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Abstract Quercus aquifolioides Rehder & E.H. Wilson,

an evergreen alpine and subalpine species, occupies a wide

range of habitats in the Wolong Nature Reserve, south-

western China. We measured age-related carbon (C) and

nutrient (N, P, K, Mg and Ca) contents, C/N, carbon iso-

tope composition (d13C) and specific leaf area (SLA) in the

leaves and branches of Q. aquifolioides trees along an

altitudinal gradient ranging from 2,000 to 3,600 m. The

results showed that both age and altitude significantly

affected the morphological and physiological properties of

Q. aquifolioides. Young tissues possessed higher contents

of N, P, K and Mg, lower Ca contents, both on a dry mass

basis (subscript ‘‘M’’) and on a unit area basis (subscript

‘‘A’’), and lower C/N and d13C values than did the old

ones. The levels of NM and d13C increased with increasing

altitude above 2,800 m, but decreased with increasing

altitude below 2,800 m. In contrast, C/N and SLA showed

opposite patterns, and other nutrient contents, including

PM, KM, CaM and MgM, exhibited irregular changes with

elevation. On the other hand, d13C was positively corre-

lated with NM in both leaves and branches, and negatively

correlated with SLA in leaves along the altitudinal

gradient. Our results also showed that both the MgM level

of leaves and the CaM level of branches, besides the

functional correlations between the NM level and the

structure of leaves, are responsible for or accompanied by

variation in d13C. In addition, d13C was negatively corre-

lated with C/N in both leaves and branches along an alti-

tudinal gradient. It follows that high-altitude plants achieve

higher water use efficiency (WUE) at the expense of

decreasing nitrogen use efficiency (NUE, derived from

C/N), whereas plants at 2,800 m can maintain relatively

higher NUE but lower WUE. These characteristics proba-

bly reflect the physiological potential of Q. aquifolioides

for vigorous growth and metabolism at the optimum alti-

tude (around 2,800 m). With increasing distance from the

optimum altitude, NUE decreases. The observed intra-

specific variation in the trade-off between WUE and

NUE may partially explain the altitudinal distribution of

Q. aquifolioides in relation to moisture and nutrient

availability.

Keywords Age � Altitude � Carbon isotope composition �
Nutrients content � Specific leaf area � Quercus
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Introduction

Carbon isotope composition (d13C) of plant tissues pro-

vides an integrated measurement for internal physiological

and external environmental properties that influence pho-

tosynthetic gas exchange over the time when the carbon is

fixed (Anderson et al. 1996; Brodribb and Hill 1998).

Owing to its sensitivity to environmental constraints, d13C

is now widely used to assess the effects of changing cli-

matic conditions on plant ecophysiology. A great and

Communicated by A. Gessler.

C. Li (&) � C. Wu � B. Duan

Chengdu Institute of Biology, Chinese Academy of Sciences,

P.O. Box 416, 610041 Chengdu, China

e-mail: licy@cib.ac.cn

H. Korpelainen

Department of Applied Biology, University of Helsinki,

P.O. Box 27, 00014 Helsinki, Finland

O. Luukkanen

Viikki Tropical Resources Institute, University of Helsinki,

P.O. Box 27, 00014 Helsinki, Finland

123

Trees (2009) 23:1109–1121

DOI 10.1007/s00468-009-0354-8



consistent increase in d13C with altitude has been previ-

ously observed in many species (Marshall and Zhang 1994;

Hultine and Marshall 2000; Li et al. 2004). Much effort has

been made in the search for sources of variation in d13C in

plant tissues along environmental gradients. Correlations of

d13C with various abiotic factors over altitude gradients

have been reported, including soil moisture (Sun et al.

1996), air temperature (Panek and Waring 1995), atmo-

spheric CO2 concentration (Ehleringer and Cerling 1995)

and evaporative demand (Marshall and Zhang 1994).

Compared with the extensive characterizations of the

effects of abiotic factors on d13C, much less is known on

how nutrient availability and d13C interact. Studies on the

relationship between leaf nutrient concentration and d13C

are still limited to N and exclude other nutrients (Saurer

et al. 1995; Tsialtas and Maslaris 2006). In addition, to

date, there have been only few detailed comparisons of

nutrient characteristics of plant tissues of different ages in

high-altitude regions. However, such knowledge of altitude

effects is critical to our understanding of the potential of

trees of different ages to respond to climate change, which

can affect nutrient contents of plants by affecting soil

moisture, biological activity of soil and plant growth.

As d13C reflects the relationship between the photo-

synthetic demand and diffusive (stomatal) supply of CO2

(Sparks and Ehleringer 1997; Xu et al. 2000; Weih 2001;

Hamerlynck et al. 2004), the use of stable isotopes provides

fundamental insights into the interactions between the

nutrients and ecophysiological processes of plants. Nitro-

gen (N) is an essential nutrient, which plants require in

great quantity and the lack of which often limits growth. It

has been positively associated with photosynthesis (Grassi

and Minotta 2000) and chlorophyll pigment content (Major

et al. 2007). Effects of phosphorus (P) on photosynthetic

metabolism have been studied at many different levels,

such as the effects of orthophosphate on Calvin cycle

enzymes in vitro (Leegood et al. 1986). Potassium (K) is

involved in photosynthesis in several ways, e.g., in the

functioning of stomata, in ATP synthesis as a counter ion to

the light-induced proton flux across the thylakoid mem-

branes of chloroplasts, in phloem loading, and in phloem

transport by creating osmotic pressure to drive mass flow in

sieve cells (Marschner 1995). Calcium (Ca) is involved in

the regulation of turgor pressure (Takagi and Nagai 1992)

and is thus important in water loss regulation. Moreover,

studies have demonstrated the importance of Ca2? in the

regulation of stomatal closure (Atkinson et al. 1990). These

properties mean that calcium plays an important role in

water use efficiency (WUE). Furthermore, magnesium

(Mg), which occupies the center of the porphyrin nucleus

of the chlorophyll molecule, is important in the photo-

synthetic pathway. It is an activity modulator of the RuBP

carboxylase enzyme, which catalyzes the fixation of

carbon. In brief, nutrient availability is of a special interest

in respect to carbon isotope composition, as different

nutrients influence d13C through their effects on photo-

synthetic capacity and stomatal conductance.

Quercus aquifolioides Rehder & E.H. Wilson, an

endemic woody plant species in China, is widely distrib-

uted in the Yunnan and Sichuan provinces, southwestern

China (Yang 1990; Xu and Guan 1992; Zhou and Guan

1992). Although it is mainly restricted to sunny, south-

facing slopes, its large range of habitats across different

elevations implies remarkable adaptation to different

environments. Q. aquifolioides plays a very important role

in preventing soil erosion and soil water loss, in regulating

climate and in retaining ecological stability (Xu and Guan

1992; Zhou and Guan 1992). In the Wolong Nature

Reserve, the species form clonal shrub stands and pure

evergreen broad-leaved forests. It has been reported that

the growth, spatial pattern and population structure of

Q. aquifolioides are closely related to altitudinal gradients

(Liu et al. 2006). Some morphological and physiological

properties of leaves appear to change non-linearly along

increasing altitudes (Li et al. 2006). However, the pattern

of age-related changes in the nutrient content and d13C

along an altitudinal gradient is unknown. Therefore, in the

present study, we measured age-related nutrient contents

and d13C in the leaves and branches of Q. aquifolioides

growing along an altitudinal gradient. Our specific objec-

tives were to: (1) elaborate variation in nutrient contents,

carbon isotope composition and specific leaf area (SLA) in

leaves and branches, as associated with age and altitude,

and (2) analyze the age-related relationship between d13C

and the nutrient contents and SLA.

Materials and methods

Site description

The study was conducted in the Balang Mountain in the

Wolong Nature Reserve (200,000 ha; 1028520–1038240E;

308450–318250N), which is located on the southeastern

slope of the Qionglashan Mountain at the upper reaches of

the Minjiang River in the southeastern Qinhai-Tibet Pla-

teau and which has a priority to protect the giant pandas

and forest ecosystems (Fig. 1). The mean annual temper-

ature at the Wonglong Field Station (2,800 m) is 8.4�C.

The mean monthly temperature is highest in July (17.0�C)

and lowest in January (-1.7�C). Annual precipitation

averages 862 mm with 68% of precipitation occurring

between May and September. In winter, precipitation is

usually in the form of snow. There are about 271 frostless

days during the year. The types of soil include mountain

yellow loam soil, mountain gray cinnamon soil, mountain
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cinnamon soil, mountain brown soil, mountain brown

podzolic soil and alpine meadow soil from bottom to peak,

respectively, according to Chinese soil classification

(Chinese Soil Taxonomy Research Group 1995).

Sampling

During summer 2003, samples were collected on the south-

facing slopes of the Balang Mountain at a 400-m altitudinal

interval along an altitudinal gradient (2,000–3,600 m). The

gradient represents the altitudinal range of pure Q. aqui-

folioides stands in this area. Three temporary plots were

established randomly 50–100 m away from each other at

each altitude. We chose sample plots with similar slope,

elevation, topographic position and climate in order to

minimize, as much as possible, the impact of other envi-

ronmental factors except altitude. The sample plots were

chosen at each altitude to represent a typical stand struc-

ture: a pure Q. aquifolioides plantation with stand density

of 14,600 trees ha-1, canopy density of 0.8 and average

height of 2.9 m. The main accompanying species of the

shrub layer were Cotoneaster dielsianus, C. horizontalis,

Rosa moyesii and Deyeuxia scabrescens. Viola biflora,

Polygonum viviparum and Potentilla saundersiana were

the main species of the herb layer with a coverage of 40%,

while Pleurozium schreberi and Rhytidiadelphus triquetrus

were the main species of the bryophyte layer with a cov-

erage of 40%. The soil types at the five sites are brown soil

with pH values of 6.2–6.9 and similar fertility. The

geographic position of each plot was recorded using a

Magellan GPS Field PRO VTM (Garmin, Kansas, USA).

Within the plots, each plant was located with the precision

of 5 cm within X–Y coordinates, using a measuring tape.

Height, the number of stems at ground level, and the basal

diameter were recorded for only live ramets larger than

0.3 m in height. The basal diameter was measured to the

nearest 0.25 cm as close to the ground level as possible.

Ramets of average size were selected as standard trees in

each plot. The average heights of the ramets at each alti-

tude were 1.83, 2.21, 2.62, 1.77 and 1.19 m, respectively.

In total, ten trees at the growth stage were randomly

selected at each altitude for sampling. Five leaves were

randomly collected from the south side of the crowns and

measured. After felling, leaves and branches were sorted

according to their age (1 and 2 years old for leaves and

1–4 years old for branches). Fully mature leaves of the

present growing season were regarded as 1-year-old leaves.

The ages of leaves and branches were determined by using

marks from overwintering buds on the stem and by

counting back the internodes from the tip of the stems.

Specific leaf area

Leaf area and dry weight of the leaf samples were deter-

mined. Leaf area was measured using a leaf area meter

(CI-203, CID, USA). Leaf samples were dried (70�C, 48 h)

to constant weight and weighed. The SLA (the ratio of one-

sided leaf area to dry weight, SLA) was then calculated.

Fig. 1 Map of the study area in

southwestern China (triangles
indicate the sample sites)
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Nutrient analysis

All age-related leaf and branch samples were ground and

passed through a 20 mesh screen after being first dried at

80�C for 36 h. The total concentrations of nitrogen (N) and

organic carbon (C) were determined by the semi-micro

Kjeldahl method (Mitchell 1998) and the rapid dichromate

oxidation technique (Nelson and Sommers 1982), respec-

tively. The total C to N ratio (C/N) (determined for the

whole plant) was calculated as an estimate for the long-

term nitrogen use efficiency (NUE) (Livingston et al.

1999). Total P was determined by colorimetrical blue of

molybdate, and total K was determined by flame photom-

etry. Ca and Mg were assayed by an atomic absorption

spectrophotometer (Agrochemistry Commission and Soil

Science Society of China 1983). The nutrient content of

leaves per unit dry mass (subscript ‘‘M’’) was expressed as

gram nutrient per kilogram leaf dry mass, and the nutrient

content per unit of leaf area (subscript ‘‘A’’) was leaf

nutrient content per unit dry mass divided by SLA.

Carbon isotope composition

The abundance of stable carbon isotopes in the leaf and

branch samples was determined as described by Hubick

et al. (1986). Oven-dried samples were finely ground, and

the relative abundances of 13C and 12C were determined

with an isotope ratio mass spectrometer (Finnigan MAT

Delta-E). d13C values were expressed relative to the

international measurement standard VPDB. The overall

precision of the delta values was 0.1%, as determined by

repetitive measurements of standard material.

Statistical analyses

Altitude and age were used as treatments in the analyses of

variance (ANOVA). Pearson’s correlation coefficients

were calculated to determine the relationships between

variables. Partial correlation was used to exclude the pos-

sibility that the correlation between nutrient content and

d13C was due to the impact of altitude or age, or both.

Statistical analyses were conducted with SPSS 11.0 for

Windows statistical software package.

Results

Changes of nutrient contents and d13C with age

of leaves and branches

Age significantly affected SLA and all physiological

properties of leaves and branches of Q. aquifolioides, and

the interactions between age and altitude significantly

affected the contents of N, K, P and Ca both on a dry mass

basis (subscript ‘‘M’’) and on a unit area basis (subscript

‘‘A’’) (Figs. 2, 3, 4). Compared with old leaves, young

leaves had higher SLA) (Fig. 2). In both leaves and bran-

ches of the same altitude, C/N and the carbon isotope

composition (d13C) were lower in the young tissues when

compared to the old ones (Fig. 2). The N, P, K and Mg

contents on a dry mass basis and on a unit area basis were

generally higher in the young tissues than in the old ones,

whereas an opposite pattern was observed for the CaM and

on CaA (Figs. 2, 3, 4). The CM content showed a tendency

to be higher in the old leaves than in the young ones,

whereas it varied irregularly with age in branch samples

(Fig. 2).

Variation of nutrient contents and d13C in leaves

and branches at different altitudes

Except for the C content of branches, altitude significantly

affected all variables in leaves and branches (Figs. 2, 3, 4).

In both leaves and branches of the same age, the d13C and

NM increased with altitudes above 2,800 m, but decreased

with increasing altitudes below 2,800 m. In contrast, C/N

showed opposite patterns (Fig. 2). However, other nutrient

contents, including P, K, Ca and Mg on a dry mass basis,

exhibited irregular changes in response to elevation

(Fig. 3). The nutrient content of leaves on a unit area basis

was more regular. The CA, NA, CaA and MgA contents of

leaves first decreased, but then increased with increasing

altitude, with the lowest levels occurring at 2,800 m. The

PA and KA contents of leaves changed little with increasing

altitudes below 2,800 m, but promptly increased at above

2,800 m (Fig. 4).

Relationships between nutrient contents and d13C

in leaves and branches

When partial correlations were used to statistically remove

the influence of both age and altitude in leaves, d13C was

positively correlated with NM (P \ 0.001) and PM

(P \ 0.05) and negatively correlated with C/N (P \ 0.001),

SLA (P \ 0.001), KM (P \ 0.05) and MgM (P \ 0.01); C/N

was positively correlated with SLA (P \ 0.001) and KM

(P \ 0.001), SLA was positively correlated with KM

(P \ 0.001) and MgM (P \ 0.05) and negatively correlated

with NM (P \ 0.001), and all nutrient contents per unit area

were positively correlated with each other (Table 1-a). Both

age and altitude affected the relationships between nutrient

contents and d13C. However, correlation between d13C and

MgM showed little change besides that between d13C and

SLA. In addition, correlations among nutrient contents per

unit area (subscript ‘‘A’’) tended to be steadier than those per

unit dry mass (subscript ‘‘M’’) (Table 1b).
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Fig. 2 Age-related carbon (C)

and nitrogen (N) contents per

dry mass, C/N, carbon isotope

composition (d13C) and specific

leaf area (SLA) of Q.
aquifolioides along an

altitudinal gradient. Values are

means ± SE, n = 3. P values

(ANOVA) are denoted as

follows: Pa, altitude effect; Py,

age effect; Pa9y, altitude 9 age

interaction effect
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When partial correlations were used to statistically

remove the influence of both age and altitude in bran-

ches, d13C was positively correlated with NM

(P \ 0.001) and CaM (P \ 0.001) and negatively corre-

lated with PM (P \ 0.01) and C/N (P \ 0.001), NM was

positively correlated with KM (P \ 0.05), CaM

(P \ 0.001) and MgM (P \ 0.01), and C/N was nega-

tively correlated with CaM (P \ 0.001) (Table 2-a). Both

age and altitude affected the relationships between

nutrient contents and d13C in branches. However, the

correlation between d13C and CaM was less affected in

branches (Table 2-b).
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Fig. 3 Age-related phosphorus
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along an altitudinal gradient.

Values are means ± SE, n = 3.

P values (ANOVA) are denoted

as follows: Pa, altitude effect;

Py, age effect; Pa9y,

altitude 9 age interaction effect
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Discussion

Variation in the nutrient content, carbon isotope

composition and SLA associated with age

As the whole plant is composed of tissues of different ages,

in which the nutrient contents are not evenly distributed,

the lower accumulation of N, P, K and Mg, both on a dry

mass basis and on a unit area basis, with increasing leaf age

can be explained by the nutrient availability and the

mobility within the trees (Miller et al. 1979; Saur et al.

2000; Zas and Serrada 2003). It has also been reported that

the contents of these nutrients are generally highest in the

actively growing parts of the trees (e.g., leaves) and lowest

in the structural and not actively growing parts (e.g., stem

wood) (Wang et al. 1996; Wang and Klinka 1997; Laclau

et al. 2001). C/N has been used to estimate the long-term

NUE (Livingston et al. 1999), as this ratio indicates the

amount of carbon fixed per unit nitrogen (Patterson et al.

1997; Chen et al. 2005). In our study, C/N increased with

the age of tissues, which can be accounted for by both

enhanced C and reduced N, as shown in Fig. 2. Although it

has been suggested that NUE declines with the age of

tissue (Escudero and Mediavilla 2003), we observed a

slight increase in NUE with aging. This ensemble of age

effects is consistent with the hypothesis that tissue aging

not only represents deterioration, but also resource redis-

tribution (Field and Mooney 1983). In addition, the higher

C/N of branches, when compared to that of leaves, is

expected to be due to the larger amount of wood and

associated C-rich storage molecules and lignin in branches.

Our results confirmed the existence of a significant age

effect on d13C. Our data showed that old leaves are enri-

ched in d13C, which suggests a higher assimilation rate or

lower stomatal conductance, or both, in old leaves.

Although there is no conclusive explanation, we believe

that the most likely explanation for the old leaves being

enriched in d13C is the combined effect of nutritional status

(Ziegler 1995) and morphological difference (England and

Attiwill 2006), as indicated by different SLA, but the
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altitudinal gradient. Values are

means ± SE, n = 3. P values
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contribution of old versus new carbon may also be relevant.

Microenvironmental effects are not an explanation for

relatively higher d13C in old leaves (D’Alessandro et al.

2004), because microenvironment was almost constant for

old and younger leaves. We also observed that there is a

consistent trend of more negative d13C values in leaves

when compared to branches. Similar patterns have been

observed in a range of other studies (Terwilliger et al.

2001; Scartazza et al. 2004; Brandes et al. 2006; Peuke

et al. 2006). On one hand, this may be a result of a higher

lipid content in the membrane-rich chloroplasts, as it has

been reported that lipids are depleted in 13C compared with

organic matter, acids, sugars and respired CO2 (Hobbie and

Werner 2004). On the other hand, during the transport of

organic C from leaves to roots, metabolic branching may

result in C isotope fractionation and 13C enrichment of

sugars in sink when compared with source tissues

(Damesin and Lelarge 2003; Franco et al. 2005).

Variation in the nutrient content, carbon isotope

composition and specific leaf area associated

with altitude

Our data showed that the responses of nutrient contents to

altitudinal gradients on a dry mass basis are non-linear

(irregular) with increasing altitude. The nutrient content of

leaves on a unit area basis was more regular. Thus, the

results on a dry mass basis are not as good a predictor of

the altitudinal gradient as the results on a leaf area basis.

Furthermore, because the leaf surface area is the interface

between the leaves and the environment for gas exchange

and light interception, it may be more appropriate in some

cases to express properties on a unit area basis (Tegischer

et al. 2002). An explanation for the occurrence of higher

NM and NA at high altitudes in comparison to those in the

lower altitude plants could be that a plant’s N content is

less diluted under cold conditions than under warm

Table 2 Correlation coefficients among carbon isotope composition (d13C), carbon (C) and nitrogen (N) contents, C/N and other nutrient

contents in branches of different ages in Q. aquifolioides trees along an altitudinal gradient

d13C NM PM KM CaM MgM CM C/N

(a)

d13C 0.642*** -0.404** -0.135 0.632*** 0.114 0.133 -0.767**

NM -0.408** -0.213 0.275* 0.605*** 0.345** 0.178 –

PM -0.515** 0.700*** 0.286* -0.410** -0.095 -0.159 0.195

KM -0.549** 0.852*** 0.821*** 0.057 0.270* -0.021 0.019

CaM 0.863*** -0.612** -0.688** -0.679** 0.008 0.129 -0.620**

MgM -0.652** 0.817*** 0.591*** 0.765*** -0.779** 0.166 -0.111

CM 0.345** -0.168 -0.248 -0.228 0.343** -0.210 –

C/N 0.428** – -0.725** -0.814** 0.652*** -0.793** –

(b)

d13C 0.590*** 0.057 0.102 0.746*** -0.2132 0.220 -0.673**

NM -0.500** -0.100 0.307* 0.592*** 0.230 0.202 –

PM -0.782** 0.715*** 0.397** -0.034 -0.310* -0.037 0.098

KM -0.712** 0.854*** 0.822*** 0.211 0.080 0.040 -0.024

CaM 0.863*** -0.659** -0.847** -0.762** -0.232 0.206 -0.594**

MgM -0.628** 0.862*** 0.719*** 0.837*** -0.764** 0.058 -0.037

CM 0.300* -0.183 -0.323* -0.263* 0.310* -0.174 –

C/N 0.512*** – -0.746** -0.817** 0.695*** -0.832** –

(a) Partial correlation coefficients on removing the influence of both age and altitude (upper triangle); correlation coefficients without removing

the influence of age and altitude (lower triangle)

(b) Partial correlation coefficients on removing the influence of age (upper triangle); partial correlation coefficients on removing the influence of

altitude (lower triangle)

‘‘M’’ subscript indicates nutrient contents per unit dry mass

d13C Carbon isotope composition; N, P, K, Ca, Mg and C represent nitrogen, phosphorus, potassium, calcium, magnesium and carbon

concentration, respectively; C/N ratio of carbon concentration to nitrogen concentration

* P \ 0.05

** P \ 0.01

*** P \ 0.001

‘‘–’’ Correlation analyses rejected because of functional connection
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conditions (Körner and Larcher 1988), particularly if low

temperatures and short growing seasons restrict shoot

growth more than N uptake by roots, resulting in a higher

concentration of N in leaves. Another explanation could be

the way high-altitude plants adapt to lower resource

availability (Chapin et al. 1990) and/or to higher abiotic

stress level (cold hardiness). The altitudinal gradient of the

trees examined in the present study was about 1,600 m.

Over such elevation transects, plants encounter a variety of

microclimates differing in temperature, soil moisture and

vapor pressure gradient, each of which may influence

nutrient contents. A species can persist in a heterogeneous

environment either by means of phenotypic plasticity or

genetic variation present among individuals (Scheiner and

Goodnight 1984). Considering that there is only little

genetic variation among Q. aquifolioides populations along

an altitudinal gradient (Zhang et al. 2006), it is reasonable

to attribute the observed altitudinal trends mainly to indi-

vidual phenotypic plasticity.

It has been previously observed that decreasing d13C

(Woodward 1986; Körner et al. 1988, 1991) or increasing

d13C with increasing elevation are good indices when

estimating long-term WUE (Marshall and Zhang 1994;

Hultine and Marshall 2000; Li et al. 2004). However, our

study involving an altitudinal gradient of 1,600 m showed

that d13C increased with increasing altitude above 2,800 m,

whereas it decreased with increasing altitude below

2,800 m. NUE (indicated by C/N) reached its maximum at

about 2,800 m in both leaves and branches. When water is

limited, the trade-off between WUE and NUE reflects the

ability of the tree to maximize the efficiency of the use of

resources. Our results showed that high-altitude plants

achieved higher WUE at the expense of decreasing NUE,

whereas plants at 2,800 m could maintain relatively higher

NUE but lower WUE. Such intra-specific variation in the

trade-off between NUE and WUE along an altitudinal

gradient may partially explain the altitudinal distribution of

the plants in relation to moisture and nutrient availability

(Patterson et al. 1997).

Age-related relationship among d13C, nutrient contents

and specific leaf area

We detected that d13C strongly correlated with NM and NA

along an altitudinal gradient, which corroborated with the

general pattern previously reported for other species

(Flanagan and Johnsen 1995; Xu et al. 2003). This result

also highlights the potential of using N contents of leaves

as a useful trait for indirectly selecting Q. aquifolioides

with improved WUE, when potential factors can be well

controlled in common garden assays. Both age and altitude

affected the relationships between nutrient contents and

d13C. It is interesting to note that MgM in leaves and CaM in

branches steadily and strongly correlated with d13C

regardless of whether it was with or without statistically

removing the influences of age or altitude, or both. Nev-

ertheless, the relationships between other nutrients (PM,

KM) and d13C were inconsistent due to either the age or the

altitude effect. The hypothesis of scaling of leaf nutrient

concentrations with d13C, due to nutrient-related alterations

in photosynthetic efficiency and stomatal conductance does

not completely explain why other nutrients, such as PM and

KM, did not show consistent relationships with d13C. PM

and KM can be involved in photosynthesis at various levels

that would have implications for d13C. When we compared

the detected concentrations of elements across all altitudes

with data presented for Quercus aliena var. acuteserrata

(Liu et al. 2001) and other tree species (Shen and Liu

1998), it was revealed that there are high (near maximal)

concentrations of NM, and average concentrations of PM,

KM and MgM in branches, average concentrations of CaM

in leaves and low concentrations (around minimal) of MgM

in leaves and CaM in the branches. Such results may

indicate that low concentrations of nutrients present in only

functional cell compartments have the strongest relation-

ships with d13C, as reported in other studies (Wright et al.

2001), while the elements with high or average concen-

trations may fluctuate more strongly due to the presence of

non-metabolic storage. In fact, the nutrients in excess may

be stored in the vacuoles (Rebeille et al. 1983). On the

other hand, we found that the morphological responses,

expressed as SLA, hold steady correlations with d13C, NM

and MgM along altitudinal gradients. We suggest that the

adaptations to altitude in SLA, NM and MgM have become

constitutive and that these morphological and physiological

adaptations are those that influence physiological func-

tions, such as photosynthesis and stomatal conductance

and, hence, WUE (d13C). Therefore, the functional corre-

lations between the nutritional status and the structure of

leaves are responsible for altitudinal variation in d13C. We

propose that the potential factors causing an increase in

d13C at altitudes above 2,800 m are as follows: (1) with

water shortage resulting from damage to the cuticle by

wind, from cold hardness at high altitude or from limited

nutrients, stomatal conductance will decrease, (2) with

higher nitrogen contents, there is a greater demand for

carbon per unit leaf area, and (3) with thicker leaves (lower

SLA), internal diffusion limitations will increase. For

sclerophyllous evergreen species, as Q. aquifolioides, these

limitations in the mesophyll seem to be especially large

(Lloyd et al. 1992).

Although d13C, SLA and CM in both leaves and bran-

ches, as well as CA, MgM and MgA in leaves, responded to

the age and altitude in an independent way, which predicts

orthogonal effects between age and altitude. The data

presented here showed that the interaction of age and
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altitude affected most measured nutrients, the overall

consequence being that young tissues were more affected

by altitude than old tissues. This age effect was supported

by the fact that N, P, K and Ca contents, both on a dry mass

basis and on a unit area basis, responded to altitude with

much greater changes in the young tissues than in the older

ones. The different patterns of N, P, K and Ca contents with

altitude between young and old tissues suggest that, as well

as being affected by ecological factors, the nutrient con-

tents are related to the developmental stage. Variation in

the fitness of different aged tissues may have important

implications for understanding the potential of different

aged trees to respond to climate change in subalpine

mountainous regions.

Conclusion

The results from this study suggest that age-related changes

observed in nutrient contents and d13C in the leaves and

branches of Q. aquifolioides trees along altitudinal gradi-

ents in the Wolong Nature Reserve are a result of envi-

ronmentally induced responses in ecophysiological

processes. The detected responses to altitudinal gradients

showed that the altitude of about 2,800 m was the optimum

zone for Q. aquifolioides, as indicated by thinner leaves,

lower N concentration, higher NUE and more negative

d13C values. This information will contribute to the

understanding of the growth potential of Q. aquifolioides

and will assist in optimizing forest plantation management

and reforestation practices. As a plant ages, changes in

nutrient availability contribute to variation in WUE, NUE

and their trade-off. It is still not easy to interpret how

nutrient availability interacts to maximize instantaneous

carbon gain, and long-term carbon, water and nutrient use

efficiencies. Both the influence of altitude and age should

be considered in research on the physiological ecology of

plants. Moreover, our study showed that although a plant is

simultaneously exposed to multiple nutrient factors under

natural conditions, the strength of carbon isotope compo-

sition versus nutrient relationships may vary depending on

the availability of specific nutrients that are in relatively

short supply, such as MgM in leaves and CaM in branches.

Future research aiming to exhaustively explain the

observed altitudinal trends should involve direct measure-

ments of local environmental and physical variables

throughout the growing season to determine the main

variables responsible for variation in the physiological

activity of plants.
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