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Defoliation by gypsy moths negatively affects the production
of acorns by two Japanese oak species
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Abstract

Key message This study showed the negative effects of

insect defoliation on the reproduction of canopy trees,

where defoliation was not artificially manipulated but

rather observed in a natural setting.
Abstract The gypsy moth (Lymantria diapar) is a serious

defoliator with the ability to completely defoliate forest

canopies. Although the negative effects of defoliation on

tree reproduction have been revealed in studies with arti-

ficially manipulated defoliation, few studies have examined

the effect of insect defoliation on the reproduction of

canopy trees under natural condition. In this study, visual

surveys were used to clarify the effect of gypsy moth

defoliation on the production of acorns by oaks (Quercus

spp.). Surveys were conducted in an outbreak year at 22

sites in central Japan (13 sites with Quercus crispula and

nine sites with Q. serrata). Five of the Q. crispula sites

were severely defoliated (mean defoliation ranged from 67

to 88 %), while the remainder of the Q. crispula sites and

all of the Q. serrata sites were lightly defoliated (0–20 %).

A negative effect of gypsy moth defoliation on acorn

production was detected for Q. crispula. However, there

was a synchronous decrease in acorn production from the

previous year and crop levels were low at all sites

regardless of the defoliation severity. The consistent low

crop levels were likely the result of weather-related factors.

Defoliation also negatively affected the production of

acorns for Q. serrata; however, severe defoliation was not

present at any Q. serrata sites. This study suggests that

insect defoliation can affect forest ecosystem processes,

such as the regeneration of host trees and the behavior of

wildlife that depend on seed production, by reducing the

reproductive potential of host trees.

Keywords Insect herbivory � Gypsy moth defoliation �
Tree reproduction � Mast seeding � Quercus crispula �
Quercus serrata

Introduction

Defoliation has negative effects on tree reproduction and

growth (Kulman 1971; Schowalter et al. 1986; Obeso

1993; Morris et al. 2007; Massad 2013). Among the

numerous insect defoliators, the gypsy moth (Lymantria

diapar), which is widely distributed across the northern

hemisphere (Alalouni et al. 2013), is well known as a

serious defoliator whose larvae can defoliate multiple tree

species (Liebhold et al. 1995; Onodera and Hara 2011).

Severe outbreaks of gypsy moths can cause complete

defoliation of forest canopies (Lovett et al. 2006).

Gypsy moth defoliation induces various responses in

trees: refoliation in the same season (Collins 1961;

Eschtruth and Battles 2014), reduction of seed production

(Gottschalk 1990; Kasbohm 1994), reduction of radial

growth (Baker 1941; Muzika and Liebhold 1999; Kosola

et al. 2001; Naidoo and Lechowicz 2001; Fajvan et al.

2008), chemical changes in the leaves (Schultz and Bald-

win 1982), and even mortality in extreme cases (Campbell
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and Sloan 1977; Gottschalk et al. 1998; Eisenbies et al.

2007). These tree responses affect forest ecosystem pro-

cesses (Lovett et al. 2006; Gandhi and Herms 2010). For

example, ephemeral foliage loss or mortality of canopy

trees can facilitate the growth of understory tree species

and plant invasions, thus, altering forest species composi-

tion (Collins 1961; Fajvan and Wood 1996; Jedlicka et al.

2004; Eschtruth and Battles 2014). Such vegetation chan-

ges and diminished seed production caused by defoliation

have cascading impacts on wildlife that depend on specific

vegetation or seeds (Kasbohm et al. 1995, 1998; Bell and

Whitmore 1997). In addition, defoliation can also affect

nutrient cycles by altering the nutritional composition and

seasonal distribution of litter fall (Grace 1986). Therefore,

it is important to monitor the spatial and temporal

dynamics of gypsy moth defoliation that occur at a regional

scale and to quantify their effect on tree performance to

more effectively manage forest ecosystems.

The majority of studies revealing the negative effects of

defoliation on tree reproduction to date have involved one

of two methods: artificial defoliation, mainly at the branch

level and chiefly for small trees or shrubs (Rockwood

1973; Janzen 1976; Stephenson 1980; Marquis 1984;

Obeso 1998; Kaitaniemi et al. 1999; Hoch 2005); or the use

of insecticide to prevent defoliation in some trees and then

compare impacts with naturally defoliated trees (Crawley

1985; May and Killingbeck 1995; Salleo et al. 2003).

Consequently, little is known about the effect of insect

defoliation on the reproduction of canopy trees under nat-

ural condition (Wesołowski et al. 2015), even for the gypsy

moth defoliation (Gottschalk 1990; Kasbohm 1994). This

is because, first, insect outbreaks that cause severe defoli-

ation are relatively rare events. Second, severe defoliation

is short-lived because it is often followed by refoliation

(Kulman 1971). Accordingly, surveys of defoliation must

be conducted after defoliation reaches a peak but before

refoliation progresses: a period of less than 1 month

(Collins 1961; de Beurs and Townsend 2008; Eschtruth and

Battles 2014). Third, measuring the reproduction of canopy

trees is problematic, as the commonly used seed trap

method is labor-intensive to place, maintain, and empty.

This problem, however, can be overcome by using visual

surveys with binoculars (Koenig et al. 1994; Nakajima

2015).

The Asian gypsy moth is widely distributed in Japan

(Liebhold et al. 2008; Arimoto and Iwaizumi 2014) with

outbreaks recorded intermittently in various regions

(Koyama 1954; Akasofu 1973; Higashiura 1987; Liebhold

et al. 1998; Kamata 2002; Jikumaru and Sano 2007;

Mizutani 2014). Previous studies have quantified defolia-

tion intensity primarily in young coniferous plantation

forests (e.g., Ishihama et al. 2011) with few surveys con-

ducted in natural forests (Jikumaru and Sano 2007;

Mizutani 2014). Moreover, to date, no study has demon-

strated the distribution of defoliation intensity at a regional

scale.

The main aim of this study was to evaluate the impact of

gypsy moth defoliation on the production of acorns by

oaks. The study was conducted in Toyama Prefecture,

central Japan, where one of the subspecies of Asian gypsy

moth, Lymantria dispar japonica, is distributed (Hi-

gashiura et al. 2011; Arimoto and Iwaizumi 2014) with

outbreaks recorded occasionally (Koyama 1954; Akasofu

1973). The impact of gypsy moth defoliation was quanti-

fied in two oak species, Quercus crispula and Q. serrata,

which are temperate deciduous trees requiring about

4–5 months to mature acorns from spring-flowering. These

two species were chosen as they are the dominant species

in secondary forests in this region (Nakajima and Ishida

2014) and are both susceptible to gypsy moth defoliation

(Jikumaru and Sano 2007; Onodera and Hara 2011).

The Toyama Prefectural Government has been moni-

toring the acorn production of several hundred trees of Q.

crispula and Q. serrata across the prefecture. In this study,

visual surveys of defoliation and acorn production of these

oak trees were conducted during a gypsy moth outbreak

year (2014) at 22 sites (13 sites with Q. crispula and nine

sites with Q. serrata). The aim was to examine the distri-

bution of defoliation intensity throughout the prefecture

and evaluate the impact of defoliation on acorn production.

As the two oak species exhibit annual fluctuations in acorn

production (Imada et al. 1990; Shibata et al. 2002; Maeto

and Ozaki 2003; Saitoh et al. 2008; Fukumoto and Kaji-

mura 2011), data on the acorn production in the previous

year (2013) were used to compare with the production in

2014.

Materials and methods

Study site

Visual surveys of defoliation and acorn production were

conducted in 13 sites for Q. crispula (Fig. 1, A–M) and

nine sites for Q. serrata (Fig. 1, 1–9) in Toyama Prefec-

ture, central Japan. Elevation above sea level ranged from

350 to 1170 m for sites with Q. crispula and 90–340 m for

sites with Q. serrata (Table S1). These sites had been

established by the Toyama Prefectural Government to

monitor acorn production and predict the mass intrusion of

Asiatic black bears (Ursus thibetanus) into residential areas

in years of poor acorn crops. The government monitoring

protocol involves at least 20 trees per site, with the same

trees being monitored every year unless the tree declined or

died. This study surveyed these same trees (Table S1;

n = 299 trees for Q. crispula; 184 trees for Q. serrata).
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These trees were canopy trees located along the roads and

therefore defoliation and acorn-bearing could be visually

surveyed easily.

Defoliation

Defoliation was surveyed in 2014 when an outbreak of

gypsy moths occurred. In this region, incubation from

overwintering egg begins around the middle of April, with

pupation starting in late June. Defoliation proceeds rapidly

just before pupation because most of the defoliation is

caused by the last instar larvae (Furuno 1964). Refoliation

induced by severe defoliation is completed within around

1 month of peak defoliation (Collins 1961; Eschtruth and

Battles 2014). Therefore, the survey was conducted in July

just after peak defoliation.

Using binoculars, tree-level defoliation was visually

scored as the percentage loss of crown foliage, in 10 %

classes (Williams et al. 1991; Gottschalk et al. 1998; Muzika

and Liebhold 1999). Pictures of sample trees in 2012 with

little defoliation were used as a reference. Defoliation was

rated by the author alone who is skilled in rating crown

foliage biomass visually in the forest monitoring program

(Nakajima et al. 2011). Site-level defoliation was calculated

by the mean of tree-level defoliation. No tree exhibited

[20 % defoliation in the previous year, 2013.

Acorn index

In 2013 and 2014, acorn production was visually surveyed

in mid- to late-August. The number of acorns was counted

with binoculars for 20 branches (50 cm length each) per

tree and a tree-level acorn index was calculated from these

mean. The observed branches were selected at random

from the sun crown in each year. This method was devised

by Mizui (1991) and has been used for estimating the seed

production of various tree species, including oak (Yasaka

et al. 2008; Kozakai et al. 2011; Mizutani et al. 2013). A

site-level acorn index was calculated by averaging the tree-

level acorn indices, and categorizing this value into four

crop levels: few, poor, fair, or good (Mizui 1991). The

corresponding boundary values of the crop levels were

0–0.6, 0.6–1.9, 1.9–5.6, and [5.6 for Q. crispula, and

0–0.9, 0.9–2.6, 2.6–7.8, and[7.8 for Q. serrata. The val-

ues of Q. crispula were smaller than Q. serrata because the

boundary values were defined to correlate negatively with

the mean acorn weight of the species (Mizui 1991) and Q.

crispula acorns are heavier. To examine the annual fluc-

tuation in acorn production from 2013 to 2014, the tree-

level acorn indices were compared between the 2 years in

each site with a Mann–Whitney U test.

Relation between defoliation and acorn index

To clarify the effect of defoliation on acorn production,

Pearson’s correlations between defoliation and acorn

indices were calculated at both the site- and tree-level. In

the tree-level analysis, pooled data across the sites were

used. In addition, to control for variation among sites, a

generalized linear mixed model with a negative binomial

distribution and a log link function was used. The total

acorn count for each tree was used as the dependent vari-

able. Tree-level defoliation was included as a fixed effect,

site was included as a random effect, and the log of the

number of observed branches per tree (log 20) was inclu-

ded as an offset variable. The model was developed using

R 3.1.2 (R Core Team 2014) with the aod package (Lesnoff

and Lancelot 2012).

Results

Defoliation

The sites could be divided into two categories according to

the intensity of defoliation (Fig. 2; Table S1). Five sites of

Q. crispula (A–E) were categorized as severely defoliated

sites, containing completely defoliated trees and an average

(site-level) defoliation of between 67 and 88 %. These sites

were located in the south-west of Toyama Prefecture,

between 500 and 1000 m elevation (Fig. 1). The remaining

eight sites of Q. crispula (F–M) and all nine Q. serrata

sites were categorized as lightly defoliated sites. In these

sites, the maximum tree-level defoliation was not greater

than 50 % and the site-level defoliation ranged from 0 to

20 %.
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Fig. 1 Map of the study area. Letters A–M are the locations of the 13

Quercus crispula sites, while numbers 1–9 indicate the nine Q.

serrata sites
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In the severely defoliated sites, many cadavers of gypsy

moth larvae were observed on the tree trunks, which occur

as a result of pathogenic microbes, and characteristic of

severe outbreak years (Aoki 1974; Jikumaru and Sano

2007). The larvae, pupae, or imago of gypsy moths were

also observed in most of the lightly defoliated sites.

Therefore, it was speculated that most of the defoliation

was caused by gypsy moth larvae. When acorn production

was surveyed in August, about one and a half months after

peak defoliation, severely defoliated trees had refoliated

and no tree had died.

Acorn production

The site-level acorn indices with Q. crispula exhibited a

synchronous decrease among sites from 2013 to 2014

(Fig. 3; Table S1). The tree-level acorn index of 2014 was

significantly lower than that of 2013 in 12 of the 13 sites

(P\ 0.05). Crop levels in 2013 were classified as ‘fair’ in

five sites and ‘poor’ in eight sites, while in 2014 crop levels

at all sites were classified as ‘few’, regardless of whether

the site was severely or lightly defoliated. In contrast, the

acorn indices with Q. serrata exhibited a synchronous

increase from 2013 to 2014, significantly so in eight of the

nine sites (P\ 0.05). Crop levels in 2013 were mainly

classed as ‘few’ (seven of the nine sites), while in 2014

most sites (five) were classed as ‘fair’.

Effect of defoliation on acorn production

There were negative correlations between defoliation and

acorn indices at both the site- (Fig. 4) and tree-levels

(Fig. 5) for both species. Just 6 % (11/184) of Q. serrata

trees did not contain any acorns (acorn index equal to zero),

whereas 63 % (187/299) of Q. crispula trees had no acorns.

For Q. crispula, 45 % (80/178) of lightly defoliated trees

(defoliation B20 %) had no acorns, while a notably higher

proportion (99 %, 67/68) of severely defoliated trees (de-

foliation C80 %) had no acorns. The results of the gener-

alized linear mixed model revealed the negative effects of

defoliation on acorn index at the tree level (for Q. crispula,

defoliation slope estimate = -0.033, SE = 0.011,

P = 0.0038; for Q. serrata, estimate = -0.029,

SE = 0.011, P = 0.011).

Discussion

This study has revealed the negative effects of insect

defoliation on the reproduction of canopy trees, where

defoliation has not been artificially manipulated but rather

observed in a natural setting.

Carbohydrate is traditionally considered a limiting

resource for seed production in species with mast seeding

behavior (intermittent synchronous seed production at

regional scale). Meanwhile, recent studies have revealed

that temperate deciduous canopy tree species, including

oak, primarily use the current year’s photosynthate for seed

production regardless of their reproductive interval (Ichie
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et al. 2013; Hoch et al. 2013). Therefore, seed production

of these species is independent from old carbohydrate

reserves. Their findings suggest that seed production may

be limited by the accumulation of other nutrients, such as

nitrogen and phosphorus, rather than carbohydrates (Ichie

et al. 2013; Hoch et al. 2013). However, defoliation causes

a reduction in the crown leaf area of a tree, decreasing its

current year’s carbohydrate gain (Palacio et al. 2012).

Defoliation also causes a reduction in the stem and root

carbohydrate content, especially for severely defoliated

trees that subsequently undergo refoliation (Wargo 1972;

Wargo et al. 1972; Kosola et al. 2001; Rieske and Dillaway

2008; Palacio et al. 2012; Piper and Fajardo 2014). In

addition, defoliation depresses the nitrogen uptake capacity

of roots (Kosola et al. 2001). Accordingly, the negative

effects of gypsy moth defoliation on the production of

acorns by oak revealed in this study (Figs. 4, 5) are likely

caused by deficiencies in the availability of carbohydrates

or other nutrients that result in the abortion of immature

acorns. Another possible explanation for the impact of

defoliation on acorn production is that gypsy moth larvae

directly consume oak flowers, which bloom just after the

leaf flush in spring. However, Gottschalk (1990) suggested

that the abortion of immature acorns has more significant

effect than the consumption of flowers.

Although a negative effect of defoliation on acorn pro-

duction was detected for Q. crispula (Figs. 4, 5), acorn

production decreased from 2013 to 2014 and crop levels

were low (‘few’) in 2014 at both severely and lightly

defoliated Q. crispula sites (Fig. 3). Synchronous fluctua-

tions in oak acorn production at geographical scales are

thought to be driven by weather-related factors (e.g.,

Koenig and Knops 2013, 2014), and these may also explain

the consistent low crop levels recorded for this species in

2014. If a gypsy moth outbreak occurred in a year with

high crop potential, driven by weather-related factors, it is

possible that only severely defoliated sites exhibit low crop

levels (Kasbohm 1994).

For Q. serrata, defoliation also negatively impacted

acorn production (Figs. 4, 5), even though no site was

severely defoliated (Fig. 2). This result suggests that rela-

tively low level defoliation can negatively impact acorn

production.

In Japan, there are years when many Asiatic black bears

intrude into residential areas in autumn. These are thought

to coincide with years of poor acorn crops (Oka et al. 2004;

Mizutani et al. 2013; Nakajima 2013) because acorns are a

key food for bears during autumn, and because bears will

alter their home ranges and foraging behaviors depending

on annual fluctuations in acorn production (Kozakai et al.

2011). Therefore, increased human–bear conflicts are pre-

dicted to occur as a result of the reduced production of

acorns by oaks following gypsy moth defoliation. How-

ever, the results of this study suggest that at a regional

scale, the impact of gypsy moth defoliation in 2014 on

acorn production was not great, because severe defoliation

was observed only in Q. crispula sites (Fig. 2) where crop

levels were low regardless of the defoliation severity

(Fig. 3).

In North America, it is common for gypsy moth defo-

liation to cause tree mortality, with mortality rates higher in

less vigorous trees, suppressed trees, and in trees that suffer

severe defoliation for two consecutive years (Campbell and

Sloan 1977; Gottschalk et al. 1998; Eisenbies et al. 2007).

No tree deaths was observed in this study, at least between

peak defoliation and the acorn production survey approx-

imately one and a half months later. The resilience of trees

in this study to defoliation might be because they were not

suppressed, and did not experience consecutive years of

severe defoliation, or because Japan’s moist climate creates

an environment of generally low tree mortality from insect

defoliation (Kamata 2002). Nevertheless, studies have

shown that severe defoliation does negatively affect tree

growth and vigor, with effects persisting for the following

years (Campbell and Sloan 1977; Muzika and Liebhold

1999; Fajvan et al. 2008). Hence, the defoliation observed

in this study (in 2014) will likely affect acorn production

for the coming years.

Interestingly, the gypsy moth infestation did not cause

severe defoliation at any Q. serrata site (Fig. 2). This is not

because Q. serrata are less susceptible to gypsy moth

defoliation, but rather because the gypsy moth outbreak in

2014 was elevation-dependent. The most severely defoli-

ated area during the outbreak occurred between 500 and

1000 m elevation (A–E in Fig. 1), where Q. crispula

dominate. Quercus serrata oaks occur mainly at lower

elevations (Nakajima and Ishida 2014). In support of this

theory, there were completely defoliated Q. serrata in site

A at 570 m a.s.l. (pers. obs.), where Q. crispula trees were

surveyed and mixed with Q. serrata trees. The cause of this

elevation-dependent outbreak is likely to be related to
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factors such as the density of host trees and natural enemies

(Kamata 2002; Haynes et al. 2012).

Studies from North America have shown interesting

relationships among gypsy moth populations, acorn pro-

duction, and small mammal populations: failed acorn

production lead to reductions in the population sizes of

small mammals that depend on the acorns, which subse-

quently lowers predation rates on gypsy moths leading to

outbreaks (Liebhold et al. 2000). If outbreaks diminish

acorn production as revealed in this study, positive feed-

back loops could be present. It is possible that relationships

such as those observed in North America also operate in

Japan (Liebhold et al. 1998) because acorn masting also

affects rodent population dynamics in Japan (Saitoh et al.

2008) and because the predation of gypsy moths by rodent

has been observed (Fukuyama et al. 1990; Liebhold et al.

1998). However, the main predators of gypsy moths in

Japan are birds (Higashiura 1980; Furuta 1982). Long-term

monitoring studies are needed to clarify the existence of

such interactions among gypsy moths, small mammal

populations, and oak trees.

In conclusion, this study has shown that gypsy moth

defoliation reduced the production of acorns by two oak

species. This finding lends further support to the suggestion

that insect defoliation can dramatically affect forest

ecosystem processes, such as the regeneration of host trees

and the behavior of wildlife that depend on seed produc-

tion, by reducing the reproductive potential of host trees.
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