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Abstract

Key message We developed two additive systems of

biomass equations based on diameter and tree height

for nine hardwood species by SUR, and used a likeli-

hood analysis to evaluate the model error structures.

Abstract In this study, a total of 472 trees were harvested

and measured for stem, root, branch, and foliage biomass

from nine hardwood species in Northeast China. Two ad-

ditive systems of biomass equations were developed, one

based on tree diameter (D) only and one based on both tree

diameter (D) and height (H). For each system, three con-

straints were set up to account for the cross-equation error

correlations between four tree component biomass, two

sub-total biomass, and total biomass. The model coeffi-

cients were simultaneously estimated using seemly unre-

lated regression (SUR). Likelihood analysis was used to

verify the error structures of power functions in order to

determine if logarithmic transformation should be applied

on both sides of biomass equations. Jackknifing model

residuals were used to validate the prediction performance

of biomass equations. The results indicated that (1) stem

biomass accounted for the largest proportion (62 %) of the

total tree biomass; (2) the two additive systems of biomass

equations obtained good model fitting and prediction, of

which the model Ra
2 was [0.89, and the mean absolute

percent bias (MAB %) was \35 %; (3) the system of

biomass equations based on both D and H significantly

improved model fitting and performance, especially for

total, aboveground, and stem biomass; and (4) the anti-log

correction was not necessary in this study. The established

additive systems of biomass equations can provide reliable

and accurate estimation for individual tree biomass of the

nine hardwood species in Chinese National Forest

Inventory.

Keywords Secondary forests � Biomass allocations �
Model error structure � Additive biomass equations �
Anti-logarithmic transformation

Introduction

The World’s temperate mixed-species forests are mainly

distributed in northeastern North America, Europe, and

eastern Asia. The Asian temperate mixed forests are mostly

located in Northeast China, covering Daxing’an, Xiaox-

ing’an and Changbai Mountains. These regions in China

possess over 45 million hectares of forests and nearly 3.2

billion cubic meters of timber. In recent years, the quantity,

distribution, and dynamics of forest carbon storage have

received increasing attention in the research of global cli-

mate change and carbon cycles (Pacala et al. 2001; Malhi

et al. 2002; Pan et al. 2011). Forest carbon stock is com-

monly calculated by multiplying forest biomass by carbon
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concentration rate. Therefore, accurately estimating tree

and stand biomass is essential for investigating the effects

of global climate change on forest carbon storage and cy-

cling in ecosystems (Picard et al. 2012; Mu et al. 2013).

Tree-level biomass can be obtained via a destructive

method, in which trees are actually felled, cut into sections,

and weighed for each of the tree components (e.g., stems,

branches, foliage, and roots). Obviously this method is very

time consuming and costly. A common practice is to select

a representative sample of a given species, and obtain tree

biomass and other variables by the destructive method.

Regression models are then developed relating tree bio-

mass to tree diameter (D) or other easily measured tree

variables. It has been proven that these biomass models of

total and tree component biomass can provide accurate and

reliable estimation for the biomass of forest ecosystems

(Gower et al. 1999; Wang 2006). Although wood-specific

gravity, tree crown, and tree age are considered as addi-

tional predictors in order to improve the accuracy of bio-

mass equations, they are much more difficult to obtain in

practice (Peri et al. 2010; Gargaglione et al. 2010; Cai et al.

2013). In contrast, tree height (H) can be measured

relatively easily, and in fact the different tree heights at the

same diameter obviously influence tree-level biomass

equations (Peri et al. 2010). Studies show that adding tree

height into biomass equations can significantly improve

model fitting and performance (António et al. 2007; Zhou

et al. 2007; Li and Zhao 2013).

To date, three forms of allometric biomass equations are

commonly used in the literature, i.e., W = a�Db,

W = a�(D2�H)b, and W = a�Db�Hc, where D and H are tree

diameter and height, respectively; and a, b, and c are model

coefficients (e.g., Carvalho and Parresol 2003; Wang 2006;

Menendez-Miguelez et al. 2013). The studies of model

comparison indicate that using the equationW = a�(D2�H)b
can improve model fitting and performance for total,

aboveground, stem and root biomass, but not for branch,

foliage and crown biomass, whereas the equation

W = a�Db�Hc is more flexible than other functions, and can

generally improve model accuracy for total, sub-totals and

component biomass (Bi et al. 2004; Battulga et al. 2013;

Cai et al. 2013).

It is well known that an allometric equation assumes

either an additive error structure (i.e., Y = a�Xb ? e) or a
multiplicative error structure (i.e., Y = a�Xb�e). If the ad-

ditive error structure is assumed, nonlinear regression

should be used to directly fit the power function to tree

biomass data. If the multiplicative error structure is as-

sumed, logarithmic transformation is usually applied to

convert the nonlinear power function to a log-linear model.

Over the last two decades, however, many modelers de-

termine which error structure is appropriate to a given

biomass data set based on their experience rather than a

statistical analysis (Lai et al. 2013). To facilitate the ob-

jective determination on the model error structures, Bi

et al. (2004) proposed to test the error structure of a power

function by the ratio of the mean squared error (MSE) of

the nonlinear model to that of the log-linear model. Xiao

et al. (2011) and Ballantyne (2013) outlined an approach of

likelihood analysis to evaluating and comparing model

error structures, which was recently used for tree root

biomass (Lai et al. 2013). Compared with the MSE ratio

approach, the likelihood analysis is considered consistent

with the core principles of statistics, and more suitable in

determining the model error structures of biomass models

(Ballantyne 2013).

When we have more than one tree components in the

biomass data, the additivity property of models for esti-

mating tree total, sub-total, and component biomass should

be taken into account due to the inherent correlations among

the biomass components measured on the same sample

trees. Although this additivity property has been posed by

several researchers (e.g., Kozak 1970; Cunia and Briggs

1984; Chiyenda and Kozak 1984), it is often ignored in

many practices of biomass modeling. To ensure the addi-

tivity property, various model specification and parameter

estimation methods have been proposed for linear models

(e.g., Cunia and Briggs 1984; Chiyenda and Kozak 1984;

Parresol 1999) and nonlinear models (e.g., Reed and Green

1985; Greene 1999; Tang et al. 2001; Tang and Wang

2002). Among these methods, seemly unrelated regression

(SUR) and nonlinear seemly unrelated regression (NSUR)

are more general and flexible (Parresol 2001; Li and Zhao

2013). SUR and NSUR allow that each component model

may have its own independent variables and each model can

use its own weighting function for heteroscedasticity, which

results in a lower variance for the total tree biomass model

(Parresol 2001). Thus, SUR and NSUR have become more

popular as the parameter estimation methods for linear and

nonlinear biomass equations (Bi et al. 2004, 2010; Brandeis

et al. 2006; Návar 2009; Russell et al. 2009; Menendez-

Miguelez et al. 2013; Li and Zhao 2013).

To date, hundreds of biomass equations have been de-

veloped for more than 100 species around the world

(Jenkins et al. 2003; Zianis et al. 2005). However, there are

few models published for tree root biomass due to the

difficulty and costs of extracting tree roots in reality (Chave

et al. 2005; Zianis 2008; Woodall et al. 2011; Alvarez et al.

2012; Cai et al. 2013; Li and Zhao 2013). Wang (2006)

developed biomass equations for ten hardwood species in

Northeast China, but his biomass data were collected from

a limited forest region with a relatively small sample size

for each species. In general, biomass equations for tem-

perate forests across the forest regions of Northeast China

have not been accurately quantified, or have not been

established for some valuable species.
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In this study, the biomass data included 472 trees that

were harvested and measured for stem, root, branch, and

foliage biomass from nine hardwood species in Northeast

China. The objectives of this study were: (1) to examine

the error structures of biomass equations by the likelihood

analysis; (2) to construct two additive systems of biomass

equations, one based on tree diameter (D) only and one

based on both tree diameter (D) and height (H), using three

constraints and seemingly unrelated regressions (SUR); (3)

to evaluate the accuracy of biomass estimates, and (4) to

investigate the sources of prediction errors for total and

component biomass equations across the nine tree species.

Data and methods

Data

Study area description

This study was conducted in Northeast China encompass-

ing the Daxing’an Mountains (from 121�120E to 127�000E
and from 50�100N to 53�330N), the Xiaoxing’an Mountains

(from 127�420E to 130�140E and from 46�280N to 49�210N)
and the Changbai Mountains (from 127�400E to 128�160E
and from 41�350N to 47�570N), located in Heilongjiang

Province and Jilin Province, P.R. China (Fig. 1). The

elevation ranges from 300 to 700 m above the sea level in

Daxing’an Mountains, from 600 to 1000 m in Xiaoxing’an

Mountains, and from 800 to 1500 m in Changbai Moun-

tains. The soils in the three regions are mostly Haplum-

brepts or Eutroboralfs (or dark brown forest soil in Chinese

Taxonomic System). The climate is continental monsoon

climate. In Daxing’an Mountains, the mean annual rainfall

ranges from 500 to 750 mm and mean annual temperature

is from -1 to -2.8 �C; in Xiaoxing’an Mountains, the

mean annual rainfall is from 550 to 670 mm and mean

annual temperature is from -2 to 2 �C, and in Changbai

Mountains, the mean annual rainfall is from 600 to

900 mm and mean annual temperature is from -7 to 3 �C.
These temperate forests are dominated by White birch

(Betula platyphylla), Amur linden (Tilia amurensis), Maple

(Acer mono), Dahurian birch (Betula davuria), Mongolian

oak (Quercus mongolica), Dahurian poplar (Populus da-

vidiana), and mixed hardwood forest dominated by Amur

linden (Tilia amurensis), Maple (Acer mono), Manchurian

Fig. 1 The location of study area and plot distribution in Northeast, People’s Republic of China
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ash (Fraxinus manshurica), Manchurian walnut (Juglans

mandshurica), Mongolian oak (Quercus mongolica) and

Manchurian elm (Ulmus laciniata). The characteristics of

these forest types are described in Table 1.

Tree biomass data

The data used in this study were selected from a large data

set of tree biomass. The nine hardwood species included

White birch (Betula platyphylla), Dahurian poplar (Popu-

lus davidiana), Mongolian oak (Quercus mongolica),

Amur linden (Tilia amurensis), Dahurian birch (Betula

davuria), Manchurian ash (Fraxinus manshurica),

Manchurian walnut (Juglans mandshurica), Maple (Acer

mono) and Manchurian elm (Ulmus laciniata) in secondary

forests. A total of 78 plots were selected, 20 plots from

Daxing’an Mountains, 28 from Xiaoxing’an Mountains,

and 30 from Changbai Mountains (Fig. 1). Each plot was

30 9 30 m or 20 9 30 m in size. These sample plots were

established in August of 2009, 2010, 2011 and 2012. A

total of 472 trees for these nine natural hardwood species

were sampled. Both White birch and Dahurian poplar trees

were collected from all three regions, while the other trees

were sampled from Xiaoxing’an Mountains and Changbai

Mountains. The destructive sampling procedure was as

follows: the stems of the sampled trees were cut at the

ground and the total height (H), length of live crown, and

diameter at breast height (D) were immediately measured

and recorded. Then, the stems were cut into 1-m sections

and each section was weighed and recorded. At the end of

each stem section, a 2- to 3-cm-thick disc was cut,

weighed, and taken to the laboratory for determining

moisture content. The live crown (from the first dead

branch to the base of the terminal bud) was equally marked

into three layers (i.e., top, middle, and bottom). All live

branches in each crown layer were cut and weighed, re-

spectively. Then, in each crown layer 3–5 branches were

cut and the branch and foliage were separated and weighed,

respectively. The branches and foliage were then sampled

(about 50–100 g), weighed and taken to the laboratory for

moisture content determination. Due to the heavy workload

and difficulty in root excavation, harvesting fine roots

(\5 mm) was unrealistic (Wang 2006). In this study, the

zone of excavating roots was approximately a 3-m radius

circle, and the fine roots (\5 mm) were not included. So

the results were slightly biased by this constraint. The roots

of the sampled trees were divided into large roots (diameter

C5 cm), medium roots (diameter 2–5 cm), and small roots

(diameter \2 cm). Each root class was sampled (about

100–200 g), weighed, and taken to the laboratory for

moisture content determination. All stem, branch, foliage,

and root samples were oven-dried at 80 �C and weighed.

The dry biomass of each component was calculated by

multiplying the fresh weight of each component by the dry/

fresh ratio of each component. For each sampled tree, the

sum of branch dry biomass and foliage dry biomass yielded

crown dry biomass. The sum of crown dry biomass and

stem dry biomass gave aboveground biomass. The sum of

aboveground dry biomass and root dry biomass produced

total tree biomass.

In summary, a total of 472 trees for nine natural hard-

wood species were included in this study. Table 2 lists the

descriptive statistics of tree diameter (cm), height (m), and

total biomass (kg) for each species.

Table 1 Characteristics of forest types from which the sample trees were selected

Forest type Dominant species No. of

Plots

Density

(trees ha-1)

Mean

D (cm)

Mean

H (m)

Basal area

(m2 ha-1)

Stem volume

(m3 ha-1)

Slope

(�)
Altitude

(m)

White birch

forest

BP 16 1396–2796 9.4–18.6 9.3–18.3 13.6–36.7 72.1–227.9 2–10 158–666

Amur linden

forest

TA 4 1367–2270 8.7–13.9 11.3–16.5 14.3–22.3 68.9–143.2 10–12 209–219

Maple forest AM 2 1450–2085 9.3–13.2 11.2–13.4 14.2–19.8 77.2–115.4 10–18 216–239

Dahurian birch

forest

BD 5 1222–3470 7.8–14.3 10.5–14.8 16.5–25.6 75.3–136.1 3–10 164–620

Mixed

hardwood

forest

TA, AM, FM, JM,

QM, UL

32 852–3833 8.0–18.4 8.5–17.9 19.3–32.7 98.3–226.2 0–18 79–608

Mongolian oak

forest

OM 12 1596–2593 9.2–15.8 8.2–14.1 17.2–31.6 77.0–224.7 2–25 182–588

Dahurian

poplar forest

PD 7 1078–2922 11.2–17.5 12.2–18.5 19.9–33.7 127.5–239.5 4–14 156–678

QM, Quercus mongolica; PD, Populus davidiana; TA, Tilia amurensis; BP, Betula platyphylla; FM, Fraxinus manshurica; JM, Juglans

mandshurica; BD, Betula davuria; UL, Ulmus laciniata; AM, Acer mono
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Model specification

The primary results indicated that W = a�Db�Hc sig-

nificantly improved model fitting and performance from

W = a�Db, while W = a�(D2�H)b only marginally im-

proved model fitting and performance. Therefore, the fol-

lowing allometric biomass equations were used to estimate

the total, sub-total and component biomass W (in kg dry

weight) of nine hardwood species from tree diameter (D,

cm) and height (H, m) based on the literature (Bi et al.

2004; Balboa-Murias et al. 2006; Hosoda and Iehara 2010;

Chan et al. 2013):

W ¼ a � Db ð1Þ

W ¼ a � Db � Hc: ð2Þ

In this study, there were four tree components involved

(e.g., stems, roots, branches, and foliage). If a biomass

equation is fitted to each component separately, the in-

herent correlations among the biomass of tree components

that were measured on the same sample trees are ignored.

Consequently, the sum of biomass predictions from the

separate models of tree components will not equal the

biomass prediction from the total tree model, or above-

ground model or crown model, i.e., the additivity property

of biomass equations is not held. Therefore, we decid-

ed to use both Eqs. (1) and (2) as the basic models to

construct the additive systems of biomass equations with

three constraints (total = stems ? branches ? foliage ?

roots; aboveground = stems ? branches ? foliage; and

crown = branches ? foliage).

Further, there are two kinds of error structures (additive

and multiplicative) for Eqs. (1) and (2). We used likelihood

analysis to compare the appropriateness of the two error

structures for each of the nine species, following the

method of Xiao et al. (2011). For each species, we fitted the

Eqs. (1) and (2) using nonlinear regression on the un-

transformed data (hereafter, NLR), and then using linear

regression on the log-transformed data (hereafter, LR). The

model parameters and r2 were estimated for each model.

To select between two error structures, we calculated the

value of the log-likelihood function (logL) for each model

so that the Akaike Information Criterion (AICc) was

computed as follows (Xiao et al. 2011):

AICc ¼ 2k � 2 log Lþ 2k k þ 1ð Þ
N � k � 1

ð3Þ

where k is the number of parameters [k = 3 in Eq. (1) and

k = 4 in Eq. (2)], and N is the sample size. The AICc for

the NLR model is named AICcNLR and the AICc for the LR

model is named AICcLR. If AICcNLR - AICcLR\-2, the

assumption of additive error structure is favored and thus

we proceeded with the results obtained from NLR. If

AICcNLR - AICcLR[?2, the assumption of multiplica-

tive error structure is favored and thus we proceeded with

the results obtained from LR. If |AICcNLR - AICcLR| B 2,

neither model error structure is favored, then model aver-

aging may be adopted. For most of our biomass equations

of the nine tree species, the likelihood analyses of the error

structures for Eqs (1) and (2) yielded lower AICc for the

LR models compared to the NLR models. The DAICc
values (i.e., AICcNLR - AICcLR) were much greater than 2

(Appendix Table 5). Thus, at least for our data, LR should

be favored over NLR to fit both Eqs (1) and (2).

Let Wt, Wa, Wr, Ws, Wb, Wf, and Wc represent the total

biomass, aboveground biomass, root biomass, stem bio-

mass, branch biomass, foliage biomass, and crown biomass

in kg, respectively. Two additive systems of seven equa-

tions with cross-equation constraints on the structural pa-

rameters and cross-equation error correlation for four tree

biomass components, sub-total (aboveground and crown)

biomass, and total biomass are as follows:

(1) The additive system of log-transformed equations

with three constraints based on the multiplicative error

structure of Eq. (1) (W ¼ a � Db) is specified as follows:

Table 2 Descriptive statistics of diameter at breast height (D), tree height (H), and total biomass (kg) for the nine species (N is sample size)

Tree species N D (cm) H (m) Total biomass (kg)

Min Max Mean SD Min Max Mean SD Min Max Mean SD

Quercus mongolica (QM) 64 4.2 37.1 17.4 8.1 5 21.1 13.1 4.0 4.0 969.1 218.0 229.1

Populus davidiana (PD) 54 8.1 35.6 19.2 6.7 8.5 23.3 18.2 3.7 18.7 602.4 185.9 142.6

Tilia amurensis (TA) 38 6.9 37.0 16.4 7.7 6.8 19.7 13.6 3.6 9.0 613.8 128.1 146.8

Betula platyphylla (BP) 98 5.4 33.1 14.4 7.2 7.6 22.9 14.9 4.1 8.8 657.7 140.8 165.5

Fraxinus manshurica (FM) 42 5.7 33.4 18.2 7.3 7.6 22.6 16.2 4.5 7.5 595.9 205.7 166.7

Juglans mandshurica (JM) 30 8.2 41.1 20.7 8.6 8.9 27.9 17.2 5.9 16.5 916.3 247.1 231.8

Betula davuria (BD) 52 3.4 30.4 14.5 6.7 3.6 21.1 12.7 4.5 2.8 676.7 121.7 136.7

Ulmus laciniata (UL) 48 5.8 35.1 17.7 7.8 6.7 21.3 13.8 4.0 11.5 586 166.1 147.1

Acer mono (AM) 46 4.8 32.5 16.2 6.8 6.2 20.1 12.8 3.2 10.9 631.8 170.6 155.6

Trees (2015) 29:1149–1163 1153

123



lnWr ¼ ln a11ð Þ þ b12 � lnDþ er ¼ a�11 þ b�12 � lnDþ er
lnWs ¼ ln a21ð Þ þ b22 � lnDþ es ¼ a�21 þ b�22 � lnDþ es
lnWb ¼ ln a31ð Þ þ b32 � lnDþ eb ¼ a�31 þ b�32 � lnDþ eb
lnWf ¼ ln a41ð Þ þ b42 � lnDþ ef ¼ a�41 þ b�42 � lnDþ ef

lnWc ¼ ln Wb þWf

� �
þ ec ¼ ln a31 �Db32 þ a41 �Db42

� �
þ ec

lnWa ¼ ln Ws þWb þWf

� �
þ ea

¼ ln a21 �Db22 þ a31 �Db32 þ a41 �Db42
� �

þ ea
lnWt ¼ ln Wr þWs þWb þWf

� �
þ et

¼ ln a11 �Db12 þ a21 �Db22 þ a31 �Db32 þ a41 �Db42
� �

þ et;

ð4Þ

where ln denotes the natural logarithm, aij and bij are the

regression coefficients, and ei is the model error term.

(2) Based on the multiplicative error structure of Eq. (2)

(W ¼ a � Db � Hc), the following model specification was

adopted for the nine species with the additional predictor

H:

lnWr ¼ a�11 þ b�12 � lnDþ c�13 � lnH þ er
lnWs ¼ a�21 þ b�22 � lnDþ c�23 � lnH þ es
lnWb ¼ a�31 þ b�32 � lnDþ c�33 � lnH þ eb
lnWf ¼ a�41 þ b�42 � lnDþ c�43 � lnH þ ef

lnWc ¼ ln a31 � Db32 � Hc33 þ a41 � Db42 � Hc43
� �

þ ec

lnWa ¼ ln a21 � Db22 � Hc23 þ a31 � Db32 � Hc33
�

þ a41 � Db42 � Hc43
�
þ ea

lnWt ¼ ln a11 � Db12 � Hc13 þ a21 � Db22 � Hc23
�

þ a31 � Db32 � Hc33 þ a41 � Db42 � Hc43
�
þ et:

ð5Þ

To ensure the additivity or compatibility property

among tree component equations, the seemingly unrelated

regressions (SUR) in the SAS/ETS Model Procedure (SAS

Institute, Inc. 2011) were used to fit the above two systems

of biomass equations for each species, in which the coef-

ficients of the tree component biomass models were si-

multaneously estimated (Bi et al. 2004; Balboa-Murias

et al. 2006; Li and Zhao 2013).

Model evaluation

In this study, the additive systems of biomass equations

were fitted to the entire data set (sample size N). The model

validation was accomplished by a jackknifing technique, in

which a biomass model was built using all-but-one obser-

vation (sample size N - 1) and then the fitted model was

used to predict the value of the dependent variable for the

held-out observation (Quint and Dech 2010; Li and Zhao

2013). The model fitting was assessed by three goodness-

of-fit statistics [Eqs. (6)–(8)], and the model performance

was evaluated by three model validation statistics of

jackknifing [Eqs. (9)–(11)] as follows:

Coefficient of determination R2

¼ 1�

PN

i¼1

ðlnWi � ln bWiÞ2

PN

i¼1

ðlnWi � lnWÞ2
ð6Þ

Adjusted coefficient of determination

R2
a ¼ 1� 1� R2

� � N � 1

N � k

� � ð7Þ

Root mean squared error RMSE ¼
ffiffiffiffiffiffiffiffiffiffi
MSE

p

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1

ðlnWi � ln bWiÞ2

N � k

vuuut
ð8Þ

Jackknifing residual ei;�i ¼ lnWi � ln bWi;�i

� �
ð9Þ

Mean absolute bias MAB ¼

PN

i¼1

ei;�i

		 		

N
ð10Þ

Mean absolute percent bias MAB% ¼

PN

i¼1

ei;�ij j
lnWi

� �
� 100

N
;

ð11Þ

where lnWi is the ith observed log-transformed biomass

value, ln bWi is the ith predicted log-transformed biomass

value from the model which was fitted using the entire data

(sample size N), ln W is the mean of log-transformed

biomass value, ln bWi;�i is the predicted value of the ith

observed value by the fitted model which was fitted by

(N - 1) observations without the use of the ith observa-

tion, and k is the number of model parameters.

Results

Model fitting for two additive systems of biomass

equations

For the nine natural hardwood species, two additive sys-

tems of log-transformed biomass equations [Eqs. (4), (5)]

were fitted to the biomass data by the SUR method. The

estimated coefficients of two systems with D only or both

D and H as the predictor variables are shown in Table 3. As

expected, there were some degrees of variation among the

four components of biomass. For Eq. (4), the estimated

slope coefficients of stem biomass, b22
* , were most stable,

ranging from 2.3450 to 2.7104 with an average of 2.4856.
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The estimated slope coefficients for branch biomass, b32
* ,

were most variable, ranging from 2.0328 to 3.5220 with an

average of 2.8165. Similarly, the estimated slope coeffi-

cients of stem biomass for Eq. (5), b22
* , were also stable,

ranging from 1.6698 to 2.1479 with an average of 1.9549,

whereas the most variable exponent coefficients were also

found for branch biomass. The estimated coefficients, i.e.,

c13
* , c23

* , c33
* and c43

* , were relatively small and variable.

Table 4 shows the goodness-of-fit statistic (i.e., adjusted

coefficient of determination Ra
2), and root mean squared

error (RMSE) for each biomass equation. The results

indicated that all equations in Eq. (4) with D only as the

predictor variable fitted the biomass data well, with Ra
2

[89 % and RMSE\0.4. Most of the total, aboveground,

and stem biomass equations produced better model fitting

(Ra
2[0.95 and RMSE\0.20), while the root equations had

relatively smaller model Ra
2 (\0.95) and larger RMSE

([0.20). Among the nine species, the additive system with

D only for White birch (Betula platyphylla) had slightly

higher Ra
2 than those of other species (Table 4).

In this study, the tree height (H) was also measured. Thus,

both tree D and H were used to develop the second additive

system of biomass equations [Eq. (5)]. In comparison with

the model fitting of Eq. (4) (D only), the second additive

system (D andH) had greater Ra
2 and smaller RMSE for total,

sub-total and component biomass (Table 4).

Model validation of two additive systems of biomass

equations

Further, the model validation statistics [Eqs. (9)–(11)]

were computed based on the jackknifing residuals for the

two additive systems of biomass equations [Eqs. (4),

(5)]. Figure 2 shows MAB and MAB % (representing

the magnitude of prediction error) for the two additive

systems across the nine species and biomass equations.

For total biomass, except Manchurian ash (Fraxinus

manshurica), the model prediction errors of the two

systems were relatively small (MAB\0.15 and MAB %

\5.0 %), and System 2 [Eq. (5)] seemed better than

System 1 [Eq. (4)]. Similar results were found for

aboveground and stem biomass (MAB \0.20 and

MAB % \6 %), and System 2 performed better than

System 1 (Fig. 2). On the other hand, the biomass

equations for roots, branches, foliage, and crown had

less accurate prediction (0.15\MAB\ 0.35 and

10 %\MAB %\ 35 %), especially for roots compared

to total, aboveground and stem. Adding H into the ad-

ditive system of biomass equations improved model

performance for most biomass equations of the nine

hardwood species, especially for Manchurian ash

(Fraxinus manshurica). However, this improvement was

non-significant for some species [e.g., Mongolian oak

(Quercus mongolica), Dahurian poplar (Populus da-

vidiana), and Amur linden (Tilia amurensis)] (Fig. 2).

Biomass partitioning

The partitioning of tree total biomass into tree components

such as stems, branches, foliage and belowground or root

biomass is shown in Fig. 3 for the nine natural hardwood

species. Because the allocation of tree biomass depends

strongly on tree diameters, the comparison of biomass al-

location between species is valid and meaningful for trees

of similar diameters (Ruiz-Peinado et al. 2012). The bio-

mass partitioning in this study was done using the biomass

models fitted for the diameters of 10 and 30 cm.

For the diameter of 10 cm, the stem (with bark) was the

largest biomass component for all nine hardwood species,

and the roots were the second most important biomass

component. The biomass partitioning was stems 62.0 %

[52.8 % (JM)–76.8 % (PD)], branches 11.1 % [5.9 %

(PD)–16.2 % (AM)], foliage 3.4 % [1.9 % (PD)–4.7 %

(UL)], and roots 23.5 % [15.4 % (PD)–28.1 % (TA)]. The

aboveground biomass (i.e., the sum of stems, branches and

foliage) was about 76.5 % of the total biomass, while the

belowground biomass (i.e., roots) was about 23.5 % of the

total biomass (Fig. 3a).

For the diameter of 30 cm, the stem was again the lar-

gest biomass component for all nine hardwood species, and

both roots and branches were important biomass compo-

nents. The biomass partitioning was stems 62.8 % [55.9 %

(QM)–72.0 % (TA)], branches 15.9 % [9.5 % (TA)–

23.1 % (QM)], foliage 2.5 % [1.5 % (TA)–2.9 % (BP and

JM)], and roots 18.8 % [14.8 % (PD)–24.1 % (AM)). The

aboveground biomass was about 81.2 % of the total bio-

mass, while the belowground biomass was about 18.8 % of

the total biomass (Fig. 3b).

Discussion

The relationships between tree biomass and tree variables

such as diameter and height are highly correlated exhibit-

ing a power–law relationship. Usually, either W = a�Db or

W = a�Db�Hc can be used to model these allometric rela-

tionships. The power function using D as the only predictor

is simple in equation form, easy to fit to biomass data,

requires only basic forest inventory data to apply in prac-

tice, and usually provides reasonably accurate predictions

for many species and regions (Ter-Mikaelian and Korzu-

khin 1997; Jenkins et al. 2003; Wang 2006; Sierra et al.

2007; Basuki et al. 2009). However, adding tree height or

height classes as an additional predictor into biomass

equations can significantly improve the model fitting and

performance (Bi et al. 2004; Wang et al. 2006; Li and Zhao
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2013), especially for some tree component models such as

branch and foliage biomass (Wang 2006; Zhou et al. 2007).

Our results demonstrated that adding tree height into the

system improved most of the biomass equations for the

nine hardwood species, which was consistent with the lit-

erature (Ketterings et al. 2001; Bi et al. 2004; Cole and

Ewel 2006; António et al. 2007; Battulga et al. 2013).

Many modelers used log-transformed linear models

(LR) to fit tree biomass data (Smith and Brand 1983; Wang

2006; Zianis and Mencuccini 2003; Zianis et al. 2011).

Others fitted the nonlinear power function (NLR) directly

to the biomass data of original scale and believed that

nonlinear models provided model fitting as good as the log-

transformed models (Parresol 2001; Bi et al. 2004; Lambert

et al. 2005; Chan et al. 2013). However, Xiao et al. (2011)

pointed out that the choice between LR and NLR depends

Table 4 Model fitting statistics of two additive systems of log-

transformed biomass equations with three constraints

Tree species Biomass

component

System

1 W = f (D)

System

2 W = f (D, H)

Ra
2 RMSE Ra

2 RMSE

QM Total 0.988 0.138 0.992 0.117

Aboveground 0.984 0.167 0.992 0.119

Root 0.911 0.369 0.920 0.349

Stem 0.978 0.187 0.990 0.128

Branch 0.971 0.293 0.971 0.294

Foliage 0.945 0.282 0.945 0.282

Crown 0.973 0.262 0.972 0.262

PD Total 0.978 0.141 0.983 0.123

Aboveground 0.972 0.159 0.981 0.131

Root 0.934 0.234 0.935 0.233

Stem 0.967 0.168 0.982 0.126

Branch 0.936 0.304 0.940 0.294

Foliage 0.953 0.219 0.953 0.219

Crown 0.955 0.245 0.958 0.236

TA Total 0.986 0.132 0.989 0.117

Aboveground 0.982 0.158 0.986 0.140

Root 0.959 0.187 0.958 0.190

Stem 0.976 0.185 0.982 0.162

Branch 0.969 0.210 0.967 0.214

Foliage 0.908 0.307 0.913 0.300

Crown 0.975 0.180 0.974 0.184

BP Total 0.987 0.138 0.991 0.111

Aboveground 0.984 0.153 0.991 0.115

Root 0.936 0.294 0.938 0.291

Stem 0.977 0.178 0.989 0.124

Branch 0.975 0.227 0.977 0.221

Foliage 0.959 0.257 0.959 0.259

Crown 0.981 0.193 0.982 0.189

FM Total 0.948 0.278 0.981 0.168

Aboveground 0.948 0.280 0.984 0.154

Root 0.904 0.387 0.923 0.348

Stem 0.928 0.326 0.977 0.183

Branch 0.969 0.242 0.972 0.232

Foliage 0.959 0.213 0.958 0.214

Crown 0.980 0.182 0.982 0.176

JM Total 0.989 0.120 0.991 0.109

Aboveground 0.986 0.141 0.993 0.100

Root 0.892 0.329 0.918 0.287

Stem 0.973 0.196 0.988 0.130

Branch 0.959 0.236 0.961 0.232

Foliage 0.955 0.218 0.956 0.218

Crown 0.976 0.177 0.977 0.171

Table 4 continued

Tree species Biomass

component

System

1 W = f (D)

System

2 W = f (D, H)

Ra
2 RMSE Ra

2 RMSE

BD Total 0.982 0.176 0.988 0.143

Aboveground 0.982 0.187 0.991 0.134

Root 0.944 0.280 0.944 0.280

Stem 0.974 0.214 0.990 0.137

Branch 0.969 0.303 0.970 0.300

Foliage 0.960 0.251 0.962 0.243

Crown 0.972 0.268 0.972 0.264

UL Total 0.983 0.140 0.985 0.131

Aboveground 0.983 0.144 0.987 0.126

Root 0.937 0.264 0.937 0.264

Stem 0.978 0.174 0.985 0.142

Branch 0.959 0.199 0.961 0.194

Foliage 0.923 0.233 0.925 0.230

Crown 0.966 0.173 0.968 0.168

AM Total 0.989 0.112 0.988 0.113

Aboveground 0.990 0.103 0.992 0.094

Root 0.910 0.333 0.915 0.324

Stem 0.989 0.113 0.993 0.089

Branch 0.954 0.229 0.956 0.223

Foliage 0.943 0.194 0.944 0.193

Crown 0.964 0.193 0.965 0.191

Ra
2 is the adjusted coefficient of determination and RMSE is the root

mean squared error

QM, Quercus mongolica; PD, Populus davidiana; TA, Tilia

amurensis; BP, Betula platyphylla; FM, Fraxinus manshurica; JM,

Juglans mandshurica; BD, Betula davuria; UL, Ulmus laciniata; AM,

Acer mono
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on the distribution of model errors, and provided a likeli-

hood analysis to compare the appropriateness of the two

error structures. Although the significance of likelihood

analysis is proposed by several authors (Xiao et al. 2011;

Ballantyne 2013; Lai et al. 2013), it has not been widely

applied in forestry. In this study, we applied likelihood

analysis to verify the error structures of tree biomass data,

and found that the multiplicative error structure was fa-

vored over the additive error structure. Therefore, we

constructed two additive systems of log-transformed

models [Eqs. (4), (5)], which were validated using the

jackknifing technique.

Moreover, many biomass equations published so far are

non-additive because they were estimated using least-

squares regression (OLS) (Zianis et al. 2011; Cai et al.

2013). The SUR method (Parresol 2001) is a better choice

for developing additive biomass equations, which
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Fig. 2 The mean absolute biases (MAB, left) and mean absolute

percent biases (MAB %, right) in total, sub-total and component

biomass of the log-transformed biomass equations for nine tree

species. QM, Quercus mongolica; PD, Populus davidiana; TA, Tilia

amurensis; BP, Betula platyphylla; FM, Fraxinus manshurica; JM,

Juglans mandshurica; BD, Betula davuria; UL, Ulmus laciniata; AM,

Acer mono
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Fig. 3 Biomass partitioning of aboveground and belowground com-

ponents between nine hardwood species for a a diameter of 10 cm,

and b a diameter of 30 cm. QM, Quercus mongolica; PD, Populus

davidiana; TA, Tilia amurensis; BP, Betula platyphylla; FM,

Fraxinus manshurica; JM, Juglans mandshurica; BD, Betula davuria;
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considers contemporaneous correlations among the bio-

mass components and results in more efficient parameter

estimation. The benefits of using SUR are not only to en-

sure the additivity property of biomass equations, but also

to reduce the confidence and prediction intervals for bio-

mass estimations (Parresol 2001; Bi et al. 2004; Balboa-

Murias et al. 2006).

Because the log-transformed biomass equations predict

the logarithmic values of expected biomass, anti-log

transformation is necessary in order to obtain the predicted

biomass in the original scale. It is well known that this anti-

log transformation process leads to a systematic underes-

timation for the expected biomass. Consequently, a cor-

rection factor (CF) of Baskerville (1972), i.e., CF = exp

(r2/2), is commonly used to correct for the systematic bias

introduced by the anti-log transformation. However,

Madgwick and Satoo (1975) found that anti-log transfor-

mation tended to overestimate biomass if the correction

factor is applied, and suggested that the correction factor

might be ignored if the bias from anti-log was relatively

small compared to the overall variation in the estimate of

biomass. In this study, the correction factor values of all

biomass equations were less than 1.08, especially for the

total, aboveground, and stem biomass equations. The per-

cent biases [Zianis et al. 2011, Eq. (5)] were also rather

small ranging from 0.4 to 8.0 % (results not shown). Thus,

the correction factor was not necessary for these nine

species in this study. The results were also consistent with

other previous studies (Beauchamp and Olson 1973;

Madgwick and Satoo 1975; Zianis and Mencuccini 2003;

Zianis et al. 2011).

Biomass partitioning for the nine hardwood species

showed (1) the average proportions of stems remained

stable (about 62 %) between small trees (10 cm) and large

trees (30 cm); (2) the average proportions of branches in-

creased from 11.1 % for small trees to 15.9 % for large

trees; (3) the average proportions of foliage decreased

slightly from 3.4 % for small trees to 2.5 % for large trees;

and (4) the average proportions of roots decreased from

23.5 % for small trees to 18.8 % for large trees. It is

probably because the growth of the root systems of old

trees slowed down substantially, while branches became

larger and thicker in big trees for some species. For ex-

ample, the biomass proportions of Mongolian oak (Quer-

cus mongolica): roots decreased from 25.6 % (10 cm) to

18.5 % (30 cm), while braches increased from 8.3 %

(10 cm) to 23.1 % (30 cm). Some species such as Dahurian

poplar (Populus davidiana) allocated a greater proportion

to stems (76.8 %) than to roots (15.4 %) mainly due to its

shallow lateral root systems and small crown size in the

canopy. The allocation proportion of branches varied

across the species, depending on the formation of forks and

the thickness of branches. Similarly, the partitioning

proportions of roots depended on tree root morphology

(e.g., shallow root or deep root), growth process, and soil

conditions (Strong and Roi 1983; Canadell et al. 1996;

Wang 2006). However, the root excavation was impossible

for some individual trees such as Juglans mandshurica and

Betula davuria because of their propensity to grow clonally

via lateral roots. This phenomenon may introduce errors in

estimating the belowground biomass, which in turn influ-

ences the partitioning proportions of root biomass. In

summary, it is reported in the literature that even though

the partitioning of total biomass into tree components

varied across tree species and ages, the aboveground bio-

mass is about 75 % and the belowground biomass is about

25 % of the total biomass as the overall average (Niklas

and Enquist 2002; Wang et al. 2011). Our results were

consistent with the literature.

Wang (2006) developed biomass equations using D as

the only predictor for ten hardwood species from the

Maoershan Ecosystem Research Station of the Northeast

Forestry University in Heilongjiang Province, China,

which was part of Changbai Mountains. Seven species

(Quercus mongolica, Populus davidiana, Tilia amurensis,

Betula platyphylla, Fraxinus manshurica, Juglans mand-

shurica and Acer mono) were the same as the biomass data

in our study. However, the sample size in Wang (2006) was

only 10 trees (two dominant, three co-dominant, three in-

termediate, and two suppressed trees) for each species, and

the established biomass equations were not additive for

total, sub-totals, and component biomass.

A graphical comparison of total, aboveground, and

belowground biomass equations illustrated the differences

between our models (System 1) and Wang’s (2006) bio-

mass equations for the seven species (Fig. 4). It was

evident that the total and aboveground biomass equations

produced similar predictions for most of the seven spe-

cies, and most of the mean predicted biomass of Wang’s

equations fell into the 95 % confidence intervals of mean

prediction by our equations, while there were some dif-

ferences for the belowground biomass equations. For

Quercus mongolica, our equations yielded higher pre-

dictions for the total, aboveground, and belowground

biomass than Wang’s equations, especially for large-sized

trees. But our equations produced slightly lower predic-

tions for other species. This may be due to the significant

difference of predicting the belowground biomass be-

tween the two models. The possible reasons may be (1)

data of the two studies came from different study sites; (2)

each species of the two studies came from different forest

types; and (3) differences in the number of sampled trees

and the ranges of tree sizes. These can lead to the dif-

ferences in terms of tree root morphologic features, soil

conditions and growth process (Strong and Roi 1983;

Nicoll and Ray 1996).
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Finally, accurately estimating biomass of large trees is

critical to stand biomass estimation because large trees

usually account for a greater biomass proportion in a

stand (Gower et al. 1999). In this study, the largest

diameter of the nine species was from 30.4 to 41.1 cm.

If these established biomass equations in this study were

used to estimate biomass outside of our data range (e.g.,

diameter [50 cm), the models could produce larger

prediction errors. In addition, if our models were used

for other regions, caution should be taken because dif-

ferent environmental and growth conditions may yield

different allometric relationships between tree biomass

and tree variables. Therefore, the biomass equations

developed in this study are more suitable to Northeast

China.

Conclusion

Two additive systems of biomass equations were devel-

oped for nine major hardwood species in Northeast China,

including total, aboveground, roots, stem (with bark),

branch, foliage, and crown biomass. System 1 used tree

diameter D as the only predictor, and System 2 included

both tree diameter D and total height H as predictors. We

applied likelihood analysis to assess the model error

structures of power functions [Eqs. (1), (2)]. The results

indicated that the assumption of multiplicative error

structure was favored for our biomass data of the nine

species. Thus, the log-transformed models were used in the

two additive systems.

As expected, the accuracy of the biomass component

equations differed for the two additive systems across the

nine species. The model Ra
2 was [89 % for System 1

(D only) and [91 % for System 2 (both D and H). The

model RMSE was relatively small for total, aboveground

and stem biomass equations, but larger for root, branch,

foliage, and crown biomass. Overall, adding tree height

into the system of biomass equations significantly im-

proved model fitting and performance, especially for total,

aboveground, and stem biomass.

Moreover, we analyzed the biomass partitioning of

aboveground and belowground components for the nine

hardwood species. Our results were consistent with the

literature such that the stem biomass accounted for the

largest proportion of total biomass. The tree biomass data

in this study were widely distributed across three forest

regions (Daxing’an Mountains, Xiaoxing’an Mountains

and Changbai Mountains). Thus, these established biomass

equations can be applied to estimate individual tree bio-

mass in Northeast China, and provide basic information for

Chinese National Forest Inventory.
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Appendix

See Table 5.

bFig. 4 Total, aboveground and belowground (root) biomass from our

biomass equations (solid line) compared to the published equations

(dashed line) in Wang (2006) for seven tree species. Quercus

mongolica (QM), Populus davidiana (PD), Tilia amurensis (TA),

Betula platyphylla (BP), Fraxinus manshurica (FM), Juglans mand-

shurica (JM), and Acer mono (AM). The dot lines were the lower and

upper limits of the 95 % confidence intervals for the mean prediction

of biomass
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António N, Tomé M, Tomé J, Soares P, Fontes L (2007) Effect of

tree, stand, and site variables on the allometry of Eucalyptus

globulus tree biomass. Can J For Res 37:895–906

Balboa-Murias MA, Rodriguez-Soalleiro R, Merino A, Alvarez-

Gonzalez JG (2006) Temporal variations and distribution of

carbon stocks in aboveground biomass of radiata pine and

maritime pine pure stands under different silvicultural alterna-

tives. For Ecol Manag 237:29–38

Ballantyne FT (2013) Evaluating model fit to determine if logarithmic

transformations are necessary in allometry: a comment on the

exchange between Packard (2009) and Kerkhoff and Enquist

(2009). J Theor Biol 317:418–421

Baskerville G (1972) Use of logarithmic regression in the estimation

of plant biomass. Can J For Res 2:49–53

Basuki TM, van Laake PE, Skidmore AK, Hussin YA (2009)

Allometric equations for estimating the above-ground biomass in

tropical lowland Dipterocarp forests. For Ecol Manag

257:1684–1694

Battulga P, Tsogtbaatar J, Dulamsuren C, Hauck M (2013) Equations

for estimating the above-ground biomass of Larix sibirica in the

forest-steppe of Mongolia. J For Res 24:431–437

Beauchamp JJ, Olson JS (1973) Corrections for bias in regression

estimates after logarithmic transformation. Ecology 54:1403–1407

BiH,Turner J, LambertMJ (2004)Additive biomass equations for native

eucalypt forest trees of temperate Australia. Trees 18:467–479

Bi H, Long Y, Turner J, Lei Y, Snowdon P, Li Y, Harper R, Zerihun

A, Ximenes F (2010) Additive prediction of aboveground

biomass for Pinus radiata (D. Don) plantations. For Ecol Manag

259:2301–2314

Brandeis TJ, Delaney M, Parresol BR, Royer L (2006) Development

of equations for predicting Puerto Rican subtropical dry forest

biomass and volume. For Ecol Manag 233:133–142

Cai S, Kang X, Zhang L (2013) Allometric models for aboveground

biomass of ten tree species in northeast China. Ann For Res

56:105–122

Canadell J, Jackson R, Ehleringer J, Mooney H, Sala O, Schulze ED

(1996) Maximum rooting depth of vegetation types at the global

scale. Oecologia 108:583–595

Carvalho JP, Parresol BR (2003) Additivity in tree biomass compo-

nents of Pyrenean oak (Quercus pyrenaica Willd.). For Ecol

Manag 179:269–276

Chan N, Takeda S, Suzuki R, Yamamoto S (2013) Establishment of

allometric models and estimation of biomass recovery of

swidden cultivation fallows in mixed deciduous forests of the

Bago Mountains, Myanmar. For Ecol Manag 304:427–436

Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D,

Fölster H, Fromard F, Higuchi N, Kira T (2005) Tree allometry

and improved estimation of carbon stocks and balance in tropical

forests. Oecologia 145:87–99

Chiyenda SS, Kozak A (1984) Additivity of component biomass

regression equations when the underlying model is linear. Can J

For Res 14:441–446

Cole TG, Ewel JJ (2006) Allometric equations for four valuable

tropical tree species. For Ecol Manag 229:351–360

Cunia T, Briggs RD (1984) Forcing additivity of biomass tables:

some empirical results. Can J For Res 14:376–384

Gargaglione V, Peri PL, Rubio G (2010) Allometric relations for

biomass partitioning of Nothofagus antarctica trees of different

crown classes over a site quality gradient. For Ecol Manag

259:1118–1126

Table 5 Information statistics (DAICC = AICcnorm - AICclogn) of likelihood analysis for the additive and multiplicative error structures

Tree species Number of trees Equation Total Aboveground Root Stem Branch Foliage Crown

QM 64 (1) 45.56 47.75 13.11 65.23 65.99 44.76 65.21

(2) 10.90 8.93 17.80 51.15 65.81 45.03 64.61

PD 54 (1) 26.38 25.91 -24.56 23.22 36.16 20.86 41.83

(2) 23.86 30.95 -17.17 29.93 37.04 18.52 43.35

TA 38 (1) 14.45 25.24 1.48 31.33 52.93 10.54 52.85

(2) 2.19 12.64 0.96 20.75 52.48 11.38 51.9

BP 98 (1) 108.19 120.54 85.77 110.63 176.54 86.63 176.47

(2) 98.58 108.08 85.77 93.82 179.22 86.13 179.03

FM 42 (1) 0.61 2.35 11.78 6.23 7.24 22.23 19.68

(2) 18.48 18.41 17.61 23.94 8.08 22.04 21.60

JM 30 (1) 40.87 43.69 20.73 39.72 15.08 4.05 17.71

(2) 25.30 21.89 25.39 15.63 15.76 4.16 19.16

BD 52 (1) 81.99 78.22 71.57 70.29 89.53 21.54 69.54

(2) 63.49 54.37 69.60 31.66 87.12 22.98 68.35

UL 48 (1) 47.57 63.30 27.69 61.75 26.83 27.98 29.02

(2) 33.41 54.93 27.57 58.05 29.60 29.51 32.45

AM 46 (1) 24.82 58.63 3.59 64.18 19.97 23.24 25.47

(2) 3.47 27.00 0.66 41.04 20.60 21.04 25.38

QM, Quercus mongolica; PD, Populus davidiana; TA, Tilia amurensis; BP, Betula platyphylla; FM, Fraxinus manshurica; JM, Juglans

mandshurica; BD, Betula davuria; UL, Ulmus laciniata; AM, Acer mono

1162 Trees (2015) 29:1149–1163

123



Gower ST, Kucharik CJ, Norman JM (1999) Direct and indirect

estimation of leaf area index, fAPAR, and net primary production

of terrestrial ecosystems. Remote Sens Environ 70:29–51

Greene WH (1999) Econometric Analysis, 4th edn. Prentice Hall,

Upper Saddle River

Hosoda K, Iehara T (2010) Aboveground biomass equations for

individual trees of Cryptomeria japonica, Chamaecyparis obtusa

and Larix kaempferi in Japan. J For Res 15:299–306

Jenkins JC, Chojnacky DC, Heath LS, Birdsey RA (2003) National-

scale biomass estimators for United States tree species. For Sci

49:12–35

Ketterings QM, Coe R, van Noordwijk M, Ambagau Y, Palm CA

(2001) Reducing uncertainty in the use of allometric biomass

equations for predicting above-ground tree biomass in mixed

secondary forests. For Ecol Manag 146:199–209

Kozak A (1970) Methods for ensuring additivity of biomass

components by regression analysis. For Chron 46:402–405

Lai J, Yang B, Lin D, Kerkhoff AJ, Ma K (2013) The allometry of

coarse root biomass: log-transformed linear regression or

nonlinear regression? PLoS One 8:e77007

Lambert MC, Ung CH, Raulier F (2005) Canadian national tree

aboveground biomass equations. Can J For Res 35:1996–2018

Li H, Zhao P (2013) Improving the accuracy of tree-level above-

ground biomass equations with height classification at a large

regional scale. For Ecol Manag 289:153–163

Madgwick H, Satoo T (1975) On estimating the aboveground weights

of tree stands. Ecology 56:1446–1450

Malhi Y, Meir P, Brown S (2002) Forests, carbon and global climate.

PhilosTrans A Math Phys Eng Sci 360:1567–1591

Menendez-Miguelez M, Canga E, Barrio-Anta M, Majada J, Alvarez-

Alvarez P (2013) A three level system for estimating the biomass

of Castanea sativa Mill. coppice stands in north-west Spain. For

Ecol Manag 291:417–426

Mu C, Lu H, Wang B, Bao X, Cui W (2013) Short-term effects of

harvesting on carbon storage of boreal Larix gmelinii–Carex

schmidtii forested wetlands in Daxing’anling, northeast China.

For Ecol Manag 293:140–148
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bayesian model averaging to predict tree aboveground biomass

in tropical moist forests. For Sci 58:15–23

Quint TC, Dech JP (2010) Allometric models for predicting the

aboveground biomass of Canada yew (Taxus canadensis Marsh.)

from visual and digital cover estimates. Can J For Res

40:2003–2014

Reed DD, Green EJ (1985) A method of forcing additivity of biomass

tables when using nonlinear models. Can J For Res

15:1184–1187

Ruiz-Peinado R, Montero G, Monterodel Rio M (2012) Biomass

models to estimate carbon stocks for hardwood tree species. For

Syst 21:42–52

Russell MB, Burkhart HE, Amateis RL (2009) Biomass partitioning

in a miniature-scale loblolly pine spacing trial. Can J For Res

39:320–329

SAS Institute Inc. (2011) SAS/ETS� 9.3. User’s Guide. SAS Institute

Inc, Cary

Sierra CA, Valle JI, Orrego SA, Moreno FH, Harmon ME, Zapata M,

Colorado GJ, Herrera MA, Lara W, Restrepo DE, Berrouet LM,

Loaiza LM, Benjumea JF (2007) Total carbon stocks in a

tropical forest landscape of the Porce region, Colombia. For Ecol

Manag 243:299–309

Smith WB, Brand GJ (1983) Allometric biomass equations for 98

species of herbs, shrubs, and small trees. North Central Forest

Experiment Station, Forest Service, USDA

Strong W, Roi GL (1983) Root-system morphology of common

boreal forest trees in Alberta, Canada. Can J For Res

13:1164–1173

Tang S, Wang Y (2002) A parameter estimation program for the

error-in-variable model. Ecol Mod 156:225–236

Tang S, Li Y, Wang Y (2001) Simultaneous equations, error-in-

variable models, and model integration in systems ecology. Ecol

Mod 142:285–294

Ter-Mikaelian MT, Korzukhin MD (1997) Biomass equations for

sixty-five North American tree species. For Ecol Manag 97:1–24

Wang C (2006) Biomass allometric equations for 10 co-occurring tree

species in Chinese temperate forests. For Ecol Manag 222:9–16

Wang X, Fang J, Tang Z, Zhu B (2006) Climatic control of primary

forest structure and D-height allometry in Northeast China. For

Ecol Manag 234:264–274

Wang J, Zhang C, Xia F, Zhao X, Wu L, Gadow KV (2011) Biomass

structure and allometry of Abies nephrolepis (Maxim) in

Northeast China. Silva Fenn 45:211–226

Woodall CW, Heath LS, Domke GM, Nichols MC (2011) Methods

and equations for estimating aboveground volume, biomass, and

carbon for trees in the U.S. forest inventory. 2010. USDA Forest

Service, Northern Research Station GTR NRS-88

Xiao X, White EP, Hooten MB, Durham SL (2011) On the use of log-

transformation vs. nonlinear regression for analyzing biological

power laws. Ecology 92:1887–1894

Zhou X, Brandle JR, Schoeneberger MM, Awada T (2007) Devel-

oping above-ground woody biomass equations for open-grown,

multiple-stemmed tree species: shelterbelt-grown Russian-olive.

Ecol Model 202:311–323

Zianis D (2008) Predicting mean aboveground forest biomass and its

associated variance. For Ecol Manag 256:1400–1407

Zianis D, Mencuccini M (2003) Aboveground biomass relationships

for beech (Fagus moesiaca Cz.) trees in Vermio Mountain,

Northern Greece, and generalised equations for Fagus sp. Ann

For Sci 60:439–448

Zianis D, Muukkonen P, Makipaa R, Mencuccini M (2005) Biomass

and stem volume equations for tree species in Europe. Silva Fenn

4:1–63

Zianis D, Xanthopoulos G, Kalabokidis K, Kazakis G, Ghosn D,

Roussou O (2011) Allometric equations for aboveground

biomass estimation by size class for Pinus brutia Ten. trees

growing in North and South Aegean Islands. Greece. Eur J For

Res 130:145–160

Trees (2015) 29:1149–1163 1163

123


	Developing additive systems of biomass equations for nine hardwood species in Northeast China
	Abstract
	Key message
	Abstract

	Introduction
	Data and methods
	Data
	Study area description
	Tree biomass data

	Model specification
	Model evaluation

	Results
	Model fitting for two additive systems of biomass equations
	Model validation of two additive systems of biomass equations
	Biomass partitioning

	Discussion
	Conclusion
	Author contribution statement
	Appendix
	References




