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Abstract

Key message Nitrogen fixation in Alnus species in

response to elevated CO2 may depend on the presence

of non-N2-fixing tree species in addition to soil

conditions.

Abstract Alnus is a major genus of actinorhizal plants.

Symbiosis with Frankia allows the Alnus species to fix

nitrogen (N) at the rate of several to 320 kg N ha-1 year-1

with a nodule biomass of 16–480 kg ha-1. Alnus species

ensures an effective supply of N to soils because of the

high N content of leaf litter, rapid decomposition rate, and

the influx of herbivorous insects. In addition, the associa-

tion between regenerated endozoochorous species and Al-

nus hirsuta suggests that N2 fixation in Alnus species

influences the distribution patterns of regenerated plants as

well as improve soil fertility. N2 fixation by the Alnus–

Frankia symbiotic relationship may be positively associ-

ated with elevated carbon dioxide (CO2) levels. Nodule

biomass increased under elevated CO2 due to enhanced

plant growth, rather than changes in biomass allocation.

The inhibitory effect of high soil N on nodulation was

retained under elevated CO2, and the effects of elevated

CO2 on N2 fixation depended on soil P availability,

drought, and many other abiotic and biotic factors. Recent

free-air CO2 enrichment experiments have demonstrated

increased N2 fixation in A. glutinosa exposed to elevated

CO2 in mixed-species stands containing non-N2-fixers but

not in monocultures, suggesting that N2 fixation depends

on an association with non-N2-fixing tree species. Because

elevated CO2 can alter the N and P contents and stoi-

chiometry of plants, it will be necessary to evaluate N

allocation and accumulation of biomass when investigating

the response of Alnus species to future global climate

change.

Keywords Actinorhizal plants � Frankia � Nodule
biomass � Soil nutrients � Stoichiometry

Introduction

Biological nitrogen (N) fixation is an important pathway to

input new N into terrestrial ecosystems (Vitousek and

Walker 1987). Two types of root-nodule symbioses exist

between higher plants and N2-fixing soil bacteria, such as

legume–Rhizobium and actinorhizal plant–Frankia sym-

bioses (Pawlowski and Sprent 2008). Bacteria induce the

formation of nodules on plant roots during both interac-

tions. In the case of actinorhizal symbiosis, Gram-positive

actinomycetous soil bacteria in the genus Frankia induce

the formation of root nodules in[200 dicotyledonous

plants from eight families (Dawson 2008; Gtari et al.

2013). All of these host plants are perennial dicotyledons,

and all except the genus Datisca are trees or shrubs.

Although leguminous tree species are dominant symbiotic

N2-fixers in tropical regions, actinorhizal woody plants and

Frankia play an important role in the N cycle in temperate

and boreal forest ecosystems (Huss-Danell 1997). Recent

research on actinorhizal plant—Frankia symbioses have

focused on phylogenetic and genomic analyses regarding
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the use of transgenic actinorhizal plants (Kucho et al. 2010;

Normand 2013).

Among actinorhizal plants, which are very diverse,

those from the genus Alnus are of particular interest

(Pourhassan et al. 2015). Forty-seven Alnus species are

found worldwide (Pawlowski and Newton 2008), 16 of

which grow naturally in Japan (Uemura and Sato 1975).

The Alnus–Frankia symbiotic relationship has been used to

revegetate deteriorated wildlife habitats and rehabilitate

N2-deficient disturbed areas (Sharma et al. 2002; Hanley

et al. 2006) to enhance the growth of commercial conif-

erous trees (Vogel and Gower 1998; Son et al. 2007) and

short-rotation plantings used for biomass energy (Eriksson

and Johansson 2006; Claessens et al. 2010; Uri et al. 2011;

Hytönen and Saarsalmi 2015). The range of N2 fixation

rates reported for the Alnus–Frankia symbiosis coincides

with that of the legume–Rhizobium symbiosis (Hibbs and

Cromack 1990; Lambers et al. 2008; Noh et al. 2010).

In addition, the Alnus–Frankia symbiotic relationship is

attracting interest due to its responses to elevated atmo-

spheric carbon dioxide (CO2) concentrations (Hungate

et al. 2003). Increasing CO2 is an important factor influ-

encing global climate change (IPCC 2007, 2013). Elevated

CO2 increases long-term forest net primary productivity

(Zak et al. 2011), except under nutrient-limiting conditions

(Leuzinger and Hättenschwiler 2013), and forest ecosys-

tems are usually N2 limited (Vitousek and Howarth 1991;

Wang et al. 2010). Although carbon (C) becomes more

available to plants in an elevated CO2 environment, plants

also require other resources to sustain primary production,

including N, phosphorus (P), and micronutrients obtained

from the soil (Pourhassan et al. 2015). Therefore, nutrient

availability, particularly that of soil N, may strongly limit

responses to elevated CO2 by woody plants undergoing

increased photosynthetic and growth rates (Luo et al. 2004;

Hyvönen et al. 2007; Norby et al. 2010; Zak et al. 2011;

Sigurdsson et al. 2013). Exogenous N input into forest

ecosystems may be required to maintain enhanced growth

under these conditions (Johnson 2006). Symbiotic and/or

heterotrophic N2 fixation by legumes and actinorhizal

plants may be a potential source of N to sustain increased N

uptake by non-N2 fixers due to high rates of forest pro-

ductivity under an elevated CO2 environment (Vitousek

et al. 2002; Finzi et al. 2007). Many studies on legumes

have been conducted, and excellent reviews have been

published (Ainsworth and Long 2004; Ainsworth and

Rogers 2007; Rogers et al. 2009).

A number of abiotic and biotic factors affect the free-

living and symbiotic properties of the Frankia–actinorhizal

symbiosis, including moisture, aeration, temperature, pH,

organic matter, inorganic chemicals, and the distributions

of Frankia, and mycorrhizal fungi; excellent reviews have

summarized these effects (Huss-Danell 1997; Dawson

2008; Valdés 2008; Põlme et al. 2014). The growth

responses of legumes to elevated CO2 are occasionally

constrained by factors other than N availability, such as P

availability and water conditions (Hungate et al. 2004;

Reverchon et al. 2012). Understanding how Alnus species

respond to elevated CO2 is of great ecological and eco-

nomical importance (Pourhassan et al. 2015). This review

primarily focuses on the details of the interactive effects

between projected elevated CO2 in the near future and

other factors such as N, P, and drought on growth and N2

fixation in Alnus–Frankia symbiosis. The first section

presents a review on determining nodule biomass and N2

fixation rates under the present conditions.

Current Alnus–Frankia N2 fixation ability

Nodule biomass in Alnus stands

Nodule biomass is an essential tool to estimate N2 fixation

at any scale (Aosaar et al. 2013). Nodules are formed on

actinorhizal plants when lateral roots are infected by

Frankia. In some hosts such as Alnus species, Frankia

infects roots via root hairs (intracellular infection) or by

intercellular penetration (Wall and Berry 2008; Tromas

et al. 2013). Nodules can be perennial clusters of modified

lateral roots and may grow to a large size (Huss-Danell

1997). The size and mean weight of Alnus species nodules

increase with the tree diameter within a naturally estab-

lished stand (Uliassi and Ruess 2002; Tobita et al. 2010a)

and increase with stand age in a plantation (Aosaar et al.

2013). The nodule size affects nitrogenase activity (NA)

because nodules have varying amounts of non-N2-fixing

tissue with increasing size (Sharma and Ambasht 1984;

Hurd et al. 2001). This fundamental information about

nodule size distribution is useful to estimate N2 fixation in

Alnus stands. However, NA, at least in young Alnus species

plants, is related to nodule biomass (Gordon and Wheeler

1978) and not nodule number (Dawson and Gordon 1979).

Several studies have attempted to estimate nodule bio-

mass in Alnus stands living in managed plantations and in

naturally established populations. Nodule biomass varies

depending on stand age, species composition, tree size,

stand density, and soil nutrient concentrations (Binkley

1981, 1982; Bormann and Gordon 1984; Sharma and

Ambasht 1986; Binkley et al. 1992; Uliassi and Ruess

2002; Lee and Son 2005; Son et al. 2007) and has been

estimated to range from 16 to 480 kg ha-1 (Table 1;

Binkley 1981; Hurd et al. 2001). No clear association has

been found between nodule biomass and stand age but

nodule biomass tends to increase early until a stand is

10–15 years old (Fig. 1a). Variations in below-ground

biomass estimates are higher than those of above-ground
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estimates due to methodological difficulties (Aosaar et al.

2013). The spatial distribution patterns of nodules tend to

be more homogeneous horizontally as a plantation ages

(Rytter 1989) or with increasing tree size in a naturally

established stand (Tobita et al. 2010a), although large

variations in nodule distribution are also observed on the

basis of stand age and tree size. These findings suggest that

the distance from the Alnus tree must be considered to

estimate nodule biomass in Alnus stands.

Seasonal variations in N2 fixation activities and rates

in Alnus stands

N2 fixation begins shortly after leaf emergence in spring,

remains high but variable in summer, decreases in late

autumn, and ceases when all the leaves have been shed

(Huss-Danell 1990; Tsutsumi et al. 1993; Sharma et al.

2010; Tobita et al. 2013a). Fluctuations in environmental

conditions such as light, soil temperature, water, mineral

nutrition, and pH as well as the presence of Frankia strains

also affect nodule N2 fixation activity (Pawlowski and

Newton 2008; Gtari et al. 2013; Tobita et al. 2013b).

Declines in N2 fixation activity caused by these factors are

often related to a deficiency of carbohydrates supplied from

leaves to nodules because N2 fixation activity depends on

newly formed photosynthates supplied by the host plant

(Huss-Danell 1997). Nonstructural carbohydrate accretion

is greater in nodules in fall, contributing to the maintenance

of overall plant levels of N2 fixation similar to those

observed during summer (Kaelke and Dawson 2005).

Therefore, N2-fixing root nodules are a strong metabolic

sink for photosynthates within a plant (Huss-Danell and

Sellstedt 1983; Ruess et al. 2006). This character of nod-

ules may help Alnus species adapt to photosynthesis under

elevated CO2 conditions (Koike et al. 1997; Tobita et al.

2010b, 2011), as will be described in detail hereinafter.

Table 1 Estimates of nodule biomass in Alnus stands

Species Nodule biomass (kg ha-1) Stand age (years) Tree density (trees ha-1) References

Alnus glutinosa 454 5–20 Akkermans and van Dijk (1976)

Alnus hirsuta 88 17 1114 Tobita et al. (2010a)

Alnus hirsuta 179 27 1960 Son et al. (2007)

Alnus hirsuta 95 27 1130 Son et al. (2007)

Alnus hirsuta 220 38 700 Lee and Son (2005)

Alnus incana ssp. incana 170 5 12660 Aosaar et al. (2013)

Alnus incana ssp. incana 160 10 7400 Aosaar et al. (2013)

Alnus incana ssp. incana 310 17 5100 Aosaar et al. (2013)

Alnus incana ssp. incana 44 2 Huss-Danell and Ohlsson (1992)

Alnus incana ssp. incana 110 3 40000 Rytter (1989)

Alnus incana ssp. incana 230–480 7 Rytter (1989)

Alnus incana ssp. incana 150 30 Johnsrud (1978)

Alnus incana spp. rugosa 65 19120 Hurd et al. (2001)

Alnus incana spp. rugosa 58 Younger and Kapustka (1983)

Alnus nepalensis 300–420 15–20 Sharma et al. (2010)

Alnus nepalensis 457 7 715 Sharma and Ambasht (1986)

Alnus nepalensis 149 56 435 Sharma and Ambasht (1986)

Alnus rubra 250–325 55 3000 Binkley et al. (1992)

Alnus rubra 16 2 Kim (1987)

Alnus rubra 121 58 Kim (1987)

Alnus rubra 62 5 1240 Bormann and Gordon (1984)

Alnus rubra 146 5 10091 Bormann and Gordon (1984)

Alnus rubra 390 15–20 Binkley (1981)

Alnus rubra 30–55 2–4 5000–8000 Tripp et al. (1979)

Alnus rubra 117 7 Zavitkovski and Newton (1968)

Alnus rubra 244 30 Zavitkovski and Newton (1968)

Alnus viridis ssp. sinuata 130 5 Binkley (1982)

Alnus viridis ssp. sinuata 110 15–20 Binkley (1981)

Alnus viridis ssp. viridis 43 Moiroud and Capellano (1979)

Adapted from Binkley (1981) and Hurd et al. (2001)
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Alnus species N2 fixation rates are estimated to be sev-

eral kg N ha-1 year-1 to 320 kg N ha-1 year-1 after

several major assumptions are met (Table 2; e.g., Binkley

1981; Hibbs and Cromack 1990; Rytter et al. 1991;

Cleveland et al. 1999; Hurd et al. 2001; Lõhmus et al.

2002; Uri et al. 2004; Lee and Son 2005). The nitrogenase

activity of each nodule and N2 fixation rate per plant vary

depending on the N demand with increasing tree age (Son

et al. 2007). The N2 fixation rate increased with stand age

and was higher in 10- to 20-year-old stands than in older

stands (Fig. 1b). The contribution of N2 fixation to N

economy increases with stand age, peaking in a 15- to

20-year-old A. nepalensis stand (Sharma et al. 2002).

While many studies listed in Table 2 adopted an acet-

ylene reduction assay (ARA) to evaluate the N2 fixation

activity, ARA results should be interpreted cautiously

because ARA has been the subject of many criticisms due to

assay inconsistency (Winship and Tjepkema 1990; Silvester

et al. 2008). One is the so-called C2H2-induced decline in

NA, which is apparent to varying degrees in actinorhizal

nodules, including those of Alnus species (Tjepkema et al.

1988; Schwintzer and Tjepkema 1997). This decline is often

followed by either partial or full recovery, which is depen-

dent on the host species, growth conditions, and plant age

(Silvester and Winship 1990). In addition, the conversion

rate of C2H2 reduced to fixed N2 in the ARA, which was set

to 3:1 to compare the N2 fixation data in Table 2, can also

produce result errors (Winship and Tjepkema 1990). The

actual ratio of acetylene reduction to N2 fixation must be

determined using 15N-labeled dinitrogen concurrently

(Schwintzer and Tjepkema 1997).

Facilitating effects of N2 fixation in the Alnus–

Frankia symbiotic relationship

N input into soil through N2 fixation by Alnus species

boosts N soil content (Wurtz 1995; Rhoades et al. 2001;

Myrold and Huss-Danell 2003; Uri et al. 2014) and

enhances the leaf N content and growth rates of mixed-

planted trees (Vogel and Gower 1998; Brockley and San-

born 2003; Roggy et al. 2004; Avendano-Yanez et al.

2014). However, some negative effects of N2-fixing Alnus

species have been reported such as the competition for light

and soil nutrients (Chapin et al. 1994; Brockley and San-

born 2003; Simard et al. 2006; Chapin et al. 2011), N

leaching, gaseous N emissions due to denitrification

(Compton et al. 2002; Mander et al. 2008, 2015), and the

issue of invasion (Hiltbrunner et al. 2014).

Alnus species usually exhibit lower N resorption rates

than those of non-N2-fixers (Uliassi and Ruess 2002).

These lower N2 resorption rates can cause relatively high

photosynthetic rates in autumn, which may help retain

relatively high N2 fixation activity (Tateno 2003; Tobita

et al. 2013a). In addition, because a low N resorption rate

will produce fallen leaves with higher N content, the Alnus

species leaf litter decomposition rate is usually faster than

that of other non-N2-fixers (Sharma et al. 2008). The initial

C/N ratio of leaf litter in non-N2-fixers is usually higher,

and their decomposition rate is slower than those of N2-

fixing species (Tateno et al. 2007). The leaf litter C/N ratio

decreases rapidly from 20 to 12 in A. hirsuta (Tobita et al.

2013a) and from 20.5 to 15 in A. japonica (Yoon et al.

2014), suggesting that litter decomposition immediately

moves into the mineralization stage (Takeda 1998).

Another feature of Alnus species is the high susceptibility

of leaves to herbivore damage (Kikuzawa et al. 1979;

Tadaki et al. 1987; Tobita et al. 2013a), and their feces are

a N input pathway to soils (Meehan and Lindroth 2007). In

addition, symbiotic N2 fixation in Alnus species may affect

the distribution patterns of regenerated tree species (Tobita

et al. 2015) and diversity (Hanley et al. 2006) as well as

improve soil fertility. In early successional stages, Alnus

species are used as nurse trees and may have a mothering

role with these regenerated endozoochorous tree species.

Alnus species often regenerate easily during the early

stages of succession (Bormann and Sidle 1990). However,

it is occasionally difficult for Alnus species to recruit and

expand their distribution in areas where Frankia densities

are low (Seeds and Bishop 2009). The availability of

infective Frankia and their compatibility with the host may

limit the successful formation of root nodules capable of

N2 fixation (Markham and Chanway 1999). Symbiotic

Frankia assemblages can differ widely between sympatric

Alnus spp. and between successional habitats occupied by a

given host species (Anderson et al. 2009). Phylogenetic

Fig. 1 Relationships between stand age and nodule biomass (a) and
N2 fixation rate (b) in Alnus stands. Adapted from Tables 1 and 2
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specificity is a significant factor in the Alnus tenuifolia–

Frankia interaction, and significant habitat-based differ-

entiation may exist among A. tenuifolia-infective geno-

types (Anderson et al. 2013). The global biogeographic

community of Alnus-associated Frankia (Benson and

Dawson 2007; Põlme et al. 2014) and the genetic diversity

of Frankia populations in the soil and root nodules

(Pokharel et al. 2011) have also been evaluated.

Table 2 Estimates of annual N2 fixation in Alnus stands

Species N2 fixation (kgN ha-1 year-1) Stand age (years) References Methodsa Conversion rateb

Alnus glutinosa 58 5–20 Akkermans and van Dijk (1976) AR

Alnus hirsuta 56 18 Tobita et al. (2013a) AR 3

Alnus hirsuta 41–47 27 Son et al. (2007) AR 3

Alnus hirsuta 60 38 Lee and Son (2005) AR 3

Alnus incana ssp. incana 152 10 Uri et al. (2011) ACC

Alnus incana ssp. incana 42 5 Uri et al. (2004) ACC

Alnus incana ssp. incana 185 14 Lõhmus et al. (2002) ACC

Alnus incana ssp. incana 28 40 Lõhmus et al. (2002) ACC

Alnus incana ssp. incana 27 (20) 2 Huss-Danell et al. (1992) AR 3 (4)

Alnus incana ssp. incana 113–153 (85–115) 6–7 Rytter et al. (1991) AR 3 (4)

Alnus incana ssp. incana 43 (32) 30 Johnsrud (1978) AR 3 (4)

Alnus incana ssp. rugosa 49 (37) Hurd et al. (2001) AR 3 (4)

Alnus incana ssp. rugosa 1–5 (1–4) Younger and Kapustka (1983) AR 3 (4)

Alnus incana ssp. rugosa 85 1–16 Voigt and Steucek (1969) ACC

Alnus incana ssp. rugosa 170 1–18 Daly (1966) ACC

Alnus nepalensis 57–155 15–20 Sharma et al. (2010) AR 3

Alnus nepalensis 52 5 Sharma et al. (2002) AR 3

Alnus nepalensis 155 15 Sharma et al. (2002) AR 3

Alnus nepalensis 59 40 Sharma et al. (2002) AR 3

Alnus nepalensis 117 7 Sharma and Ambasht (1988) AR 3

Alnus nepalensis 29 56 Sharma and Ambasht (1988) AR 3

Alnus rubra 140 7 Zavitkovski and Newton (1968) GAN

Alnus rubra 209 30 Zavitkovski and Newton (1968) GAN

Alnus rubra 62 4 Tripp et al. (1979) AR 3

Alnus rubra 75–85 55 Binkley et al. (1992) AR 3

Alnus rubra 18–23 2 Kim (1987) AR 3

Alnus rubra 50 58 Kim (1987) AR 3

Alnus rubra 70 5 Bormann and Gordon (1984) AR 3

Alnus rubra 130 15–20 Binkley (1981) AR 3

Alnus rubra 100 10–40 Bormann and DeBell (1981) ACC

Alnus rubra 80 1–4 DeBell and Radwan (1979) ACC

Alnus rubra 85 1–38 Cole et al. (1978) ACC

Alnus rubra 320 2–15 Newton et al. (1968) ACC

Alnus tenuifolia 59 Uliassi and Ruess (2002) AR 3

Alnus viridis ssp. sinuata 10–15 Sanborn et al. (2002) 15N

Alnus viridis ssp. sinuata 35 5 Binkley (1982) AR 3

Alnus viridis ssp. sinuata 20 (15) 15–20 Binkley (1981) AR 3 (4)

Alnus viridis ssp. viridis 8 (6) Moiroud and Capellano (1979) AR 3 (4)

Adapted from Binkley (1981), Hibbs and Cromack (1990), and Hurd et al. (2001)
a N2 fixation estimate method; AR acetylene reduction assay; ACC accretion study; GAN greenhouse accretion per gram of nodule 9 nodule

biomass in the field; 15N 15N isotope dilution method
b Molar conversion ratio of acetylene reduction to N2 fixation

Trees (2016) 30:523–537 527

123



Predicted effects of elevated CO2 on Alnus–
Frankia N2 fixation

Increasing CO2 is an important factor influencing global

climate change (IPCC 2013) and nutrient availability,

particularly that of soil N, may strongly limit the growth

response of woody plants to elevated CO2 (Norby et al.

2010; Zak et al. 2011; Sigurdsson et al. 2013) because

forest ecosystems are usually N limited (Wang et al. 2010).

Symbiotic N2 fixation may play an important role as

exogenous N input to sustain the enhanced growth of non-

N2-fixers under an elevated CO2 environment (Finzi et al.

2007). However, because N2 fixation is influenced by

several abiotic and biotic factors, it is predicted that N2-

fixers, such as Alnus species, do not always enhance their

N2 fixation ability under elevated CO2 (Tobita et al.

2010b). We will discuss the probable responses of Alnus

species to elevated CO2, considering other factors, such as

N, P, and water conditions, by reviewing the results from

chamber experiments (Tobita et al. 2011) and recent free-

air CO2 enrichment (FACE) experiments (Millett et al.

2012). In addition, we will review the understanding of the

effects of elevated ozone (O3) (Wittig et al. 2009) and leaf

chemistry in relation to herbivores (Koike et al. 2006),

which can decrease the growth of Alnus species.

Photosynthetic and growth responses to elevated

CO2 in Alnus species

As N2 fixers in legumes and actinorhizal plants are largely

independent of soil N content, they may respond to ele-

vated CO2 more directly than non-N2-fixers by increasing

the photosynthetic and growth rates (Temperton et al.

2003a; Reverchon et al. 2012). Excellent reviews have

summarized these responses in legumes (Ainsworth and

Long 2004; Ainsworth and Rogers 2007; Rogers et al.

2009). Alnus species exhibit a photosynthetic acclimation

response to elevated CO2 (Vogel and Curtis 1995), which

means they increase their photosynthetic rates under ele-

vated CO2 compared to those under ambient CO2 even in

N2-deficient soil (Koike et al. 1997; Tobita et al. 2010b,

2011), rather than downregulate photosynthesis (Long et al.

2004; Ainsworth and Rogers 2007). Alnus hirsuta saplings

used in FACE experiments in Japan also did not down-

regulate photosynthesis in infertile soil, whereas photo-

synthesis was downregulated in two Betula species under

elevated CO2, regardless of the soil fertility (Eguchi et al.

2008a). As mentioned in the previous section, the N2-fixing

root nodules of Alnus species act as a strong metabolic sink

for photosynthates to avoid photosynthetic downregulation

under elevated CO2 conditions. Biomass production by

Alnus species is significantly stimulated by increasing CO2

in the presence of Frankia species, whereas they show no

response to elevated CO2 in the absence of Frankia species

(Pourhassan et al. 2015).

Interactive effects of soil N and elevated CO2 on N2

fixation in Alnus species

The positive photosynthetic response to elevated CO2 by

N2-fixing plants increases the C supply to root nodules

(Tissue et al. 1997), which may stimulate N2 fixation in

trees. N2 fixation may be adjusted in response to environ-

mental change, either through variations in nodule biomass

or NA (Valverde et al. 2002). Elevated CO2 increases the

total amount of N2 fixed per Alnus species plant because of

increased nodule mass (Hibbs et al. 1995; Tobita et al.

2010b) and NA (Temperton et al. 2003a), or both (Norby

1987; Arnone and Gordon 1990; Vogel et al. 1997), as

reported by several growth chamber and open-top chamber

experiments. One important level of plant control during

actinorhizal symbiosis may be the regulation of the pro-

portion of symbiotic tissue in the plant relative to plant

biomass allocation (Wall and Berry 2008). Moreover,

elevated CO2 has no effect on the relationship between

plant mass and nodule mass, even when nodule biomass

increases under elevated CO2 conditions (Hibbs et al. 1995;

Tobita et al. 2005, 2010b). These results suggest that ele-

vated CO2 enhances nodule mass as a function of the

increasing total plant mass, rather than by enhancing the

allocation of biomass to roots and nodules.

Soil mineral N content often limits nodule formation and

NA because larger quantities of photosynthates are needed

for N2 fixation compared with N, which can be absorbed

from the soil (Ekblad and Huss-Danell 1995; Vogel et al.

1997; Lambers et al. 2008; Wall and Berry 2008; Chapin

et al. 2011). Thomas et al. (2000) suggested that elevated

CO2 mitigates these inhibitory effects of substrate N in

leguminous tree species, either through increased alloca-

tion of C to nodules or through increased N demand by the

plant. However, increased soil N availability has a negative

effect on nodule production and biomass allocation to

nodules in Alnus species, regardless of CO2 treatment

(Koike et al. 1997; Bucher et al. 1998; Temperton et al.

2003b; Tobita et al. 2005). These results indicate that the

inhibitory effect of high soil N availability on nodulation in

Alnus species is retained even under elevated CO2 levels.

N2 fixation response in Alnus species subjected

to FACE experiments

Only two FACE experiments have been reported on Alnus

species. One was conducted in Japan (Hokkaido), as

introduced in the previous section, on the responses of A.

hirsuta to elevated CO2 in fertile and infertile soils

compared to those of non-N2-fixing deciduous tree
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species, including Betula platyphylla, Betula maximow-

icziana, Quercus mongolica, and Fagus crenata (Agari

et al. 2007; Eguchi et al. 2008a, 2008b; Watanabe et al.

2010). The other was the UK Bangor FACE experiment

in which the effects of elevated CO2 on A. glutinosa

performance were compared between monocultures and

mixed plantings of Betula pendula, Fagus sylvatica, and

Populus tremula 9 tremuloides (Hoosbeek et al. 2011;

Millett et al. 2012; Smith et al. 2013a, 2013b; Godbold

et al. 2014; Scullion et al. 2014). N2 fixation in A.

glutinosa increases under elevated CO2 despite the

absence of significant growth stimulation in a mixed-

species stand after 4 years (Millett et al. 2012). However,

the fraction of N2 derived from N2 fixation, calculated

using the 15N natural abundance method (Chaia and

Myrold 2010; Zhang et al. 2014), was unaffected by the

elevated CO2 in an A. glutinosa monoculture stand,

indicating no increase in N2 fixation under elevated CO2

in a monoculture although plant biomass increased sig-

nificantly (Hoosbeek et al. 2011). These differences in

responses to elevated CO2 may be related to enhanced

growth rate, N uptake, and N2 fixation of A. glutinosa in a

mixed stand compared to those in a monoculture due to

increased ecosystem resource utilization through below-

ground niche differentiation among trees (Smith et al.

2013a). In contrast, N2 fixation in Lupinus species

legumes increases under elevated CO2 in both a mono-

culture and a mixed grassland system in a FACE exper-

iment (Lee et al. 2003). Plants rarely grow in isolation,

and their response to elevated CO2 can be affected by the

extent and type of plant–plant interactions (Poorter and

Navas 2003). Understanding how mixed-species forests

respond to elevated CO2 will be essential to assess forest

growth dynamics including the response of N2 fixation in

Alnus species and improving the parameterization of

global change cycle models (Norby and Zak 2011).

N allocation in Alnus species under elevated CO2

N concentrations generally decline in plant tissues under

elevated CO2 (Ainsworth and Rogers 2007; Sardans and

Peñuelas 2012). N uptake is not affected as much as C

uptake, whereas increased CO2 alters the plant C/N balance

(Kallarackal and Roby 2012). The increase in the total

Alnus species plant N mass under elevated CO2 is smaller

than that predicted by the response of the total biomass to

elevated CO2 in phytotron experiments (Temperton et al.

2003b; Tobita et al. 2011). The same phenomenon was

observed in FACE studies, which showed increased N use

efficiency in an A. glutinosa monoculture stand under

elevated CO2 (Millett et al. 2012; Pourhassan et al. 2015).

These results suggest that it is necessary to evaluate bio-

mass accumulation as well as total N content and its

allocation when considering the N2-fixing ability of Alnus

species under elevated CO2.

Interactive effects of soil P and elevated CO2 on N2

fixation in Alnus species

N availability limits plant responses to elevated CO2

(Norby et al. 2010). However, higher soil N availability

under elevated CO2 does not necessarily lead to higher

plant biomass production (Körner et al. 2005; Schleppi

et al. 2012) because stoichiometric constraints extend to

elements other than N, such as P, or some micronutrients.

More generally, any biomass response to elevated CO2 is

controlled by the stoichiometric balance among many

elements required to construct new tissues and used for

active metabolism (Hungate et al. 2004; Sardans and

Peñuelas 2012; Leuzinger and Härrenschwiler 2013).

Many studies have focused on N but P limitations are also

common in many terrestrial ecosystems (Nord and Lynch

2009; Wang et al. 2010). In addition, P is unlikely to

increase in the future because it is a non-renewable

resource (Pandey et al. 2015). N2 fixation in actinorhizal

plants as well as legumes is a P-consuming activity that

accompanies the synthesis of DNA and plasma membranes

for cell division during nodule development and ATP

synthesis to reduce N (Gentili et al. 2006). Therefore, P is

often the most growth-limiting nutrient for actinorhizal

plants because of the relatively high demand for P com-

pared to that of non-N2-fixers (Ingestad 1981; Uliassi et al.

2000; Brown et al. 2011). P deficiency limits nodule for-

mation and N2 fixation in A. incana, even under ambient

CO2 conditions (Gentili and Huss-Danell 2003; Ruess et al.

2013). Although studies on the combined effects of ele-

vated CO2 and P deficiency on N2 fixation are scarce, N2

fixation per plant in two Alnus species does not increase

under elevated CO2 and P-deficient conditions because

plant growth is strongly suppressed and nodule formation is

inhibited without a marked change in NA (Tobita et al.

2010b). In the BangorFACE experiment, Smith et al.

(2013a) suggested that soil P availability, rather than N,

have been a limiting factor compared to that at other FACE

sites because the experimental site was established on

former agricultural soils. Legumes exhibit a particularly

strong increase in the biomass production under combined

elevated CO2 and P fertilization conditions in grassland

communities (Stöcklin and Körner 1999), indicating a

stoichiometric control of the CO2 effects (Leuzinger and

Hättenschwiler 2013). The increased demand for P to

support an increased growth rate may be another key

constraint on plant responses to elevated CO2 (Kogawara

et al. 2006). Tripartite symbiosis with mycorrhiza (Ya-

manaka et al. 2003; Urgiles et al. 2014) may play an

important role to meet the increased P demand and to
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effectively utilize P under projected elevated CO2

conditions.

Interactive effects of drought and elevated CO2

on N2 fixation in Alnus species

Increasing temperatures have been predicted to decrease

precipitation during summer (Calfapietra et al. 2010).

Drought conditions have the potential to decrease the

photosynthetic rates and limit growth through stomatal

closure (Flexas and Medrano 2002), which may also affect

symbiotic N2 fixation. Drought limits the N2-fixing

capacity by limiting metabolic capacity of bacteria and by

generating oxidative damage in legumes (Aranjuelo et al.

2011). Several Alnus species such as A. rubra are sensitive

to water stress (Pezeshki and Hinckley 1988), and NA is

sensitive to short-term drought (Huss-Danell 1997). In

contrast, NA in A. glutinosa shows no marked decrease

after adaptation to moderately dry soil (Seiler and Johnson

1984). Most studies that have been conducted on elevated

CO2 and drought indicate that elevated CO2 tends to

ameliorate the negative effects of drought on the net pho-

tosynthetic rates and biomass accumulation (Kitao et al.

2007; Sicher and Barnaby 2012; Feng et al. 2014). Plant

growth is stimulated by elevated CO2 in C3 species, even

under moderate drought conditions (Xu et al. 2013). The

light-saturated net photosynthetic rate and growth of A.

hirsuta and A. maximowiczii are also enhanced by elevated

CO2 under sufficient P conditions, even in dry soil (Tobita

et al. 2010b). However, when soil P is limiting, these two

Alnus species have no positive responses to elevated CO2.

Elevated CO2 alters leaf water potential of these two Alnus

species in wet soil (Uemura et al. 2009) and increases the

susceptibility to photoinhibition (Tobita et al. 2008). These

results suggest that the risk of an occasional severe drought

increases under elevated CO2, particularly when these Al-

nus species are grown in wet soil.

Sensitivity to tropospheric ozone under elevated

CO2

Tropospheric O3 levels have increased globally since pre-

industrial times (IPCC 2007, 2013) and continue to rise,

particularly in East Asia (Fowler et al. 2008). Ozone and

CO2 are two major anthropogenic air pollutants with

opposing impacts on plant growth (Lindroth 2010; Leisner

and Ainsworth 2012) because increased O3 reduces net

photosynthesis. Alnus species are relatively sensitive to O3,

and A. incana have been used as O3 bioindicators in Europe

(Manning et al. 2002; Manning and Godzik 2004). Surface

ambient background O3 over land in the northern hemi-

sphere has already increased to levels that have decreased

growth in several tree species (Matyssek et al. 2007),

including Alnus viridis (VanderHeyden et al. 2001). In

addition, increased O3 decreases shoot and root dry weights

and enhances leaf senescence in A. incana (Mortensen and

Skre 1990; Wittig et al. 2009). Although the enhanced

growth of Alnus species will be expected to increase the N

input in ecosystems under future elevated CO2 conditions,

the projected increase in future O3 level may decrease the

growth of Alnus species.

The legume soybean is an O3 sensitive crop (Mills et al.

2007). Rising O3 decreases yield (Morgan et al. 2003; Long

et al. 2005) and alters the gene expression in the repro-

ductive tissues of soybean (Leisner et al. 2014). Root

biomass and the number of root nodules decreased in two

clover species in response to O3, and one revealed a

reduced N2 fixation rate under elevated O3 (Hewitt et al.

2014). In contrast, intact subalpine grassland communities

that include legumes (clover) show low sensitivity to O3,

despite the high O3 sensitivity found in earlier experiments

using pot-grown plants (Bassin et al. 2013).

Considering the interactive effects of elevated CO2 and

O3, a key question is whether elevated CO2 will ameliorate

the negative effect of O3, which is an oxidative stressor in

plants, or whether O3 will offset the positive effect of

elevated CO2 on plant growth (Feng et al. 2014). A FACE

experiment on soybean (SoyFACE) was performed to

investigate the interactive effects of elevated CO2 and O3

(Gillespie et al. 2012) and revealed that growth under

elevated CO2 conditions could decrease many of the neg-

ative effects of elevated O3 on plant physiology. However,

a clover FACE experiment in the forest understory

(AspenFACE) showed that enriched CO2 and O3 have

large direct and indirect effects on colonization, estab-

lishment, and performance (Awmack et al. 2007). Thus, it

will become important to also determine the interactive

effects of elevated CO2 and O3 on N2 fixation by Alnus

species to predict N supply in future forest ecosystems.

Effect of elevated CO2 on Alnus species leaf

chemistry

Elevated CO2 and O3 can change leaf chemistry, such as C,

N, P, lignin, and secondary metabolites (Lindroth 2012). In

addition, these changes in leaves can alter leaf litter qual-

ity, which may affect palatability to detritivores, decom-

position, and nutrient turnover (Dray et al. 2014). The

defense capacity of broadleaf trees usually increases under

elevated CO2 (Lindroth 2010, 2012). However, the survival

rates and longevity of silkworm fed A. hirsuta leaves are

independent of CO2 level, unlike what occurs with the non-

N2-fixers Betula platyphylla, Quercus mongolica, and Acer

mono. In addition, the survival rates and longevity of

silkworms are enhanced by infertile soil (Koike et al.

2006). Alnus hirsuta leaves do not have increased levels of
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defense chemicals in plants held in an elevated CO2

environment (Koike et al. 2006; Agari et al. 2007), whereas

the concentrations of condensed tannins in the leaves of A.

maximowiczii, which show limited leaf production than

that of A. hirsuta, are much higher than those of A. hirsuta,

even under ambient CO2 and increased under elevated CO2

(Agari et al. 2007). These results indicate that some vari-

ations in the defense strategy may occur under elevated

CO2 conditions, even within Alnus species. The litter

chemistry of A. glutinosa was largely unaffected by ele-

vated CO2 in a FACE experiment, unlike that of Betula

pendula (Dray et al. 2014). The feeding behavior of

invertebrates on Alnus leaves shows large species-specific

variations (Dray et al. 2014; Scullion et al. 2014), and only

two invertebrate species revealed compensatory feeding

when consuming more elevated-CO2 litter than litter pro-

duced under ambient-CO2. A few studies have evaluated

the impacts of elevated O3 on soil invertebrate performance

and litter decomposition (Lindroth 2012). Therefore, it is

necessary to conduct multi-factorial FACE experiments

under both elevated CO2 and O3 using Alnus species

(Kawaguchi et al. 2012; Lindroth 2012; Kostiainen et al.

2014) to better understand whether N2 fixation by Alnus

species is a potential source of N in forest ecosystem under

elevated CO2 conditions.

Conclusion

The Alnus–Frankia symbiotic relationship fixes as much N

as that of the legume–Rhizobium symbiotic relationship

and has been utilized to revegetate and rehabilitate

N-deficient disturbed areas. In addition, N2 fixation by

Alnus species may affect the distribution pattern of

regenerated plants while improving soil fertility. N2 fixa-

tion because of Alnus–Frankia symbiosis could supply an

important source of N needed to sustain increased N uptake

due to high rates of forest productivity in the face of global

climate change under elevated CO2. However, recent

findings including those from FACE experiments, suggest

that the response of N2 fixation to elevated CO2 in Alnus

species depends on the composition of mixed non-N2-fix-

ing species and that soil N and P availability as well as

many other abiotic and biotic factors also have interactive

effects on N2 fixation (Fig. 2). Because elevated CO2 can

alter plant N and P contents and stoichiometry, it will be

necessary to evaluate N mass allocation as well as biomass

accumulation when investigating the N2 fixing ability of

Alnus species. In addition, because Alnus species are rel-

atively sensitive to O3, determining the responses of Alnus

species to increased CO2 and O3 levels will be important to

predict N supply in future forest ecosystems.
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