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Has an extending growing season any effect on the radial growth
of Smith fir at the timberline on the southeastern Tibetan Plateau?
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Abstract The growing season of high-elevation forests

will presumably lengthen in response to warming. How-

ever, little is known about long-term effects of an extended

growing season, particularly on the Tibetan Plateau. Based

on a strong correlation between the daily mean tempera-

tures at an automatic weather station at timberline

(4,390 m a.s.l.) in the Sygera Mts., recorded since 2007,

and at the meteorological station at Nyingchi (3,000 m

a.s.l.), recorded since 1960, we modeled the variation in

daily mean temperature at the timberline back to 1960. The

onset and end of the growing season at the timberline were

determined by the first and the last day within a year when

the mean daily air temperature equals or exceeds,

respectively falls below, ?5 �C for at least 5 days. From

1960 to 2010, the estimated length of the growing season at

the timberline has significantly extended by 21.2 days,

resulting mainly from a significant delay of its end (by

14.6 days) rather than from an earlier onset (by 6.6 days).

Nevertheless, the variation of the length of the growing

season did not exhibit any significant effect on the radial

growth of Smith fir at the timberlines. Thus, tree-ring width

is still a reliable proxy for summer temperature.

Keywords Tree ring � Timberline � Growing season �
Abies georgei var. smithii � Climate change � Southeastern

Tibetan Plateau

Introduction

The position of the natural timberline reaches its highest

northern hemispheric elevation on the southeastern Tibetan

Plateau, making it potentially sensitive to climate change

(Miehe et al. 2007; Liang et al. 2012). As repeatedly

reported, trees at high elevations are ‘‘recording’’ the recent

warming on the southeastern (Bräuning and Mantwill

2004; Liang et al. 2009, 2011b; Yang et al. 2010; Zhu et al.

2011; Lv and Zhang 2012) and northeastern Tibetan Pla-

teau (Liu et al. 2005, 2006a, b; Gou et al. 2008; Zhu et al.

2008). In response to this warming, the growing season

length may have extended at timberlines. However, little is

known whether such an extension has any effect on tree

growth at high elevations. If so, summer temperature sig-

nals from timberline tree rings may be disrupted by the

extended growing season, and hence could not be recon-

structed straightforwardly.

Changes in the length of the growing season are of par-

ticular importance for both high-elevation and high-latitude

Communicated by A. Braeuning.

Special topic: Dendroecology in Asia.

B. Liu � L. Zhu � B. Dawadi � E. Liang (&)

Key Laboratory of Tibetan Environment Changes and Land

Surface Processes (TEL), Institute of Tibetan Plateau Research,

Chinese Academy of Sciences, 100101 Beijing, China

e-mail: liangey@itpcas.ac.cn

B. Liu � B. Dawadi

University of Chinese Academy of Sciences,

100049 Beijing, China

Y. Li

Meteorological Observation Center, China Meteorological

Administration, 100081 Beijing, China

D. Eckstein

Department of Wood Science, University of Hamburg,

Leuschnerstrasse 91, 21031 Hamburg, Germany

B. Dawadi

Central Department of Hydrology and Meteorology,

Tribhuvan University, Kathmandu, Nepal

123

Trees (2013) 27:441–446

DOI 10.1007/s00468-012-0819-z



ecosystems where the growing season is very short (Vag-

anov et al. 1999; Wieser et al. 2009). Lengthening of the

growing season, caused by an earlier onset, is considered to

enhance the forest productivity (Keeling et al. 1996; White

et al. 1999; Kimball et al. 2004). On the other hand, an

increased snowfall may delay the onset of the growing

season (Vaganov et al. 1999; Høgda et al. 2007). Due to

difficulties by poor access and bad weather conditions

throughout much of the year, long-term meteorological

data and phenological observations at timberlines are

scarce for the Tibetan Plateau (Liu et al. 2011; Liu and Luo

2011; Wang et al. 2012b). Alternatively, Liu et al. (2006a,

b) evaluated the effect of variable growing season lengths

on tree growth up in the mountains, based on the climatic

data recorded at meteorological stations in low-elevation

river valleys. At the end of 2006, an automatic weather

station was set up at the timberline in the Sygera Mts. (Liu

et al. 2011). Its daily temperature record highly correlates

with that from the meteorological station at Nyingchi on

the valley bottom (Liang et al. 2011a).

The objectives of this study, therefore, are (1) to esti-

mate the variations of daily mean air temperature at the

timberline in the Sygera Mts. using the record from the

meteorological station at Nyingchi from 1960 to 2010, and

(2) to apply this model for assessing the variations of onset,

end and length of the growing season and testing their

effect on the growth of Smith fir high up on the mountains.

We challenged the hypothesis that an extended growing

season was responsible for an increased forest growth at

high elevations, as reported at high latitudes (Keeling et al.

1996; Myneni et al. 1997; White et al. 1999; Kimball et al.

2004).

Materials and methods

Study area and meteorological data

The study area, characterized by a humid climate, is

located between 4,280 and 4,400 m a.s.l. in the Sygera

Mts. (29�100–30�150N, 93�120–95�350E) on the southeast-

ern Tibetan Plateau. The South Asian monsoon reaches up

there through the valley of the Yarlung Zangbo River,

resulting in ample summer rainfall.

The closest meteorological station at Nyingchi (Linzhi)

(29�340 N, 94�280 E, 3,000 m a.s.l) is located in a river

valley on the western side of the Sygera Mts. (Fig. 1).

Based on the records from 1960 to 2010, the average sum

of annual precipitation is 674.4 mm, of which 71 % fall

from June to September. July (mean temperature of

15.9 �C) and January (0.6 �C) are the warmest and the

coldest month, respectively.

The automatic weather station (AWS) (Campbell

CR1000) at the upper timberline (29�39.4200 N, 94�42.4270

E, 4,390 m a.s.l.) of the Sygera Mts. is in operation since

November 2006 (Liu et al. 2011) (Fig. 1). The annual mean

air temperature varied from 0 to 0.8 �C since 2007, and

July (7.9 ± 0.5 �C) was the warmest month. Mean annual

precipitation was 871.3 mm (Liu et al. 2011). This AWS

has a linear distance of around 30 km to the closest

meteorological station at Nyingchi on the valley bottom.

Modeling air temperature at the timberline

A linear regression function, using the daily mean air

temperatures at Nyingchi (as independent variable) and at

Fig. 1 Map showing the

location of the meteorological

station at Nyingchi on the river

valley bottom and of the

automatic weather station

(AWS) at the upper timberline

in the Sygera Mts., southeastern

Tibetan Plateau, and location of

the study area within the

Tibetan Plateau (inset)
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the AWS (as dependent variable), both from 2007 to 2010,

was developed to reconstruct the daily mean air tempera-

ture for the timberline. The trustability of our transfer

model was evaluated by splitting the entire period of

1,461 days into two sub-periods for separate calibration

and verification. Pearson’s correlation coefficient (r) and

the reduction of error (RE) were applied to test the model.

Definition of the growing season

Three methods are mainly applied to determine the length

of the growing season (GSL): phenology, normalized dif-

ference vegetation indices (NDVI) from satellite remote

sensing data, and surface air temperature (Myneni et al.

1997; Chmielewski and Rötzer 2001; Walther and

Linderholm 2006; Čufar et al. 2012). But for the upper

timberline of the Tibetan Plateau, there are basically no

long-term phenological observations (Wang et al. 2012b).

Moreover, due to a low spatial resolution of the NDVI

dataset, it is difficult to detect long-term phenological

changes along the evergreen coniferous timberlines.

Alternatively, the growing season can be defined using the

daily mean air temperature, at which growth can theoreti-

cally take place (Liu et al. 2006a, b; Walther and Linder-

holm 2006). At high elevations or latitudes, air temperature

above a certain threshold is among the main factors to

initiate tree growth (Holtmeier 2003; Körner 2003). A daily

mean air temperature of 5 �C is widely employed to

determine the growing season, in particular for mid and

high latitudes (Jones and Briffa 1995; Walther and

Linderholm 2006). As shown by Shen et al. (2012) for

temperate China, the growing season at present starts by

8.4 days earlier and ends by 5.7 days later, resulting in a

14.1 day extension, as compared to 1960.

Here, we determined the onset (GSO) and the end (GSE)

of the growing season by the first and last day of the year

(in terms of Julian days) when the mean daily air temper-

ature equals or exceeds, respectively falls below, ?5 �C for

at least 5 days.

The effects of GSO, GSE, and GSL on the radial

growth of Smith fir

Smith fir (Abies georgei var. smithii), growing along an

elevation gradient from 3,300 to 4,400 m a.s.l., is a dom-

inant tree species in the Sygera Mts. We selected a regional

tree-ring width ‘‘standard’’ chronology (RC) assembled

from four Smith fir timberline sites (Liang et al. 2009) as

dependent variable. As independent variables, we took the

annual values of the GSO, GSE, GSL as well as of the

summer (Jun–Aug) temperature from 1960 to 2010. Then,

we compared the dependent variable with each of the

independent variables by means of Pearson’s correlation.

Furthermore, a path analysis was used to examine direct

and indirect effects of the GSO, GSE, GSL, and summer

(Jun–Aug) temperature on the radial growth of Smith fir

(RC) from 1960 to 2006.

Results

Daily mean air temperature at the timberline

The linear regression function developed from the 4 years

of available daily mean air temperature data from the tim-

berline weather station and from Nyingchi at the val-

ley bottom was TTimberline ¼ �8:851þ 0:960� TNyingchi .

Despite this short period for calibration, a high agreement of

r2 = 0.91 (p \ 0.001) between the observed and the sim-

ulated daily mean air temperature at the upper timberline

was evident from 2007 to 2010 (Fig. 2). Such high corre-

lation partly resulted from the annual periodicity in the data.

But according to Liang et al. (2011a), a strong linkage did

exist even after removing the influences of these cycles.

Based on the model from 2007 to 2009, the simulated and

the measured daily mean temperatures at the timberline in

2010 are highly correlated (r = 0.97, RE = 0.93). Alter-

nately, the model based on the data from 2008 to 2010 is

able to well-predict the variations of the daily mean tem-

perature in 2007 (r = 0.96, RE = 0.92). All in all, the

model showed a confident skill for prediction.

Trends of precipitation and temperature at timberline

Precipitation from February to May slightly increased (not

significant) at Nyingchi from 1960 to 2010 (Fig. 3a),

suggesting some more early-spring snowfall at the tim-

berline. Monthly mean air temperature from May to June
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Fig. 2 Comparison between observed and simulated daily mean air

temperatures at the timberline of the Sygera Mts. from 2007 to 2010
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and from August to September significantly increased by

1.4 and 1.0 �C, respectively, from 1960 to 2010 at the

timberline (Fig. 3b).

Trends of the GSO, GSE, and GSL at timberline

From 1960 to 2010, the GSL significantly increased by

21.2 days (Fig. 4a). Whereas the GSO was advanced by

6.6 days (not significant) (Fig. 4b), the GSE was signifi-

cantly delayed by 14.6 days (Fig. 4c). The average air

temperature during the growing season at the timberline

was 6.0 �C and has significantly increased by 0.9 �C

(Fig. 4d). On average over the last 50 years, the GSL

amounted to 94 days, the GS (growing season) started in

early June and ended in early September.

The GSO is negatively correlated with the mean air

temperature from May to June (r = -0.59, p \ 0.001),

whereas the GSE is positively correlated with the mean air

temperature from August to September (r = ?0.55,

p \ 0.001). The GSL is positively correlated with the mean

air temperature from June to August (r = 0.39, p \ 0.01).

The effects of GSO, GSE, and GSL on the radial

growth of Smith fir

Summer temperature (r = 0.57, p \ 0.001) and the GSE

(r = 0.34, p \ 0.01) were both positively correlated,

whereas the GSO and GSL were not at all correlated with the

regional tree-ring width chronology (RC). According to the

path analysis, summer temperature (r = 0.55, p \ 0.001)

exhibited the highest direct effect on RC, whereas the direct

effects of the GSO and GSE were negligible. Due to a strong

collinearity between GSE and GSL, the same holds true for

the GSL. Thus, among the independent variables, only

summer temperature showed a significant and direct effect

on the radial growth of timberline Smith fir.
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Discussion

Trends of the growing season

In our study area, the conspicuous extension of the growing

season during the past 50 years is more attributed to a

significant delay of its end than to an advance of its onset.

This is consistent with other reports for China (Chen et al.

2005; Liu et al. 2006a, b; Jiang et al. 2011) and for North

America (Chmielewski and Rötzer 2001; Tucker et al.

2001; Zhu et al. 2012).

The slight but non-significant advancement of the onset

of the growing season at the timberline may result from an

opposing interaction between increasing snowfall and ris-

ing temperature. An early onset is most likely due to a

higher late winter/spring temperature (Chmielewski and

Rötzer 2001; Karlsen et al. 2007; Seo et al. 2008) and a

reduced amount of snow cover (Groisman et al. 1994;

Körner and Paulsen 2004). A delayed onset of the growing

season, in contrast, may in some mountain areas and in

continental northern regions result from an increased

amount of snowfall (Kozlov and Berlina 2002; Shutova

et al. 2006; Høgda et al. 2007).

Effects of GSO, GSE, and GSL on the radial growth

of Smith fir

The obvious variations in GSO, GSE, and GSL did not

significantly affect the radial growth of Smith fir. This

disagrees with studies at high latitudes where a recent

extension of the GSL is considered to be responsible for an

increased forest growth (Keeling et al. 1996; Myneni et al.

1997; White et al. 1999; Kimball et al. 2004). In our case,

the GSE has delayed significantly and is now ending in

early September. Large-scale observations at high eleva-

tions and latitudes assure that the cambium activity ends

already in mid-August, even though temperature is still

favorable for growth (Rossi et al. 2008). It is also the same

case for Smith fir in the Sygera Mts. (Li et al. 2012). As

suggested by Piao et al. (2009), autumn warming does not

favor the net carbon uptake in northern temperate and

boreal forests. Thus, it is reasonable that an extended GSL,

resulting mainly from a delayed GSE, would not leave a

clear fingerprint in the growth of timberline trees in the

Sygera Mts.

According to the path analysis, mean summer temper-

ature (Jun–Aug) is the only significant limiting factor for

the radial growth of timberline Smith fir. This is in line

with other studies in southeastern Tibet (Bräuning and

Mantwill 2004; Liang et al. 2009, 2010; Zhu et al. 2011;

Wang et al. 2012a). As we expected, tree-ring width at

timberlines is still a reliable proxy for summer temperature

and hence suited for a straightforward reconstruction of

temperature on the southeastern Tibetan Plateau. In despite

of our ongoing efforts (Liu et al. 2011; Li et al. 2012;

Wang et al. 2012b), long-term monitoring of microclimate

and phenology of Smith fir at the timberline in the Sygera

Mts. is essential to gain clear evidence about the impacts of

the observed warming trend on tree phenology and growth.

Acknowledgments This study was supported by the Knowledge

Innovation Program, the ‘‘Strategic Priority Research Program—

Climate Change: Carbon Budget and Relevant Issues’’ of the Chinese

Academy of Sciences (KZCX2-Y W-QN 111, XDA05090311) and

the National Natural Science Foundation of China (41130529). We

thank the Southeast Tibet Station for Alpine Environment, Observa-

tion and Research, Chinese Academy of Sciences for the great support

of fieldwork, and the communicating editor (Prof. Dr. Achim Bräu-
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