungal component of the ectomycorrhizas of 
many tree species (Aučina et al. 2011; Teste et al. 2009), 
silver-fir including (Cremer et  al. 2009; Ważny 2014). 
Even though the investigation was conducted in A. alba 
natural range, we did not observe L. salmonicolor, known 
to be specific to A. alba, which has been already docu-
mented in the Carpathians (Ważny 2014), the Apennines 
(Comandini et  al. 1998, 2001), and Tuscany (Laganà 
et al. 2002).

This is the first report concerning ECM of A. alba 
seedlings regenerating in larch forecrops using molecular 
approaches. These results shed a new light on the diver-
sity of ECM fungal species associated with silver-fir. 
The diversity of ECM communities of 1-year-old silver-
fir seedlings regenerating in mature silver-fir stands was 
significantly higher than in neighboring larch forecrops. 
However, we still do not know, why the diversity ECM of 
silver-fir seedlings regenerating under larch canopy was 
different than in mature fir stands. The comparison ECM 
communities on mature fir and larch trees in the examined 
forests would provide the necessary insight to solve this 
problem.
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