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Abstract

Key message We developed the generalized branch

diameter and length models using the multi-level non-

linear mixed-effects techniques for the natural Dahur-

ian larch (Larix gmelini) forest in northeast China.

Abstract Dahurian larch (Larix gmelini) is the most

commercially cultivated timber species in northeastern

China due to its ecological prevalence and its superior

wood attribute. However, its timber quality was largely

driven by the crown architecture, i.e., the number, size and

distribution of branches. The majority of branch-level

models in the literature are focused on planted forests,

which have substantially different crown architecture than

that grown in natural mixed forests. Therefore, the goal of

this investigation was to develop branch diameter and

length models for Dahurian larch that are grown in natural

mixed forests. A multi-level nonlinear mixed-effects model

technique, including the fixed-effects, random-effects,

variance functions and correlation structures, was

employed to develop the branch growth models. The

results suggested that the cumulative branch diameter and

length were both increased with the increases of branch

depth into the crown. Diameter at breast height (DBH) had

significant positive influences on the branch size; however,

tree height (HT) produced negative influences on the

branch size, i.e., larger DBH and smaller HT could lead to

larger branch size. Model fitting and validation results

confirmed that we should avoid developing over-complex

models from the perspective of application. As for the

branch diameter and length models in our study, addressing

the stand and tree level effects as random component were

quite reliable and accurate for predicting the branch growth

process of Dahurian larch in northeastern China.

Keywords Natural Dahurian larch forest � Branch
diameter � Branch length � Nonlinear mixed-effects models

Introduction

Growth and yield models are commonly used as decision-

support tools in forest management (Zhang et al. 1993;

Trasobares et al. 2004). An important tree variable in these

models is crown size, which usually denotes crown length

(CL), crown radius (CR; as show in Fig. 1) or crown width

(CW). However, attributes of individual branches define

crown structure and have significant influences on tree

growth as they control the amount and display of leaf area

(Vose et al. 1994). In addition, the number and size of

branches on a stem have been related to stem growth, wood

quality, wildlife habitat, and key physiological processes

such as the photosynthesis, respiration and transpiration of

a tree (Maguire et al. 1991; Hayes et al. 1997, 2003; Hein

et al. 2008). The sizes of branches are quite sensitive to

stand conditions, which have generally been pre-

dictable from site, tree or branch-level factors (Maguire

et al. 1991; Weiskittel et al. 2007). However, despite its

numerous benefits, measuring the branches of every sam-

pled tree is prohibitively costly and time consuming (Hein

et al. 2008). Consequently, accurate models that analyze
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branch data from adequate numbers of sample trees are

required. Such models allow forest manager to predict

branch development precisely.

In the previous literatures, numerous investigations have

studied the individual branch attributes, but the majority

have focused on several commercially important plantation

species, including: Norway spruce [Picea abies (L.) Karst]

(Mäkinen et al. 2003; Kantola and Mäkelä 2004), radiata

pine [Pinus radiata D. Don.] (Woollons et al. 2002), jack

pine [Pinus banksiana Lamb] (Beaulieu et al. 2011),

Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco]

(Weiskittel et al. 2007; Hein et al. 2008), Scots pine [Pinus

sylvestris L.] (Mäkinen 1996; Mäkelä and Vanninen 2001),

white spruce [Picea glauca (Moench) Voss] (Sattler et al.

2014) and Dahurian larch [Larix gmelinii (Rupr.) Kuzen.]

(Jiang et al. 2012a, b). However, to our best knowledge, the

models of branch attributes of these species that grow in

mixed-stands have received less attention. It was explicit

that the crown characteristics in mixed-species stands can

be largely influenced by differential resource utilization.

For example, species classified as shade intolerant tend to

have crowns with branch spread in a relatively even hori-

zontal distribution, while shade-tolerant species tending to

have multi-layered crowns that can support greater self-

shading (Nelson et al. 2014). However, no matter where

species grow either in pure or mixed forest, branch char-

acteristics models are frequently obtained from stand and

tree variables that are input to mechanistic models (e.g.,

Roeh and Maguire 1997; Weiskittel et al. 2007; Courbet

et al. 2012). These models have been combined with

individual tree growth and yield simulators and have been

found to be useful for understanding the effects of man-

agement on stem growth and wood quality as well as for

improving growth predictions across a wide range of stand

conditions (e.g., Maguire et al. 1991; Weiskittel et al. 2007;

Barbeito et al. 2014). To date, most of these models are

simple linear or nonlinear functions of the relative or

absolute branch depth into the crown (RDINC or DINC; as

show in Fig. 1), estimated using ordinary linear or non-

linear least squares techniques (Kantola and Mäkelä 2004;

Beaulieu et al. 2011; Barbeito et al. 2014). Data for branch

characteristics studies generally involve multiple mea-

surements of trees growing in different stands or regions.

This hierarchical structure (i.e., branches within tree, and

trees within plot) results in a lack of independence between

observations, since data coming from the same sampling

unit (tree and plot) tend to be significantly correlated,

which can result in biased estimates for the confidence

interval of the parameters by the ordinary least squares

techniques (Calama and Montero 2005).

Nonlinear mixed-effects models (NLME), consisting of

fixed and random parameters, provide an efficient means of

analyzing repeated measurement data and making accurate

local prediction (Vonesh and Chinchilli 1997; Pinheiro and

Bates 2000; Fang and Bailey 2001). The fixed parameters

in NLME models account for the covariate or treatment

effects, as in traditional regression, and the random

parameters account for heterogeneity and randomness in

the data by known and unknown factors. When the random

effects are employed for the samples that are not measured

and recorded in field work, NLME models can improve

predicted accuracy. For details on NLME modeling, see

Vonesh and Chinchilli (1997), Pinheiro and Bates (2000)

and Fang and Bailey (2001). Because of their versatility,

NLME models have been widely applied to forest growth

and yield models (Lappi and Bailey 1988; Fang and Bailey

Fig. 1 The sketch map of tree

and branch variables. HT tree

height; CL the length of crown;

HCB the height of crown base;

DINC absolute depth of branch

into the crown; CR the crown

radius; CW the crown width; BA

the branch angle; BCL the

branch chord length; BAL the

branch arc length; BL branch

length; RDINC the relative

depth of branch into crown,

which can be calculated as:

RDINC = DINC/CL
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2001; Calama and Montero 2005; Yang and Huang 2011;

Corral-Rivas et al. 2014), as well as branch attributes

models (e.g., Meredieu et al. 1998; Hein et al. 2008; Dahle

and Grabosky 2010). However, most of the NLME models

in forestry were often simplified or assumed the within-

subject heterogeneous and autocorrelation to be negligible

in the presence of random subject effects (e.g., Garber and

Maguire 2003; Corral-Rivas et al. 2014). Although the

models without considering the characteristics of hetero-

geneous and autocorrelation can also be acceptable for

practical applications, the acceptability is highly dependent

on the model form and data involved, and there are situa-

tions for which further accounting for the within-subject

heterogeneous and autocorrelation may improve the fit and

prediction of a model (Yang and Huang 2011). The com-

monly used variance function (e.g., exponential function

and power function) and autocorrelation structures [e.g.,

first-order autoregressive structure AR(1) and moving

average structure MA(1)] in forestry have been confirmed

effectively to remove heterogeneous and autocorrelation

within a specific subject (e.g., Jordan et al. 2005; Zhao

et al. 2005; Yang and Huang 2011). Therefore, similar

variance function and autocorrelation structures can also be

introduced into branch characteristics models. However, to

our best knowledge, few studies have applied the com-

pletely multi-level NLME approach to predict the branch

characteristics with hierarchical and autocorrelation data.

Dahurian larch is the most important commercial species

in northeastern China, occupying more than 7 9 104 km2 in

this region (CSFA-FRM 2010). The main uses of natural

Dahurian larch forests are for timber, fuel wood, pulp,

grazing, landscape and recreational purposes. Natural

Dahurian larch forests also play an important role as water

conservation and soil protectors, as they grow in poor soils.

Since the beginning of the twenty-first century, a research

line in the China State Forestry Administration (CSFA) has

been devoted to the sustainable management and multiple

uses of forests in northeastern China. However, Dahurian

larch is known for quick branch growth after crown release

even at advanced ages. Branch number and size of Dahurian

larch are major determinants of wood quality. Furthermore,

Dahurian larch timber is highly appreciated in woodmarkets

when the branch size is small and few branches exist.

Therefore, concerning branches, a quantitative assessment

of the relationships between branch characteristics and tree

variables is needed. The development of these branch-level

predictionmodels will help to understand growth response at

the tree-level and allow assessment of potential wood pro-

duct quality in this region, which should promote more

effective and efficient management practices.

As mentioned above, a large-scale investigation that

physically understands the growth responses of branches to

different stand conditions would be too costly and time-

consuming to implement across a broad area. Therefore,

our aim was to develop a model which can be calibrated for

the given forest stand by collecting small amount of

branches. The overall goal of this study was to develop

branch diameter and length prediction models for Dahurian

larch growing in mixed, uneven-aged stand across north-

eastern China, which can be integrated into an individual

tree growth and yield simulation system. Specific objec-

tives were to: (1) compare different local branch diameter

and length equations for the mixed, uneven-aged natural

Dahurian larch forests in northeastern China; (2) develop

new generalized branch diameter and length models based

on the best local model previously fitted and the potential

stand (or tree) variables; (3) use the local and generalized

equations to study the capacity of nonlinear mixed effects

model to explain the variability in the relationship between

branch diameter (or branch length) and tree variables; and

(4) evaluate the predictive ability of the developed models

and the applicability of the multi-level NLME technique

with the help of an independent data set.

Materials and methods

Study area and data

The study was conducted at a site on 1.52 9 105 ha state-

owned forest in northeastern China (52�41057.100N,
123�51056.500E), where the total volume is 9.43 9 106 m3,

and the forest coverage is as high as 88.9 %. The pre-

dominant vegetation in the area is mixed, uneven-aged

forests of Dahurian larch and white birch (Betula platy-

phylla). The altitude above sea level of the study area

varies between 200 and 1400 m, and the average elevation

is 573 m. The climate in this study area is typical cold

temperate continental monsoon climate, with a distinct wet

summer and a cool, dry winter. Temperature varies from

approximately -52.3 to 40.6 �C, and the annual average

temperature is only -2.8 �C. The mean annual precipita-

tion ranges between 400 and 600 mm. Variations in pre-

cipitation and temperature for this area are strongly

correlated with latitude and proximity to the coast. Soils

are considered mostly brown coniferous forest soil, with

small amounts of dark brown, meadow and swamp soils.

Stem and branch analysis data were acquired from 18

permanent plots of natural Dahurian larch stands that are

used to monitor the growth and production of the forests in

the Great Xing’ an Mountains. These plots, which were

established in 2010, were selected with the aim of repre-

senting different stand conditions (i.e., stand age, density

and sites). Stand density ranged from 767 to 3333 stems

ha-1, the canopy density ranged from 0.30 to 0.75, the

mean diameter at breast height (DBH) ranged from 7.3 to
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16.2 cm, and the mean total tree height (HT) ranged from

6.7 to 17.8 m, respectively. The selection of sample trees

and branches is detailed in Dong (2013). In summary, the

DBH values of all the live trees (DBH C 5 cm) in the plots

were measured for the DBH, HT, CW and height to crown

base (HCB). Then the DBH distribution was divided into

three equally sized classes, and only one sample tree per

size class was randomly selected around the plot, to avoid

destroying the entire sample plot. After felling, the total

stem height and height of the crown base, defined as a

whorl with at least one living branch, was noted. Discs

were taken from the stem at a height of 1.3 m, and at an

interval of 1 m above the stump. Each section at 1-m

intervals within the crown is called a ‘‘layer’’. Every

branch in each crown layer was then numbered. Branch

measurements included branch diameter (BD), length

(BL), azimuth angle (A), insertion angle (BA), chord length

(BCL), arc length (BAL) and DINC (Fig. 1). Only one

sample branch was selected within each whorl for mea-

suring the attributes of the branch, according to the branch

diameter and length (i.e., the sample branch diameter and

length should be equal (or close) to the average branch

diameter and length in the whorl). The number of sampled

primary branches per tree ranged from 8 to 28, and was

28.98 % of the total number of branches. Because the dead

branches were a very minor component of all live crowns,

occurring predominantly in the lower part of crown, only

live branches were used in this study. We first sorted the

sample trees by their DBH, and then the sample trees

would be classified into two datasets using a systematic

sampling method: one for model fitting and the other for

model validation. If a sample tree was classified into fitting

datasets, then all the branch datasets in this tree were

treated as fitting dataset as well. In this sampling method,

the model fitting data contained 705 sample branches from

37 sample trees, while the validation data contained 261

sample branches from 13 trees. Data statistics and relevant

stand characteristics are summarized in Table 1.

Comparison of equations

Graphic analysis of primary branch size showed that the

BD and BL were mainly related to DINC for each tree,

which both increased continuously with increasing DINC

and then finally approached an asymptotic value at the

crown base (Fig. 2). Several functions have existed for

modeling the relationship between BD (or BL) and DINC

of trees. We compared the fitting and predictive perfor-

mance of 8 standard functions (Table 2).

For preliminary selection, we used ordinary non-linear

least squares (ONLS) to fit each of the equations to the fitting

data with the NLS function in the S-Plus software (S-Plus

Institute 2008), and then their prediction performances were

examined against validation data. We evaluated the good-

ness of fit of the models by graphical analysis and by con-

sidering the following statistics, calculated from the

residuals: root mean square error (RMSE), the coefficient of

determination (R2) and bias (Lejeune et al. 2009; Yang and

Huang 2011):

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where hijk, ĥijk and �h are the observed, predicted and mean

values of the branch attributes at the measurement point for

the branch k = 1,…, Tij in tree j = 1,…, Ti within plot

i = 1,…, T, respectively; T, Ti, Tij are the number of plots,

the number of trees in ith plot, and the number of branches

in Tijth tree within ith plot, respectively; and p is the

number of model parameters in the equations.

Besides DINC, BD and BL are also affected by size and

vigor of trees, the site itself and competition (Roeh and

Maguire 1997; Weiskittel et al. 2007). Based on the best

functions, we studied the relationship between the ten vari-

ables and the parameters of the local equations (see Table 2)

that best described the BD-DINC (or BL-DINC) relation-

ship, with the aim of improving the accuracy of the equation

and developing new generalized functions. Variables

denoting the size and vigor of trees and stands are: stand

density (SD, trees ha-1), canopy density (CD, %), mean HT

of stand (MHT, m), mean DBH of stand (MDBH, cm), DBH

(cm), HT (m), CL (m) and CW (m). The site effect variable is

site index (SI, m) which are calculated using theMeyer’s site

index function (Gu et al. 2001): SI = DH�exp((b/Age) - (b/

Age0)), where DH is dominant height (m), Age is stand age

(years) at time of DHmeasurement, and Age0 is the standard

age (years) which is assumed as 20 years. Competition

variable is denoted by Hegyi competition index (HCI;

Anning andMcCarthy 2013): HCIi =
P

(DBHj/(DBHi�Dij),

where HCIi is the competition index for ith tree, and DBHi

and DBHj are DBH (cm) for the ith subject tree and its jth

competition, and Dij is the distance (m) between the ith

subject tree and its jth competition tree.

We selected variables suited for the procedure, begin-

ning with graphical exploration of the data and examina-

tion of the correlation statistics. The process of selecting

variables was conducted as: (1) estimated the parameters of
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local functions (as showed in Table 2) for each tree; (2)

detect the linear or nonlinear relationships between the

parameters and the stand (or tree) variables, as well as the

necessary combination (e.g., DBH2HT) and transformation

of variables [e.g., log(DBH)]; (3) integrate the relationships

into the best local function. All of these calculations were

performed in the S-Plus NLS function (S-Plus Institute

2008). The best functions with selected tree (and stand)

variables were then used as a base model from which the

mixed-effects BD and BL models were constructed.

Development of mixed models

The BD-DINC (or BL-DINC) observations made in trees

and plots may be highly correlated, thus violating the

principle of independence of error terms. One procedure

used to deal with correlated observations is to fit mixed

models, in which the variability between the sampling units

can be explained by including random parameters that are

estimated at the same time as the fixed parameters (Vonesh

and Chinchilli 1997; Fang and Bailey 2001). Basically,

following the multi-level nonlinear mixed model tech-

nique, the parameter vector of a non-linear mixed model

can be defined as follows (Vonesh and Chinchilli 1997;

Pinheiro and Bates 2000):

Uij ¼ Aijkþ Bijbij ð4Þ

where Uij is the parameter vector r 9 1 (where r is the total

number of parameters in the model) specified for the jth

tree in ith plot, k is the vector p 9 1 of the common fixed

Table 1 Summary statistics for

modeling fitting and validation

data

Variable Fitting data Validation data

Min Max Mean Std CV% Min Max Mean Std CV%

Tree-level N = 37 N = 13

Age (years) 17 226 57.42 38.88 67.71 16 215 75.81 45.89 60.53

DBH (cm) 7.80 31.40 16.37 6.12 37.39 6.50 30.10 17.19 7.91 46.02

HT (m) 7.30 26.00 15.01 3.80 25.32 6.10 19.70 14.68 4.64 31.61

CL (m) 3.10 12.70 6.57 1.89 28.77 2.60 8.50 5.96 1.76 29.53

CW (m) 0.70 2.88 1.69 0.52 30.77 0.94 2.60 1.74 0.47 27.01

HCI 0.00 1.97 1.05 0.62 59.05 0.35 1.59 1.07 0.38 35.52

Branch-level N = 705 N = 261

DINC (m) 0.03 10.4 2.63 2.04 77.57 0.03 8.50 2.58 2.02 78.29

A (�) 0.00 360.00 167.08 101.03 60.47 0.00 360.00 172.58 103.86 60.18

BA (�) 20.00 100.00 59.08 16.88 28.28 20.00 100.00 57.81 17.56 30.38

BD (cm) 0.10 4.40 1.49 0.90 60.40 0.11 4.50 1.63 1.03 63.19

BL (cm) 5.00 373.00 130.76 79.43 60.74 5.00 341.00 137.06 84.29 61.50

BCL (cm) 5.00 350.00 120.99 73.82 61.47 5.00 352.00 127.25 77.93 61.24

BAL (cm) 0.00 96.00 17.02 13.15 77.26 0.00 69.00 17.16 13.91 81.06

DBH diameter at breast height, HT tree height, CL crown length, CW crown width, HCI Hegyi competition

index, DINC depth of branch into crown from the stem apex to the base of the crown, A horizontal azimuth

angle, BA branch insertion angle, BD branch diameter, BL branch length, BCL branch chord length, BAL

branch arc length, Std standard deviation, CV% coefficient of variation
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Fig. 2 Branch diameter (BD) and branch length (BL) versus depth of branch into crown (DINC) for the model fitting data
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parameters for the whole population (p is the number of

fixed parameters in the model), bij is the vector q 9 1 of

the random parameters associated with the jth tree in i-plot

(q is the number of random parameters in the model), and

Aij and Bij are matrices of size r 9 p and r 9 q for specific

and random effects for the jth tree in ith plot, respectively.

The variance–covariance matrices for the random

effects vector, bi and bij, usually account for the variability

between plots and trees, respectively. As in Calama and

Montero (2005) and Fu et al. (2013), bi and bij are assumed

to be unstructured. A hypothetical 3 9 3 variance covari-

ance matrix can be expressed in general form as:

r21 q12 q13
q12 r22 q23
q13 q23 r23

0

@

1

A ð5Þ

where ri
2(i = 1, 2, 3) is the variance in the ith random

effect, and qij(i, j = 1, 2, 3, i = j) is the covariance

between the ith and the jth random effects, intercepting

qij = qji.
In addition to random effects, a correlation structure and

a variance functions can be specified for Rij. Details on

correlation structures and variance functions are available

in Pinheiro and Bates (2000), Fang and Bailey (2001) and

Yang and Huang (2011). In a general context, the covari-

ance matrix Rij can be expressed as (Pinheiro and Bates

2000):

Rij ¼ r2G0:5
ij CijG

0:5
ij ð6Þ

where r2 is a scaling factor of the error dispersion, Gij is a

nij 9 nij diagonal matrix describing both between-tree

heterogeneity variance structures, and Cij is a nij 9 nij
matrix describing the within-tree correlation structure of

error. As mentioned above, the variation of branch diam-

eter and length along with the stem can be considered as

typical repeatedly measured datasets. Therefore, com-

monly used time series correlation structures, such as the

first-order autoregressive structure AR(1), first-order

moving average structure MA(1) and first-order autore-

gressive and moving average structure ARMA(1,1) were

evaluated in this study (Vonesh and Chinchilli 1997; Pin-

heiro and Bates 2000). In the literatures, Zhao et al. (2005)

and Yang and Huang (2011) have evaluated the abilities of

these structures to remove residual autocorrelation in forest

growth and yield models. Their work have indicated that

these structures were effective in removing autocorrelation

for repeatedly measured data. Therefore, we are expanding

on these works to further explore these structures to

remove the autocorrelation of branch datasets.

Variance heterogeneity was removed by three frequently

used variance functions: the exponential function [Eq. (7)],

power function [Eq. (8)] and the constant plus power

function [Eq. (9)] (Pinheiro and Bates 2000; Yang and

Huang 2011; Fu et al. 2013).

Var(eijkÞ ¼ r2 expð2c1DINCijkÞ ð7Þ

Var(eijkÞ ¼ r2DINC2c2
ijk ð8Þ

Var eijk
� �

¼ r2ðc3 þ DINC
2c4
ijk Þ

2 ð9Þ

where DINCijk is the DINC of the kth branch in the jth tree

in ith plot, and c1–c4 are estimated parameters. An appro-

priate variance function for the model was determined by

the Akaike Information Criterion (AIC), Schwarz’s Baye-

sian Information Criterion (BIC) and logarithm likelihood

values (LogLik) as well as the Likelihood Ratio Test (LRT)

for the nested models.

We constructed the non-linear mixed effects model by

selecting the local and generalized equations that yield the

best fits for the BD and BL models by maximum likelihood

(ML) using the NLME function in the S-Plus software (S-

Plus Institute 2008). The analysis of different components

of NLME in our paper was organized as: (1) selection of a

base function (i.e., local function); (2) selection of stand

and tree level variables (i.e., generalized function); (3)

selection of a function to address variance heterogeneity;

(4) selection of an autocorrelation function. We compared

the fitting statistics for each process to determine which

parameters and components should be included in the final

branch models.

Model validation

The models were validated through an assessment of their

predictive abilities when applied to the validation data set.

Mixed-model predictions are based on the fact that the

stochastic component of growth variability is a conse-

quence of different factors acting simultaneously (Yang

Table 2 Branch diameter and length functions considered in the

analysis

Function no. Function (BD or BL) Function form

F1 BD = b0[1 - exp(-b1DINC)]
b2 Richards

F2 BD = b0[1 - exp(-b1DINC)] Mitscherlich

F3 BD = b0[1 - exp(-b1DINC
b2)] Weibull

F4 BD = b0exp(-b1/DINC) Schumacher

F5 BD = b0exp(-b1exp(-b2DINC)) Gompertz

F6 BD = b0exp(-b1(DINC
-b2)) Korf

F7 BD = b0/(1 ? b1exp(-b2DINC)) Logistic

F8 BD = b0/(1 ? b1DINC
-b2) Hosfled

BD branch diameter, BL branch length, DINC depth of branch into

crown from the stem apex to the base of the crown, b0, b1 and b2 are

formal parameters
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and Huang 2011). As described in Fang and Bailey (2001)

and Wang et al. (2007), when evaluating the ability of a

calibration approach, two different situations should be

considered: fixed effects and mixed effects (Yang and

Huang 2011). If no prior measurement data are available, a

mean branch diameter and length prediction can be gen-

erated for each branch using only the fixed parameter.

Thus, an expected value of zero was used for all random

parameters and the prediction of the fixed part is the

standard BD-DINC (or BL-DINC) curve. However, these

functions only represent the pattern of a typical response

and define the mean behavior of the branch variation for a

given tree. Therefore, we did not produce such BD and BL

here. Mixed-effects model predictions require a sub-sample

of BD-DINC (or BL-DINC) measurements (and the stand

and tree variables are included in the model in the case of

generalized models) from each tree for random parameter

prediction. The random parameters were predicted using

the following expression (Vonesh and Chinchilli 1997;

Wang et al. 2007; Yang and Huang 2011):

bi � D̂ẐT
i ðR̂i þ ẐiD̂Ẑ

T
i Þ

�1
êi ð10Þ

where D̂ is the matrix q 9 q of variance–covariance

associated with the random parameters, which is common

to all trees in the general model fitting procedure; R̂i is the

mj 9 mj estimated matrix of variances–covariance of the

error term; êi is the residuals vector m 9 1, the components

of which are obtained as the difference between the

observed BD (or BL) each branch in specific tree and the

value predicted using the model with fixed parameters

only; and Ẑi is the matrix m 9 q of the partial derivatives

of the random parameters evaluated in bi = 0. Details on

the prediction of random effects parameters in the forestry

context can be found in the study by Fang and Bailey

(2001) and Wang et al. (2007). Usually, the greater the

number of sub-sample selected for estimation of random

effects parameters, the higher the prediction accuracy

(Yang and Huang 2011; Corral-Rivas et al. 2014). We

tested BD and BL measurements of various numbers of

branches (i.e., 1–8 branches for each tree) to estimate

random effects parameters in our preliminary analyses.

Considering both measurement costs and potential errors

(Calama and Montero 2005; Corral-Rivas et al. 2014), we

decided to use four randomly selected branches to estimate

random effects parameters for prediction of BD and BL.

Prediction accuracies of the models with and without the

random effects were compared by examining the goodness-

of-fit statistics (RMSE, R2 and Bias), which are obtained

for the equations fitted by NLS and NLME functions in

S-Plus software. Model variants in the mixed effects

models were compared using the AIC, BIC and Loglik.

Unless otherwise, the level of significance is 0.05 (al-

pha = 5 %) throughout this paper.

Results

Local function selection

The fits statistics of the functions (Table 2) are presented in

Table 3. Although evaluation indices were almost identical

for all of the functions, function F8 (a Hosfled form)

showed a slightly superior predictive ability for both

models. In selecting the best local functions, we also

examined graphs of the residuals and the significance of the

parameters for each function. In this respect, the Hosfled

function was the preferred model. As emphasized here,

although the Mitscherlich function (F2) did not perform

much worse for the average growth response of branch

diameter and length and has one less parameter than

Hosfled function (F8), it usually failed to reach conver-

gence for a specific tree which indicating that Mitscherlich

function was not suitable to include additional stand (or

tree variables). Therefore, the Hosfled function was selec-

ted as the basic nonlinear model for constructing the BD

and BL model.

BDijk ¼ b0=ð1þ b1 � DINC�b2
ijk Þ þ eijk ð11Þ

BLijk ¼ b0=ð1þ b1 � DINC�b2
ijk Þ þ eijk ð12Þ

where BDijk, BLijk and eijk are branch diameter, length and

error estimated by the models for the kth branch in the jth

tree in the ith plot, DINCijk are depth of branch into crown

for the kth plot in the jth tree in the ith plot, and b0–b2 are

function parameters.

Generalized function

To avoid over-parameterization and collinearity in the

models, we used only those variables displaying a signifi-

cant contribution to branch diameter and length variation.

On relating the parameters in Eqs. (11) and (12) to the

stand and tree variables, we found that in the both models,

parameter b0 was positively correlated with DBH

(r = 0.8851 and 0.7753) and HT (r = 0.8073 and 0.6510),

whereas parameter b1 was negatively correlated with DBH

(r = -0.3819 and -0.3432) and HT (r = -0.3568 and

-0.2630) and, finally, parameter b2 was uncorrelated with

all the variables in our study. To develop a generalized

equation from Eqs. (11) and (12), we tested various com-

binations of the tree variables to improve their efficacy in

the fit, taking into account the previously mentioned cor-

relations, which resulted in Eqs. (13) and (14):
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BDijk ¼ ðb0 þ b3 � DBHijÞ=ð1þ b1 � HTij � DINC�b�2
ijk Þ

þ eijk

ð13Þ

BLijk ¼ ðb0 þ b3 � DBHijÞ=ð1þ b1 � HTij � DINC�b�2
ijk Þ þ eijk

ð14Þ

where DBHij and HTij are the diameter at breast height

(DBH, cm) and tree height (HT, m) of the jth tree in i-plot,

and b0–b3 are formal parameters.

Random-effects models

There would be 225 different combinations of random

effects parameters for Eqs. (13) and (14) while simulta-

neously considering both plots effects and the nested

effects of plots and trees for the BD and BL models,

respectively. When fitting to the data, only 179 and 156 of

the BD and BL mixed-effects models reached convergence.

The models of Eqs. (15) and (16), incorporating plot

effects on b1 and nested interaction on b1 and b3 for the

both mixed-effects models, yielded the smallest AIC and

BIC, and the largest Loglik.

BDijk ¼ ðb0 þ ðb3 þ u3ijÞ � DBHijÞ=ð1þ ðb1 þ u1i þ u1ijÞ
� HTij � DINC�b2

ijk Þ þ eijk

ð15Þ

BLijk ¼ ðb0 þ ðb3 þ u3ijÞ � DBHijÞ=ð1þ ðb1 þ u1i þ u1ijÞ
� HTij � DINC�b2

ijk Þ þ eijk

ð16Þ

where b0–b3 are fixed-effects parameters; u1i are random-

effects parameters generated by plot on b1; u1ij and u3ij are

random-effects parameters generated by interaction of plot

and tree on b1 and b3, respectively.

Within-tree variance–covariance (R) structure

Evaluation indices of three variance functions applied to

Eqs. (15) and (16) are listed in Table 4. Each of the three

variance functions yielded significantly different results

from that of homogenous variance (P\ 0.0001). Thus,

even with random effects in the parameters,

heteroskedasticity persisted in the mixed-effects BD and

BL model [Eqs. (15), (16)]. Among the tested variance

functions Eqs. (7)–(9), the three evaluation indices and the

likelihood ratio test (LRT) showed that the exponential

function [Eq. (7)] and the constant plus power function

[Eq. (9)] demonstrated the best performance to the BD and

BL mixed-effects models, Therefore, the expressions of the

BD and BL mixed models finally obtained are:

Eq:ð15Þ þ Eq:ð7Þ ð17Þ
Eq:ð16Þ þ Eq:ð9Þ ð18Þ

To account for autocorrelation residual variances, cor-

relation structures, including AR(1), MA(1) and

ARMA(1,1), were incorporated into the optimal branch

diameter and length mixed models. Each of the convergent

correlation structure yielded much better results than that

of the random effects mixed model. For both models, all

the three evaluation indexes and the LRT showed that the

AR(1) structure provided much better fits than the others.

Thus, the final models are:

BDijk ¼ ðb0 þ ðb3 þ u3ijÞ � DBHijÞ=ð1þ ðb1 þ u1i þ u1ijÞ
� HTij � DINC�b2

ijk Þ þ eijk þ Var(eijkÞ
¼ r2 expð2c1DINCijkÞ þ AR 1ð Þ

ð19Þ

BLijk ¼ ðb0 þ ðb3 þ u3ijÞ � DBHijÞ=ð1þ ðb1 þ u1i þ u1ijÞ
� HTij � DINC�b2

ijk Þ þ eijk þ Var eijk
� �

¼ r2ðc3 þ DINC
2c4
ijk Þ

2 þ AR 1ð Þ
ð20Þ

Table 3 Performance criteria

for BD- and BL-DINC base

models

Function no. BD models BL models

RMSE R2 Bias RMSE R2 Bias

F1 0.5368 0.6490 -0.0017 36.9637 0.7838 -0.3018

F2 0.5473 0.6347 0.0299 37.5748 0.7762 1.8219

F3 0.5366 0.6492 -0.0013 36.9158 0.7840 -0.2756

F4 0.5729 0.6002 0.0456 40.1571 0.7367 4.2224

F5 0.5473 0.6353 -0.0049 38.3080 0.7677 -0.5988

F6 0.5364 0.6496 0.0012 36.8775 0.7848 -0.0430

F7 0.5544 0.6256 -0.0086 39.3162 0.7553 -1.0328

F8 0.5266 0.6593 -0.0009 36.7290 0.7942 -0.1209
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Estimation of parameters

The values of the parameters and goodness-of-fit statistics

for the fixed-effects models [Eqs. (11)–(14)] and for the

generalized mixed models [Eqs. (15)–(20)] are shown in

Table 6. All estimated parameters were highly significant

at a = 0.05. We compared the RMSE values obtained with

the mixed effects models with those obtained fixed effects

models (fitted by ONLS); the values obtained with the

generalized mixed models [Eqs. (15), (16)] were 53.08 and

54.51 % lower than those obtained with the local models

[Eqs. (11), (12)], and 37.73 and 44.87 % lower than those

obtained with the generalized models [Eqs. (13), (14)] for

BD and BL models, respectively. However, when the

variance functions were added to the generalized mixed

models, 8.74 and 0.75 % increases in the RMSE values

were observed form the generalized mixed models with

variance functions [Eqs. (17), (18)], and the increases were

20.68 and 8.11 % when the correlation structures were

continuously modeled [Eqs. (19), (20)]. The results

obtained for R2 were similar to those obtained for RMSE.

On inspecting the values of the AIC, BIC and Loglik for

the BD and BL mixed models with variance functions and

correlation structures, we found that the Eq. (19) for the

BD and Eq. (20) for the BL were the most accurate fitting

models (Tables 4, 5). However, the values of the RMSE

and R2 violated the above results, obtaining from the AIC,

BIC and Loglik. Meanwhile, we did not find any significant

difference for the graphics of the residuals for the BD and

BL estimated by the generalized mixed models without and

with variance functions and correlation structures, indi-

cating that the variance functions and correlation structures

did not exert significant effects on BD and BL (Fig. 3).

Therefore, we selected the Eqs. (15) and (16) as the final

BD and BL mixed-effects models. Substituting the fixed

and random parameters estimated into the Eqs. (15) and

(16), the generalized branch diameter and length model for

natural Dahurian larch in northeastern China becomes:

BDijk ¼ ð0:4327þ ð0:1643þ u3ijÞ � DBHijÞ=ð1þ ð0:1694
þ u1i þ u1ijÞ � HTij � DINC�1:2194

ijk Þ þ eijk

ð21Þ

where bi = [b1i] * N{[0], (0.0373)},

bij ¼
b1ij

b3ij

" #

�N
0

0

" #

;
0:0691 0:5671
0:5671 0:0285

� �

( )

;

eijk �Nð0;Rij ¼ 0:2883IijÞ

BLijk ¼ ð90:9044þ ð14:3599þ u3ijÞ � DBHijÞ=ð1
þ ð0:2635þ u1i þ u1ijÞ � HTij � DINC�1:2464

ijk Þ þ eijk

ð22Þ

where bi = [b1i] * N{[0], (0.0003)},

bij ¼
b1ij

b3ij

" #

�N
0

0

" #

;
0:1423 0:7604
0:7604 3:6909

� �

( )

;

eijk �Nð0;Rij ¼ 17:3771IijÞ

Model validation

Most developed models are intended for making predic-

tions on datasets that were not used in model development.

As for the mixed-effects models, it is extremely difficult to

calculate the values of random effects parameters, which is

the most important step in the process of model prediction.

The random effects parameters were calculated with

Eq. (10) using the validation datasets. Table 7 presents the

Table 4 Performances of BD and BL mixed-effects models [Eqs. (15), (16)] with different variance functions

Model Residual variance function Parameter number AIC BIC Loglik LRTa P value

Equation (15) Noneb 9 403.2607 444.2717 -192.6303

Power function 10 263.9702 309.5380 -121.9851 141.2904 \0.0001

Exponential function 10 220.1513 265.7191 -100.0756 185.1094 \0.0001

Const plus power function 11 218.3723 268.4968 -98.1861 188.8884 \0.0001

Equation (16) Noneb 9 6229.6422 6270.6531 -3105.8208

Power function 10 6217.4763 6173.0441 -3053.7382 104.1664 \0.0001

Exponential function 10 6105.6381 6151.2054 -3042.8191 126.0048 \0.0001

Const plus power function 11 6097.6622 6147.7868 -3037.8906 135.9801 \0.0001

AIC akaike information criterion, BIC bayesian information criteria, Loglik log-likelihood value, LR likelihood ratio test, variance function 1

means that the variances are homogenous. The same below
a LRT, likelihood ratio test, every (full) model estimated with a variance function was compared to the (reduced) model estimated assuming no

heteroskedasticity
b None variance function assumes no heteroskedasticity
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three prediction statistics [Eqs. (1)–(3)] obtained for the

validation data for branch diameter and length predictions,

using the estimated coefficients listed in Table 6 for

Eqs. (15) and (16), which indicated that the fitting data and

validation data had the same result for all the models

considered in our study. The mean prediction biases in all

models were not significantly different from zero

(a = 0.05). The prediction accuracy of Eqs. (15) and (16)

was much higher that of other fixed-effects model and

random-effects model for the BD and BL models, respec-

tively. For the BD models, the Eq. (15) reduced RMSE of

branch diameter by 64.85 and 49.04 %, when compared to

simulation with the local model [Eq. (11)] and the gener-

alized model [Eq. (13)]; however, the simulation of branch

diameter led to very slight increases of RMSE (1.78 and

4.48 %) when the variance function and correlation struc-

ture were added to the Eq. (15), respectively. Similarly, for

the BL models, the reductions were approximately 53.02

and 48.99 % when the Eq. (16) compared those with the

local model [Eq. (12)] and the generalized model

[Eq. (14)], and the increases of RMSE values were also

much smaller (0.91 and 2.00 %) when compared those with

the Eq. (16) with the variance functions [Eq. (18)] and the

correlation structures [Eq. (22)]. All these conclusions can

be confirmed form the changes of R2 in Table 7.

Model application

Figure 4 shows the simulation of branch diameter and

length for different DBH and HT introduced the fixed

parameters into Eqs. (15) and (16). The both models are

typical monotonic increasing functions with an asymptotic

line. For a tree of given DBH and HT, BD and BL become

progressively larger with DINC increasing. Moreover, for

the trees with the same DBH and different HT, BD and BL

at a given DINC reduced with increasing HT; however, for

the trees with the same HT and different DBH, both of

them at a given DINC increased with increasing DBH.

Based on the above analysis, the DBH and HT can effec-

tively respond to the changes of branch diameter and length

for different tree size, which indicated that Eqs. (15) and

(16), incorporating nested two-levels effects of plot and

tree without variance functions and correlation structures,

display sufficiently high predictive power to constitute a

final model for predicting the BD and BL of natural

Dahurian Larch forest in northeast China.

Discussion

Multi-level linear or nonlinear mixed modeling provides

the opportunity to study the branch growth variation at

different level of the hierarchy. In the present work, branch

diameter and length for natural Dahurian larch trees in

northeast China are described as a stochastic process,

where a fixed effect explains the mean value for the

development, while unexplained residual variability is

described and modeled by including random parameters

acting at plot and tree levels.

In the fixed part of the models, which explains

approximately 80 and 85 % of the variability for branch

diameter and length, the primary explanatory variable was

the locations of branches, defined as the absolute depth of

branch into the crown (DINC) from the stem apex to the

base of the crown. DINC is a good indicator of branch

development along with the stem, because it includes both

past competitive interactions and genotypic differences in

response to environment. In the proposed models,they

showed that BD and BL increased quickly in the early

stage and then approached to a maximum value at the

crown base. Together with DINC, the fixed part of the

models also included variables commonly used as

Table 5 Performances of BD and BL mixed-effects models [Eqs. (17), (18)] with different correlation structures

Model Correlation structure Parameter number AIC BIC Loglik LRTa P value

Equation (17) Noneb 10 220.1513 265.7191 -100.0756

AR(1) 11 209.1463 259.2708 -93.5731 13.0050 0.0003

MA(1) 11 Not convergent

ARMA(1,1) 12 Not convergent

Equation (18) Noneb 10 6097.6622 6147.7868 -3037.8906

AR(1) 11 6031.8732 6086.5541 -3003.9358 67.9606 \0.0001

MA(1) 11 6070.8306 6125.5124 -3023.4162 28.9488 \0.0001

ARMA(1,1) 12 Not convergent

a LRT, likelihood ratio test, every (full) model estimated with an autocorrelation structure was compared to the (reduced) model estimated

assuming no autocorrelation
b None structure assumes no autocorrelation
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predictors in forest growth and yield models, such as DBH

and HT. Positive values for the parameter b0 in Eqs. (11)

and (12) associated with DBH are related to the fact that

larger DBHs are attaining larger branch size, and HT is

negatively correlated with b1 in Eqs. (11) and (12), which

means that branches from the higher trees are expected to

smaller branch size than those from shorter trees. In

comparing the present models with the branch size models

for Dahurian larch plantation growing on the same area by

Jiang et al. (2012a, b), it is possible to see that the latter

also includes variables indicating branch location (DINC)

and tree size (DBH). Therefore, the differences of branch

growth process for Dahurian larch with different origin

were mainly embodied in the effects of HT. The dominant

trees grown in natural forest usually can acquire more

resources (i.e., photosynthetically active radiation), thus
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Fig. 3 Distribution of residuals for five equations fitting the branch

diameter (BD) and branch length (BL) of Dahurian larch in

northeastern China. a Local model [Eqs. (11), (12)], b generalized

model [Eqs. (13), (14)], c random-effects model [Eqs. (15), (16)],

d random-effects model with variance function [Eqs. (17), (18)],

e random-effects model with variance function and correlation

structure [Eqs. (19), (20)]
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the optimal strategy for these trees may allocate more

energy and matter to enhance the growth of diameter and

height. However, the priority for inferior trees should

allocate more energy and matter to enhance the growth of

branch which is useful to acquire more resources. This may

be the main reasons why higher trees can lead to smaller

branch sizes for natural Dahurian larch. As for the plan-

tation forest, HT has no significant effects on the branch

growth process, because of the variation of HT within a

specific stand usually was negligible.

The stochastic part of the models, which contribute

additional 12 and 10 % of the growth variability for branch

diameter and length, include the hierarchical random

effects (trees and plots). Compared to the residual vari-

ability within a specific tree, the smaller between-plot (or

tree) residual variability can be taken into account the

stand characteristics (i.e., stand density and age), site

properties (i.e., evaluation, slope aspect and position) and

management treatments (i.e., cutting intensity). However,

as the contributions of these variables were much less than

the DBH and HT, they were not included into the final

mixed-effects model. Large within-tree residual variability

can be due to competition factors. Crown widths were

significantly negatively correlated with the parameter b0
for both models (R2 = -0.3819 and -0.3432), and the

Hegyi competition index denoting the social status of the

trees within stand were positively correlated with the

parameter b0 (R2 = 0.2982 and 0.3622) and b1
(R2 = 0.2248 and 0.2662), which indicated that trees from

the dominant stratum are expected to smaller branch size

than those from other strata. However, considering the

tradeoffs between the complexity and prediction ability of

the models, as well as the prohibitively costly and time

consuming to measure the crown width and competition

factors, they were not added to the fixed effects models.

Finally, approximately 7 and 4 % of the growth vari-

ability cannot be explained in our study, which suggested

that some variables were ignored in the final mixed model

[Eqs. (19), (20)], e.g., factors related genetics, microsite or

ecological. The larch casebearer (Coleophora dahurica)

and caterpillar (Dendrolimus superans) are the main

defoliator pests for the pure and mixed Dahurian larch

forest in northeast China, which may affect the growth of

branches (Jin et al. 1995). In addition, the human error in

branch attribute measurement is also one of the major

causes for failing to explain them completely, since the

Dahurian larch has the phenomenon of false whorls in the

stem (Wu 2010), which leads to the branch location in the

stem, were difficult to determine.

In general, the random parameters were not able to

remove the heterogeneous variance and residual autocor-

relation completely, both of these values required further

consideration in the presence of random effects. ToT
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evaluate the heterogeneous variance, comparing the resid-

ual plots between the ordinary regression model and the

mixed-effects model was predominantly used in building

the mixed-effects model. For our data, the distribution of

residuals for the BD and BL random-effects model

[Eqs. (15), (16)] showed slight heterogeneity (Fig. 3c).

Thus, we tested an array of variance functions to com-

pletely alleviate the problems of heterogeneous variance.

However, significant heterogeneous variances were still

present for both models [Eqs. (17) and (18)] even with the

variance functions included (Fig. 3d). The fitting precision

of the models were reduced about 1.62 and 0.07 % (for the

R2, same the below), respectively. And the same situation,

which the fitting precision decreased by 3.71 and 0.75 %,

were still present when the time series correlation struc-

tures were added to the Eqs. (17) and (18) (Fig. 3e).

Similar findings were reported by others when further

modeling of within-tree heterogeneous variance and

residual autocorrelation was still necessary (Garber and

Maguire 2003; Yang and Huang 2011). In addition to the

above-mentioned natural and human reasons, the most

important reason for not being able to remove them com-

pletely is a slight lack of flexibility in the model form for

some trees (Yang and Huang 2011). For instance, it may be

possible that, for a tree, the model slightly underestimates

the branch size for the first few measurements, and over-

estimates for the middle part and underestimates for the last

few measurements, which could lead to positive–negative–

positive residuals. It appears that, although the range of

residuals are reduced substantially by including random

parameters, the heterogeneous variance and residual auto-

correlation may not always be completely removed for

some models and data even with the appropriate covariance

(Fortin et al. 2008; Yang and Huang 2011).

In predicting the branch size from mixed-effects models,

the random-effects parameters should be estimated from a

prior information provided by dependent variables (Vonesh

and Chinchilli 1997; Fang and Bailey 2001; Yang and

Huang 2011; Corral-Rivas et al. 2014). Thus, in addition to

prediction variables such as DBH and HT, DINC of a small

subsample for a special tree must be measured, and random

parameters should be estimated (Vonesh and Chinchilli

1997; Yang and Huang 2011; Corral-Rivas et al. 2014).

The number of subsamples for estimating random param-

eters has been discussed in the literature, most of which

showed that 3–5 subsamples are more appropriate for

subject-specific prediction (Calama and Montero 2005;

Yang and Huang 2011; Fu et al. 2013; Corral-Rivas et al.

2014). The analysis of data using one to eight branches for

each revealed the accuracy of prediction analysis with four

branches was similar to the results of the analysis with five

or more branches. Therefore, as Calama and Montero

(2005) and Corral-Rivas et al. (2014) suggested, four ran-

domly selected branches were measured for random

parameters estimation in our study. The accuracy of pre-

diction for all the models in Table 7 can lead to the fact

that combining the available measurement data and a prior

knowledge of the variance–covariance structure of the
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random parameters is the optimal way to derive subject-

special predictions.

One of the important messages presented in our analysis,

why more complex models [Eqs. (17)–(20)] at Tables 4

and 5 performed worse than simpler models [Eqs. (15),

(16)] when evaluating their fitting and prediction abilities

using the traditional model selection criterias (e.g., R2,

RMSE), should cause our attentions. This phenomenon can

be called as ‘‘law of diminishing returns’’ in term of pre-

dictive performance as more complex models are con-

structed. Foe example, the percentage of decreased for AIC

values between Eqs. (19) and (15) was as high as 48.14 %,

however this improvements can not be verified by the

traditional criteria. Similar results were also found in the

work by Zhao et al. (2005) and Yang and Huang (2011),

the percentage of decreased for AIC values for their work

were 10.38 and 7.6 %, respectively. There is no doubt that

the models are increasingly being developed more complex

in the field of forestry, however our study should that a

simpler function may be also a good one from the per-

spective of application.

The models presented here allow for integration into a

model system, as implemented in SILVA2.0 (Pretzsch

et al. 2002), which can be used for predicting the effects of

different stand conditions and management measures on

the geometry of branches for natural Dahurian larch forest

in northeast China. When applying the models, most of the

predictions use variables that can be obtained from tradi-

tional mensurational data for tree-level descriptors as pro-

vided by sample-plot inventories. The outputs of DBH and

HT, as well as other variables, are used as the values of the

independent variables in the branch models. During the

simulation, information on branch attributes of each sample

tree is updated annually together with the other tree and

stand variables. Some natural extensions of the work would

be to more fully examine the impact of various culture

treatments, site properties, stand origins and their nested

interaction on the growth responses of branches. In addi-

tion, given the widespread attention paid to global climate

change over the last decade or so, a potential need has

arisen to develop climate-sensitive growth models for trees

or branches.

Conclusions

Branch attributes are the key link between management

measures, tree growth and wood quality; however, detailed

studies of branch response to a wide range of site and stand

conditions for natural forest are lacking. A total of 966

sample branches on 50 trees for natural Dahurian larch were

monitored in this study, representing a variety of site and

stand conditions throughout the northeast China. Branch

diameter [Eq. (15)] and length [Eq. (16)] models were

developed to estimate branch size of individual Dahurian

larch trees in natural mixed uneven-aged stands in northeast

China using a multi-level nonlinear mixed-effects model

approach. Two tree variables (DBH and HT) were signifi-

cant predictors of branch size of individual trees, hence were

included in the models. By partitioning the residual variation

via random-effects parameters modeling at the plot and tree

levels, the models [Eqs. (15), (16)] were able to capture the

variation successfully. The interaction between plot and tree

played a more important role than plot alone. However, the

heterogeneity and autocorrelation were not successfully

removed by the frequently used variance functions

[Eqs. (7)–(9)] and time series correlation structures [i.e.,

AR(1), MA(1) and ARMA(1,1)] for both models, respec-

tively. The simulation and prediction accuracy of the nested

plot and tree models were higher than the local and gener-

alized models, as well as the mixed models with the

appropriate variance function and correlation structure.

Overall, our results showed that the multi-level nonlinear

mixed-effects model performed better than the traditional

local models and the generalized models for predicting

natural Dahurian larch branch properties.
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