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Abstract

Key message A new method was developed to remove

the tree growth trend, which can be used as an alter-

native to the traditional method.

Abstract The ensemble empirical mode decomposition

(EEMD) method can be used to decompose a non-sta-

tionary series into its intrinsic variations and its mean

trend. For a tree-ring series, the responses of tree growth to

external forces, such as climate factors and disturbances,

were shown to be the intrinsic variations of trees. The mean

trend obtained using EEMD was calculated as the differ-

ence between the tree-ring width and the intrinsic varia-

tions of trees (i.e., the external forces) and thus could be

regarded as the growth trend of the trees. Having deter-

mined the tree growth trend via EEMD, the chronology

could then be obtained. This method was compared to the

traditional methods of using linear and exponential curves

[standard method (STD)] and spline smoothing detrending.

The results showed that the chronologies calculated based

on EEMD, STD, spline and signal-free detrending were

almost the same, apart from slight differences at their ends.

This end effect might be an artificial cause of the common

problem of ‘‘divergence’’. However, the end effect was

alleviated by the ensemble approach of the EEMD method.

Therefore, the new method based on EEMD is a candidate

detrending approach that could be used as an alternative to

traditional methods in tree-ring chronology development.

Keywords Ensemble empirical mode decomposition �
Chronology � Tree ring � Intrinsic mode function �
Growth trend

Introduction

Tree radial growth is controlled by its intrinsic growth

trend (increments of age), climate factors such as temper-

ature and precipitation, environmental disturbances, and

unexplained variability not related to the other signals

(Fritts 1976; Cook and Kairiukstis 1990). However, the

response to disturbances is transient and it is short for the

growth trend (Cook and Kairiukstis 1990), so the trend

component may be composed of a large number of dis-

turbances. Thus, the radial growth is a function of the age

trend component and disturbances which can be considered

as the stochastic perturbation of the age trend (Cook and

Kairiukstis 1990). In climate-related research, the common

climatic component among trees is the signal of interest,

while the growth trend is considered as non-climatic vari-

ance or noise. Therefore, the growth trend should be

removed from the ring width series for dendroclimatic

studies (Fritts 1976).

The methods used to estimate the growth trend fall into

two classes: deterministic and stochastic methods. The

deterministic methods of growth trend estimation involve

fitting a prior defined mathematical model of radial growth

to the ring width series. The most commonly used growth

trend-fitting approaches are the linear trend model and the

negative exponential curve model (Fritts et al. 1969).
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Functions such as the power function (Kuusela and Kilkki

1963) and the ‘‘Hugershoff’’ function (Warren 1980) have

also been used deterministically to fit the curve of the

growth trend. The stochastic methods are data adaptive and

are often chosen by a posteriori selection criteria (Cook and

Kairiukstis 1990). These methods are low-pass digital fil-

tering type of methods, such as the cubic-smoothing spline

(Cook and Peters 1981), exponential smoothing (Barefoot

et al. 1974), and differencing (Box and Jenkins, 1970). In

general, stochastic methods fit the behavior of the observed

tree-ring width, whereas low-frequency signals can be also

removed when using stochastic methods. The deterministic

methods have the tree growth behave as the curve model,

while the stochastic methods reduce the low-frequency

noise unassociated with the signals. Each class of model

has its advantages and disadvantages.

In the commonly used program ARSTAN (Cook 1985),

which was used to develop the chronologies in many tree-

ring researches, the linear trend model and negative

exponential curve model were used prior to fit the growth

trend of every ring series. The spline curve was used to fit

the growth trend when both the above methods failed to fit

the growth trend. Thus, the linear trend model, negative

exponential curve model, and the spline function have

become most commonly used among all the deterministic

and stochastic methods (Cook 1985; Jacoby and D’Arrigo

1989; Luckman et al. 1997; Zhang et al. 2011). However,

the linear trend model and negative exponential curve

model failed to fit the growth trend in some cases, while the

spline curve model could not retain as much low-frequency

signal. Thus, we aim to develop a new method which could

be used as an alternative to the above three traditional

methods.

Many existing methods could be used to determine the

trend in time series, such as auto-regressive integrated

moving average, moving mean method, regression analy-

sis, and Fourier-based filtering method. However, the trend

was extrinsically determined by all of these methods (Wu

et al. 2007). As a method which can intrinsically fit the

data, ensemble empirical mode decomposition (EEMD) is

an adaptive, data-driven, and highly efficient algorithm

used to decompose non-stationary signals into their

intrinsic modes of oscillation and mean trends (Huang et al.

1998, 2003; Lei et al. 2009). It is widely used as an

effective method in geophysical studies (e.g., Wu et al.

2007, 2011; Huang and Wu 2008; Zhang and Yan 2014).

Tree-ring series are non-stationary signals, because a trend

was contained in them. EEMD can therefore be used to

decompose a tree-ring series into its intrinsic variations and

mean trend. The mean trend can be regarded as the growth

trend of the tree-ring series, which, having been identified,

can then be removed. Accordingly, the main aims of the

present reported study were to (1) identify the growth trend

based on EEMD and (2) compare the results with those

obtained using traditional approaches.

Data and method

Tree-ring data

Tree-ring raw data with long records were randomly

selected from the international tree-ring data bank

(ITRDB) (http://www.ncdc.noaa.gov/data-access/paleocli

matology-data/datasets/tree-ring). This resulted in the tree-

ring raw data provided by D’Arrigo et al. (2006) (ID:

cana312) being selected to illustrate the performance of our

proposed method. Another long tree-ring raw dataset (ID:

cana163), provided by Zhang (2000), was also used to

develop the chronologies obtained by different detrending

methods. The two sample sites of the trees were located in

Canada (Fig. 1).

Methods to develop the chronology

The tree-ring chronologies were developed based on the

EEMD method. Three steps were involved to develop the

chronology. First, the growth trend was identified by the

EEMD method in this study. Second, the growth trend was

removed from the ring width series. The previous two steps

were called as standardization, and tree-ring indices with a

defined mean of 1.0 could be obtained by standardization.

Third, the chronology could be estimated by averaging the

tree-ring indices using the bi-weight robust mean method.

Growth trend identified by EEMD

EEMD is an improved version of empirical mode decom-

position (EMD), which was developed by Huang et al.

(1998). EMD is an adaptive, data-driven, and highly effi-

cient algorithm used to decompose nonlinear and non-sta-

tionary time series into their intrinsic modes of oscillation.

A time series x(t) can be decomposed into a finite and often

small number of intrinsic mode functions (IMFs) based on

EMD,

x tð Þ ¼
Xn

j¼1

IMFj þ rn;

where rn is the residue of the time series x(t) which reflects

the mean trend of x(t). An IMF is defined as any function

having an equal number of extrema and zero-crossings (or

differing at most by one) and also having symmetric

envelopes defined by the local minima and maxima,

respectively.

The EMD procedure is implemented through a sifting

process: (1) All of the local extremes are identified in the

406 Trees (2017) 31:405–413

123

http://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring
http://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring


time series x(t) and the upper (lower) envelope is obtained

by connecting all of the local maxima and minima with a

cubic spline. (2) The difference between the data x(t) and

the local mean of the upper and lower envelopes is cal-

culated as the first component h1. (3) Treating h1 as the

original data, steps (1) and (2) are then repeated until the

upper and lower envelopes are symmetric with respect to

zero mean under certain criteria. Then, the final h1 is

designated as IMFj and the sifting process continues. The

sifting process is completed when the residue rn becomes a

monotonic function. Finally, the data x(t) is decomposed

into several IMFs and the residue rn. More details of the

EMD method can be found in Huang et al. (1998, 1999).

Certain weaknesses, however, such as the frequent

appearance of mode mixing, could not be solved by EMD.

The EEMD method, introduced by Wu and Huang (2009),

can be used to alleviate some of the common problems of

EMD, such as mode mixing and the increasing robustness

of EMD. EEMD involves averaging numerous EMD runs

with the addition of some Gaussian noise. The noise is

averaged out by averaging the different decompositions,

and an estimate of the true decomposition is calculated

along with a confidence estimate.

The ensemble number and the standard deviation of the

added noise should be assigned in the EEMD procedure.

The sensitivity of the decomposition of the data to the

amplitude of the noise is often small, within a certain

window of noise amplitude (Wu and Huang 2009). The

ensemble number and the standard deviation of added

noise were tested. Noise with a standard deviation of 0.2

and the ensemble size of 1000 could obtain the optimal

results, and then they were used in the present study.

Every tree-ring series was adaptively decomposed to a

certain number of components by the EEMD method.

These components contained several IMFs and a mean

trend (the last component was the mean trend for every

tree-ring series). Thus, the growth trend was identified for

every tree-ring series.

Standardization

The procedure used to estimate and remove the growth

trend was standardization. Standardization transforms the

ring width series into tree-ring indices that have a defined

mean of 1.0 and a relatively constant variance. After the

growth trend was identified for every tree based on EEMD,

Fig. 1 Sample sites of the two sets of raw tree-ring data (cana163 and cana 312)
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tree-ring indices were obtained by dividing each measured

ring width by its growth trend. They were calculated as

It ¼ Rt=Gt;

where It represents the tree-ring indices, Rt the measured

ring width every year, and Gt the expected growth ring

width every year, as estimated by the growth trend.

Estimation of the mean chronology

Estimation of the mean chronology was achieved by the

bi-weight robust mean method to ensemble the tree indi-

ces. In the tree-ring indices, the presence of suspected

outliers or extreme values affects the results of the arith-

metic mean chronology. The arithmetic mean chronology

is no longer a minimum variance estimate of the popula-

tion mean and may be biased. Thus, the bi-weight mean

was used to reduce the variance and bias caused by the

outliers. The bi-weight mean for year t is calculated by

iteration as

It ¼
Xm

j¼1

xtIt;

where

xt ¼ 1� It � It

cSt

� �2" #2

;

when

It � It

cSt

� �2
\1:

Otherwise, xt = 0 and St ¼ median It � It
�� ��� �

. Here, c is a

constant, often taken as 6 or 9 (Mosteller and Tukey 1977).

The iteration stops when an estimate of It does not change

by more than 10-3. Cook (1985) suggested that c should

equal 9 in developing tree-ring indices, and so that was the

value used in present study.

Results

Tree growth trend identified based on EEMD

One raw tree-ring series was randomly selected to illustrate

how the growth trend was identified using this method. The

raw data were adaptively decomposed by EEMD into nine

components (eight IMFs and the mean trend rn) for the

example tree-ring series (Fig. 2). The different IMFs rep-

resented the intrinsic variations of the data at different

timescales. A general separation of the data was decom-

posed into locally non-overlapping timescale components.

Thus, signals of the same timescale would never occur at

the same location in two different IMF components. The

IMFs represented the intrinsic variations of the data at

timescales shorter than the age of the tree. The component

rn of x(t) reflected the mean trend of the tree-ring data and

represented the variation of the data at a timescale longer

than the age of the tree. In fact, the growth trend of a living

tree should be longer than the length of the tree sample.

The component rn of x(t) can be regarded as the tree growth

trend.

Comparison of the growth trends identified

by EEMD and other methods

Four selected tree cores/radii were used to identify the

growth trends using the EEMD method and the methods

that conserve the low-frequency signals (hereafter referred

to as ‘conservation methods’), such as the linear trend and

negative exponential curve method (Fig. 3). The different

growth trends of the same trees were identified using dif-

ferent methods, and differences in low-frequency variation

of the growth existed at both ends of the tree samples. The

most significant result using the different methods was that

the tree indices obtained with the different detrending

methods showed similar variations, despite the differences

at the ends of the tree-ring indices. Moreover, the conser-

vation methods failed to fit the trend for the tree core in

Fig. 3d. This tree core was only fitted by the EEMD

method. All the tree cores, which were failed to be fitted by

conservation methods, could be fitted by the EEMD

method.

Comparison of EEMD-based chronologies and other

chronologies

Four versions of tree-ring width chronology, based on the

samples of cana325, were obtained with the EEMD

method, conservation methods (STD, linear trend, nega-

tive exponential curve), SPLINE, and signal-free (Ssf)

method (Fig. 4). The variations of the four chronologies

were very similar (r = 0.90–0.97, p\ 0.01), especially

the high-frequency growth variation in the same year

(Fig. 4). Similar to the results of detrending single sample

trees, the differences in the chronologies also existed at

their beginnings and ends. In terms of the end effect of the

chronologies, the values of the EEMD chronology mostly

stayed among the values of the STD chronology, the

SPLINE chronology, and the signal-free chronology.

Similar results were found when using the EEMD-based

method and traditional detrending approaches for the trees

at site cana163, albeit with slight differences in the end

effects among them.

408 Trees (2017) 31:405–413
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Discussion

In this study, a new dendrochronological detrending

method based on EEMD was introduced to remove the tree

growth trend. Tree-ring indices can be decomposed into

different IMFs and a mean trend by using the EEMD

method. The IMFs decomposed by EEMD represented the

variations of the original signals at different timescales and

were not mixed over different timescales. Tree-ring sam-

ples were usually taken from living trees rather than trees

that have died due to old age. Moreover, the timescale of

the mean trend was longer than the age of the sample

segment. The mean trend contains the long-term trends in

growth due to the aging and development of the tree from

low-frequency climate signals longer than the age of trees.

However, it is impossible to remove the low-frequency
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climate signals which were longer than the segment of the

ring series with all the detrending methods (e.g., linear

trend model, spline curve), which aim to remove the

growth trend for single series. For instance, it is impossible

to identify the 1000 years cycle climate signal for the

50 years length of tree core by just fitting a curve for it.
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Fig. 3 Growth trends and detrended series for four raw tree-ring

datasets. The left panels show the growth trends identified by EEMD

and traditional methods [linear or exponential curve (EXP)] for four

different raw tree-ring datasets. The right panels are the detrended

series for each tree-ring dataset. The traditional methods failed to fit

the bottom tree-ring series (d), so it was only fitted by EEMD
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The climate signals which were longer than the age would

always be accompanied by the aging trend when a curve

was fitted for it. However, the low-frequency climate sig-

nals could be identified using regional curve standardiza-

tion (RCS; Briffa et al. 1992) and the ‘‘signal-free’’ method

(Melvin and Briffa 2008). In the ‘‘signal-free’’ method, the

growth trend should be firstly identified for every series

with conventional methods (e.g., linear method, negative

exponential method, and spline method); then the regional

curve could be obtained. Thus, conventional detrending

method is still an important way to remove tree growth

trend for every ring series; even longer frequency signals

than the age of cores were not well identified with these

methods. Our method could be used as an alternative to the

conventional method to remove the growth trend of every

tree ring. In this situation, the mean trend identified by

EEMD could be considered as the growth trend of the tree

for every raw series.

Extrinsic functions were used to fit the data in the

commonly used methods such as the linear method, neg-

ative exponential curve, and the cubic-smoothing spline.

However, the externally determined trends did not always

correspond to embedded growth mechanisms in the tree-

ring data, as the tree radial growth does not follow a fixed

function. Thus, it is impossible to choose an ideal function

to obtain the best extrinsically growth trend for trees.

Compared to almost all the previous tree-ring detrending

methods which require predetermined basis functions,

EEMD method is an adaptive method which renders

intrinsic tree growth trend. The trend is adaptively fitted by

EEMD according to tree growth and reflects the natural

growth trend. This is the advantage of EEMD in deter-

mining the tree growth trend than other methods.

In many cases, the growth trend does not associate with

the fitting curve, such as when the ‘‘end effect’’ occurs

(D’Arrigo et al. 2004). The detrending-related ‘‘end effect’’

causes fitting problems at the ends of the tree-ring data

(Jacoby and D’Arrigo 1995; D’Arrigo et al. 2004, 2008;

Melvin 2004). Like many other commonly used detrending

methods, the ‘‘end effect’’ is also a large and currently

unavoidable problem that needs to be addressed and clar-

ified when using EEMD, although a major part of the tree-

ring indices were consistent when different methods were

used in the present study. These are considered to be

artificially made in some cases and are not considered to be

removed in existing methods such as the linear method and
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spline method. However, an ensemble approach was pro-

posed to reduce the end effect once EEMD had been used

to decompose the data. It is alleviated as much as possible

when the new approach proposed by Huang and Wu (2008)

is used, although the end effect cannot be eliminated by

EEMD. The works of Huang and Wu (2008) and Wu and

Huang (2009) document the principles and advantages of

this EEMD approach in detail for the alleviation of the

‘‘end effect’’. The most important point is that this

approach applied with EEMD can also reduce the sensi-

tivity to strangely behaving data at the ends of the targeted

time series, and this is the key for obtaining an accurate

trend of the data.

The differences in the ends of tree-ring indices for single

sample radii or trees obtained with different methods can

cause differences in the ends of their chronologies, similar

to the ‘‘population effect’’ of single samples. However, the

variations in EEMD chronology were found to be similar to

those in STD, SPLINE, and signal-free chronologies; in

other words, the chronologies obtained with different

methods have insignificant differences between them.

Moreover, the differences between the EEMD chronology

and the other three chronologies were smaller than the

differences between the STD chronology and SPLINE

chronology (Fig. 4). Therefore, the new detrending

method, which was developed based on EEMD, could be

used as an alternative to traditional methods for tree-ring

chronology development.

Similar to the conventional detrending methods, EEMD-

based detrending method was not a perfect method to

separate the climate signals, which had longer timescale

than the length of tree cores, from the tree growth trend.

However, the new method could be used as an alternative

to the linear method and negative exponential method as it

could preserve more low-frequency signals than the spline

curve method. Overall, the EEMD-based detrending

method outlined in the present study could be used as an

efficient method to remove tree growth trend for single

series when developing chronologies. A MATLAB pro-

gram named as ‘‘TREC.m’’ was attached as supplemental

material to develop the EEMD-based chronology.
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