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Abstract The synergistic effects of irradiance and salinity
on leaf angle, the photochemical efficiency of photosys-
tem II and photosynthetic pigment composition of man-
groves were studied in a factorial experiment. Seedlings
of Aegiceras corniculatum (L.) Blanco (Myrsinaceae) and
Avicennia marina (Forstk.) Vierh var. australasica (Walp.)
Moldenke (Avicenniaceae) were grown under salinity treat-
ments (0, 5, 25, 50, 75, and 100% artificial seawater), in
full sunlight or under shade cloth (transmitting 30 or 70%
sunlight), during summer and autumn. Significant species’
differences and effects of salinity and growth irradiance
were found for key measures. Depressions in Fv/Fm due
to salinity and growth irradiance were chronic, they were
least in 25% seawater and in 30% sunlight, and greater
in low and high salinity, and higher irradiance. A diurnal
depression of Fv/Fm was superimposed on the chronic de-
pression, and was greater for Ae. corniculatum than Av.
marina. Increases in leaf angle; and increases in the size,
and de-epoxidation state of the xanthophyll cycle pigment
pool afforded protection from adverse effects of excess ex-
citation energy. Adverse effects of the highest salinities on
β,β-carotene and β,ε-carotene biosynthetic pathways were
suggested, particularly in Ae. corniculatum. The ecological
significance of differences in species’ extent and temporal
patterns of response are discussed.
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ochemical gradients may depend on species’ differences
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in physiological tolerances, including responses of photo-
synthesis to irradiance and salinity (Snedaker 1982; Ball
and Critchley 1982; Ball 1988; McKee 1995). It has been
hypothesised that species-specific strategies for photopro-
tection may determine canopy dominance (Lovelock and
Clough 1992), and differences in mangroves’ capacities for
photosynthesis and protective dissipation of excess excita-
tion energy along salinity gradients may impact on plant
performance and the distribution of species (Ball 1996).

Exposure to excess irradiance can lead to photoinhibi-
tion, which is characterised by a light-dependent reduction
in the intrinsic quantum yield of photosynthesis and a loss
of photosystem II (PSII) activity (Osmond 1994). Pho-
tosynthesis of mangrove leaves becomes light-saturated
at incident photon flux densities of 40% sunlight or less
(Ball and Critchley 1982; Andrews et al. 1984; Carter
et al. 1990; Cheeseman et al. 1991; Cheeseman 1994;
Youssef and Saenger 1998). Hence, irradiance may often
be excessive. In mangroves, photoinhibition occurs under
high irradiance in canopies in the field, but the degree
to which photoinhibition is sustained varies (Attiwill
and Clough 1980; Ball and Critchley 1982; Björkman
et al. 1988; Cheeseman et al. 1991, 1997; Kitao et al.
2003). There have been no laboratory-based studies of
photoinhibition under varying growth irradiance.

Photoprotection allows downregulation of the pho-
tosynthetic apparatus to balance light energy receipt
and use (Osmond 1994). In mangroves, inhibition of
zeaxanthin (Z) formation has been associated with more
sustained depression of Fv/Fm (the potential maximal
photochemical efficiency of photosystem II) in seedlings
(Demmig-Adams et al. 1989). Consistent with a key role
of the xanthophyll cycle in photoprotection, in mature
canopies pool sizes were lower in the shade compared
with sunlit leaves and in leaves with steeper angles,
and large pool size was accompanied by higher midday
de-epoxidation state (Lovelock and Clough 1992). Steep
angles of display in exposed leaves also help maintain
photosynthetic efficiency (Björkman et al. 1988).

In mangroves, effects of increasing salinity on photosyn-
thetic carbon assimilation may be detrimental (Ball and
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Farquhar 1984; Sobrado 1999b), beneficial (Naidoo and
von Willert 1995; Werner and Stelzer 1990) or negligible
(Pezeshki et al. 1990). Salinity-dependent limitations to
photosynthetic carbon metabolism may increase the po-
tential for photoinhibition (Powles 1984). However, re-
sponses reported for mangroves vary. In field studies of
mature canopies, greater depressions of Fv/Fm in habitats
with hyposaline compared with seawater salinities (Naidoo
et al. 2002), contrast with no differences in Fv/Fm in
habitats with hypersaline compared with seawater salini-
ties (Sobrado and Ball 1999). Although glasshouse-grown
seedlings showed lower Fv/Fm when grown in 100% sea-
water compared with 10% seawater (Björkman et al. 1988),
another study found no significant effects on Fv/Fm of an
increase in the salinity of the sodium chloride solutions
in which seedlings were grown (Sobrado 1999a). There
have been no laboratory-based studies of photoprotection
under varying salinity in mangroves. However, a study of
mature canopies found no differences in xanthophyll cycle
pool size or de-epoxidation state in habitats with hyper-
saline compared with seawater salinities (Sobrado and Ball
1999).

My study (Christian 1999) tested the hypotheses of
Lovelock and Clough (1992) and Ball (1996), as stated
above. The study species Ae. corniculatum and Av. marina
are sympatric in southeastern Australia (West et al. 1985;
Busby and Bridgewater 1986), where they tend to domi-
nate mangrove communities in the upper and lower reaches
of estuaries, respectively (Clarke and Hannon 1970; Owen
1978). Usually, Av. marina occurs as a tree or shrub in the
overstorey, and Ae. corniculatum shrubs occur in monospe-
cific stands or as an understorey beneath Av. marina
(Christian 1999).

A factorial experiment was used to test three hypotheses:
(1) interactions between high light and adverse salinity
exacerbate photoinhibition, (2) this effect is greater in Ae.
corniculatum than Av. marina and (3) differences in leaf
display and chlorophyll (chl) and carotenoid composition
contribute to species-specific strategies of photoprotection
along salinity and light gradients.

Materials and methods

Plant material

Propagules of Ae. corniculatum and Av. marina were col-
lected in August and October 1993, respectively, at Cullen-
dulla Creek, Batemans Bay, New South Wales (35◦42′S,
150◦12′E). Propagules were grown in sand culture in 50%
(v/v) seawater, made by diluting artificial seawater with tap
water, in a glasshouse in Canberra (35◦18′S, 149◦12′E).
Day and night air temperatures were approximately 25◦C
and 15◦C, respectively, and seedlings received approxi-
mately 70% sunlight. When the first pair of leaves was fully
expanded and shedding of cotyledons commenced in Av.
marina, cotyledons remaining on Av. marina were removed.
Fresh weights of all seedlings were measured. Seedlings
were replanted in sand in perforated pots (140 mm diame-

ter, approximately 1 L volume). Each pot was placed in a
2-L tub and immersed in 50% seawater with added nutrient
solution (10% Hoagland’s; Hewitt 1966).

Experimental procedure

A split-plot experiment was conducted outdoors from
20 January to 1 May 1994. Restricted randomisation was
used. Three shade shelters were used in each of three north-
south oriented blocks. Shade treatments were achieved us-
ing no shading (100% sunlight) or shade-cloth transmitting
either 30 or 70% sunlight. Species (Av. marina and Ae.
corniculatum) and salinity treatment (0, 5, 25, 50, 75 or
100% seawater) were assigned to one of 12 positions in
each shelter. Three pots containing seedlings of similar
fresh weight were assigned to each position. Pots were
assigned to one of three harvests (H1: 0 days; H2: 52
days; and H3: 101 days), as part of a growth analysis study
(Christian 1999).

Once plants were positioned, salinities were brought to
treatment levels in increments of 10% seawater or less by
replacement of bathing solutions twice daily. Concentra-
tions of Hoagland’s solution were increased concurrently
to 30%. Thereafter, pots were aerated through a 16 mm mi-
crospray jet inserted in the sand. Solutions were topped-up
with tap water daily and were replaced weekly.

Conditions

Daily global solar radiation data for Canberra were
obtained from the Bureau of Meteorology (Radiation
Network Exposure Data). Photosynthetic photon flux den-
sities incident on a horizontal surface (PPFD) were mea-
sured with a quantum sensor (model 190s, LI-COR,
Lincoln, Nebraska) above the leading shoot apex of each
plant at intervals through the day on 9 February, 23 March,
and 21 and 27 April. Daily maximum and minimum air
temperatures in each shelter were recorded from 11 Febru-
ary 1994.

Leaf selection

For each H3 plant a fully expanded, north to west facing,
exposed leaf, which had developed under the experimental
treatment was tagged for all measurements. New leaves
were tagged when growth led to shading. Not all 108 plants
were tagged because under adverse treatments plants did
not grow enough new large leaves.

Chlorophyll fluorescence measurements

Chlorophyll fluorescence was measured in situ on sunny
days. On three days (2 February, 23 March, and 21 April)
I made consecutive one- to two-hourly measurements
throughout the day from predawn until dusk. Predawn and



598

midday measurements were also made on 28 April, con-
current with sampling for pigment analyses.

The dark-adapted minimum (Fo) and maximum (Fm)
chlorophyll fluorescence were measured with a field-
portable, time-resolving fluorimeter (Plant Efficiency
Analyser, Hansatech Instruments Ltd., King’s Lynn, Nor-
folk, UK). Leaves were first dark-adapted and then exposed
for 5 s to saturating red light. The ratio of variable to maxi-
mal fluorescence Fv/Fm, was calculated as (Fm−Fo)/Fm.
Measurements made predawn represent the true dark-
adapted state. During daylight, dark-adaptation was for
5 min, allowing relaxation of fluorescence quenching as-
sociated with thylakoid membrane energisation (Krause et
al. 1983; Demmig et al. 1987).

Leaf display and photosynthetic pigments

The midrib angle of each tagged leaf was measured with a
protractor and shot-line. Predawn and at midday, one to four
0.95 cm2 discs were punched from each leaf, frozen in liq-
uid nitrogen and stored at −80◦C. Discs were powdered in
liquid nitrogen and extracted for 5 min with 100% AR grade
acetone in the presence of NaHCO3. The solvent was then
diluted with water to 80% acetone and extracted for 10 min
more. The sample was centrifuged (5 min, 5,000 rpm, 2◦C)
and the supernatant collected and stored under N2(g) at
−80◦C.

Chlorophyll concentrations were determined by ab-
sorption spectroscopy (Ultraspec II spectrophotometer,
Pharmacia LKB, Uppsala, Sweden) using wavelengths
and extinction coefficients as in Porra et al. (1989). The
filtered (0.45 µm) supernatant was analysed for carotenoid
pigments using the high-performance liquid chromatog-
raphy (HPLC) method of Gilmore and Yamamoto (1991).
Solvent A1 (acetonitrile–methanol–Tris–HCl buffer 0.1 M
pH 8.0, 72:8:3) was used. Absorption was measured at
440 nm using a chromatograph with a variable wavelength
detector (Waters model 490). Spherisorb ODS-1 nonend-
capped columns (5 µm particle size, 250 mm × 4.6 mm,
Alltech Associates Aust. Pty. Ltd.) and guard columns
were used. Elution of pigments was as described in Roden
and Ball (1996). All sample injections were 40 µl. Pigment
concentrations were calculated using calibrations based on
standards (as described in Robinson et al. 1993).

The de-epoxidation state (DPS) of xanthophyll cycle
pigments, violaxanthin (V), antheraxanthin (A) and zeax-
anthin (Z) was calculated as (Z+0.5A)/(V+A+Z). The
xanthophyll cycle pool size (VAZ/chl) was calculated as
(V+A+Z)/(chl a+b).

Statistical analyses

Data were analysed using GenStat (5th edition, releases 3.1
through to 7.2, Rothamsted Experimental Station 1994 and
VSN International). The description of factorial models
is as in Wilkinson and Rogers (1973). Fixed effects were
Shade, Species, Salinity and Hour (where repeated mea-

sures are compared for two occasions). Random effects
were block, shelter, position and time.

Where the variance was heterogeneous the data scales
were transformed to equalise variances. In the case of
Fv/Fm, the constant 0.84 was taken as an upper limit and
when necessary, the following transformation was used:

f (Fv/Fm) = ln (0.84 − Fv/Fm) (1)

The data scale is important for determining whether syner-
gistic effects of treatment factors occur. For example, when
two factors show multiplicative effects (i.e., an interaction),
on a linear scale:

a = b × c (2)

transformation to a logarithm scale:

ln a = ln b + ln c (3)

makes the relationship additive.
For balanced data, analyses of variance were used. For

unbalanced data, linear mixed models were fitted using re-
stricted maximum likelihood estimation (REML; Patterson
and Thompson 1971). The full model was fitted and terms
were then successively dropped from nested submodels
where changes in deviance tests (χ2 test) were not signif-
icant (p<0.05), to arrive at the final, most parsimonious
sub-model. The analysis of deviance for the final model is
summarised (in the figure and table captions) as: the resid-
ual deviance (RD) and degrees of freedom (df) for the final
model; and the change in RD and df of the submodel when
each term was dropped, and its χ2 significance level.

Repeated measures made on different days were pooled
as there was no evidence for autocorrelation between dates
within a subject. Repeated measures made on more than
two occasions through the day (e.g., PPFD) were explored
by plotting the response through time. Where all subjects
showed consistent patterns, responses of each were mod-
elled by fitting nonlinear curves to the data (Payne et al.
1994). A summary measure was then derived for each fitted
curve, which was analysed as above.

Models of significant (p<0.05) treatment effects are pre-
sented graphically for the highest order factors and inter-
actions that were significant. For data that did not require
transformation, figures show the means and average stan-
dard errors. Where the variate was transformed, results are
presented as backtransformed means and 95% confidence
intervals [i.e., mean (lower CI, upper CI)]. Where all effects
were not significant the null model was fitted using REML
to obtain the correct error term, and the grand mean and
95% CI are given in the text.

Equations describing the relationships between Fv/Fm
and several measures of photoprotection were examined by
fitting linear mixed models to the data collected on 28 April.
Fixed effects of treatment factors (Shade, Species, Salinity
and Hour), three covariates (leaf angle, VAZ/chl and DPS),
and all possible two-way interactions were modelled
(random effects: block/shelter/position/time). The variates
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were transformed where necessary. Marginal predicted val-
ues of the response variate were estimated for given values
of the explanatory variates as in Welham et al. (2004).

Results

Experimental conditions

The mean daily global radiation over the experimental
period was 19.5 MJ m−2 day−1 (6.9, 32.1). The 30, 70
and 100% sunlight treatments, received PPFDs at midday
of 349 (283, 421), 927 (818, 1,043) and 1,263 (1,135,
1,398) µmol m−2 s−1; and total daily photon receipt of
11.3 (7.4, 16), 26.7 (20.5, 33.6) and 39.4 (31.8, 47.8)
mol m−2, respectively. There were no significant effects
of Shade on the maximum [26.9◦C (26.7, 27.1)] or min-
imum [8.65◦C (8.55, 8.75)] air temperatures within each
shelter.

Chlorophyll fluorescence

Repeated measurements throughout the day indicated that
Fv/Fm was reduced through the morning, and recovered in
the afternoon (data not presented). The minima for Fv/Fm
occurred at midday [1206 hours EST (1140, 1234)], and
the time of occurrence was not significantly affected by
any factor. Variation in Fo was large and differences with
time of day were not significant (data not presented).

Predawn, on average, Av. marina showed a 2% lower
Fv/Fm than Ae. corniculatum (Fig. 1a). However, at mid-
day on average, Ae. corniculatum showed an 11% lower
Fv/Fm than Av. marina. On average, Fv/Fm was 14% lower
in plants grown in full sunlight compared with 30% sun-
light (Fig. 1b). On average, compared with 25% seawater,
Fv/Fm was reduced by 7% in freshwater and 13% in 100%
seawater (Fig. 1c). Additive effects of shading and salin-
ity on log-transformed Fv/Fm data indicate multiplicative
effects on the original scale, and a greater adverse effect
of high growth irradiance under adverse salinity. The fre-
quent need for transformation of the Fv/Fm data indicates
that variation in this ratio was greatest when photoinhibi-
tion was greatest. This may be because of variation between
plants in the extent of resistance to photoinhibition, and/or
because of the low signal-to-noise ratio which arises when
chlorophyll fluorescence is most quenched.

Leaf display and photosynthetic pigments

Leaf angles were increasingly vertical with increasing
growth irradiance (Fig. 2a) and increasing salinity
(Fig. 2b), but did not differ significantly with species.
The salinity level did not affect the response to growth
irradiance. The total chl concentration per unit leaf area
was maximal in 25% seawater and decreased in high and
low salinity (Fig. 2c), but was not significantly affected by
shading, species or time of day. The molar ratio of chl a to
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Fig. 1 Effects of a Species.Hour (�RD=14.4, df=1), b Shade
(�RD=11.4, df=2), and c Salinity (�RD=15.4, �df=5) on Fv/Fm
in Ae. corniculatum and Av. marina seedlings grown in a three-way
factorial pot trial under three shading and six salinity treatments.
Backtransformed means and 95% CIs for the final linear mixed model
(residual deviance = 116.58, df=315) fitted to ln(0.84 – Fv/Fm) using
REML. Data for three dates (23 March, 21 and 28 April 1994) were
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Species.Salinity (�RD=18.37, �df=5) on xanthophyll cycle pool
size relative to total chlorophyll (VAZ/chl), . Backtransformed means
and 95% CIs for the final linear mixed model (residual deviance =
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b [3.07 (2.71, 3.43)] was not significantly affected by any
of the treatments.

Xanthophyll cycle pool sizes relative to chl increased
with increasing growth irradiance (Fig. 3a), due to an in-
crease in xanthophylls per unit leaf area (not presented).
Pool sizes in Av. marina were lowest in 25% seawater and
increased in lower and higher salinities (Fig. 3b). The two
species had similar pool sizes in 0–25% seawater; how-
ever, for Ae. corniculatum pool sizes increased and then
decreased with further increases in salinity. The salinity
response was partly driven by changes in chl per unit leaf
area (Fig. 2c); and Av. marina had greater concentrations of
xanthophylls per unit leaf area than Ae. corniculatum (data
not presented). The DPS increased at midday compared
with predawn (Fig. 4a and b). Aegiceras corniculatum had
lower DPS predawn and higher DPS at midday than Av. ma-
rina (Fig. 4a). At midday, DPS increased with increasing
growth irradiance (Fig. 4b). The DPS was higher in 100%
seawater than at other salinities (Fig. 4c).

The ratio of β-carotene (βC) to chl varied signifi-
cantly with salinity and time (Fig. 5a), but not species



601

Aegiceras Avicennia
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
a

 midday
 predawn

P = 0.004 average
SE

D
P

S

 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
P

S

20 40 60 80 100

Sunlight (%)

 midday
 predawn

P = 0.005 

average
SE

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
P

S

0 25 50 75 100

average
SE

Seawater (%)

P = 0.003

a

b

c

Fig. 4 Effects of a Species.Hour (�RD=8.127, �df=1), b
Shade.Hour (�RD=10.57, df=2), and c Salinity (�RD=17.62,
�df=5) on the de-epoxidation state of the xanthophyll cycle pig-
ments (DPS=[Z+0.5A]/[V+A+Z]). Significantly different means
from the linear mixed model (residual deviance = 255.08, df=102)
fitted using REML

0 25 50 75 100

25

30

35

40

45

50

55

60

average
SE

 midday
 predawn

P = 0.033

βC
/c

h
l (

m
m

o
l 

m
o

l-1
)

Seawater (%)

predawn midday
10

15

20

25

30

35

40

45

50

P = 0.03

95% CI

N
eo

/c
hl

 (
m

ol
 m

ol
-1
)

0 25 50 75 100

Seawater (%)

 

10

15

20

25

30

35

40

45

50

95% CI

P= 0.005

N
eo

/c
hl

 (
m

m
ol

 m
ol

-1
)

a

b

c

Fig. 5 Effects of a Salinity.Hour (�RD = 12.16, df = 5) on the ratio
of β-carotene to total chlorophyll (βC/chl). Significantly different
means from linear mixed model (residual deviance = 795.10, df=99)
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or shade treatment. Concentrations of βC per unit area
[9.76 µmol m−2 (7.73, 12.04)] showed no significant ef-
fects of any factors (for square-root transformed data). The
ratio of neoxanthin (Neo) to chl decreased at midday com-
pared with predawn (Fig. 5b). Ratios were highest in mod-
erate salinities and decreased in 100% seawater (Fig. 5c),
but did not differ significantly with species. These patterns
were associated with lower Neo concentrations per unit
leaf area (data not presented) at midday compared with
predawn, and in 100% seawater.

The ratio of lutein (L) to chl increased with increas-
ing growth irradiance and in shaded treatments ratios de-
creased at midday compared with predawn (Fig. 6a). In
Av. marina, ratios were lowest in 25% seawater and in-
creased in lower and higher salinities (Fig. 6b). The two
species had similar ratios in 0–25% seawater. In Ae. cor-
niculatum, ratios increased and then decreased with fur-
ther increases in salinity. These patterns were associated
with lower L concentrations per unit leaf area (data not
presented) at midday compared with predawn, in Ae. cor-
niculatum compared with Av. marina, and with increasing
salinity.
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Fig. 6 Effects of a Shade.Hour (�RD=7.094, �df=2), and b
Species.Salinity (�RD=17.26, �df=5) on the ratio of lutein to total
chlorophyll (L/chl). Backtransformed means and 95% CIs for linear
mixed model (residual deviance = 281.89, df=92) fitted to (L/chl
[mmol mol−1])1/2 using REML

Relationships between measures of photoinhibition
and photoprotection

Decreases in leaf angle, increases in xanthophyll cycle
pool size under high growth irradiance, and increases in
DPS, particularly in Ae. corniculatum, were associated
with decreases in Fv/Fm (Table 1). Hour affected only
the intercept and not the slope of these relationships and
Salinity had no significant effects. The models indicated
that for a given Ae. corniculatum seedling growing under
high irradiance, individuals with lower leaf angle, larger
xanthophyll cycle pool size and higher DPS had lower
Fv/Fm (Fig. 7). If the seedling was grown under low ir-
radiance the effect of pool size was less and if the man-
grove was an Av. marina seedling, the effect of DPS was
less.

Discussion

Photoinhibition in leaves developed under different
salinity and irradiance treatments

High growth irradiance led to sustained depressions in
Fv/Fm, consistent with depressions of Fv/Fm in sunlit
leaves compared with shaded leaves in mature canopies
of Ae. corniculatum and Av. marina (Björkman et al.
1988). Salinity extremes also led to persistent depressions
of Fv/Fm, consistent with at least 10% lower Fv/Fm for
seedlings of Av. marina grown in 100% seawater compared
with 10% seawater, under high irradiance (Björkman et
al. 1988). Consistent with Hypothesis 1, these effects of
high growth irradiance and salinity were multiplicative.
Such ‘chronic’ photoinhibition (sensu Osmond 1994) due
to high light and salinity in mangroves has been attributed
to a regulatory, protective increase in the rate constant
for radiationless energy dissipation in the light-harvesting
antennae (Björkman et al. 1988).

Sustained depressions in the photochemical efficiency
of PSII were greater in Av. marina than Ae. corniculatum,
contrary to Hypothesis 2. However, transient diurnal
reductions were superimposed on the sustained depres-
sions in Fv/Fm and were greater in Ae. corniculatum than
Av. marina. This transient component is consistent with
responses observed in leaves of Av. marina (Attiwill and
Clough 1980) and Rhizophora stylosa (Cheeseman et al.
1997) canopies in the field, and for glasshouse-grown
Avicennia germinans (Sobrado 1999b). Midday reductions
in the efficiency of PSII in high light were recovered
shortly after sunset (Cheeseman et al. 1997) or predawn
(Sobrado 1999b) and were thought to result from protective
downregulation rather than damage. The responses of
the two species, therefore, differ most in their temporal
pattern and lie on a continuum with Ae. corniculatum
showing responses more similar to the pattern of diurnal
photoinhibition observed by Cheeseman et al. (1997) and
Av. marina showing responses more similar to the chronic
photoinhibition observed by Björkman et al. (1988).
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Table 1 Coefficients of the linear mixed models describing the
relationships between the extent of photoinhibition and measures
of photoprotection under the imposed treatments on 28 April 1994.
Models were fitted using restricted maximum likelihood estimation
(REML). Coefficients are given for the final model (residual deviance
= 105.73, df=95). Variation in ln(0.84 – Fv/Fm) was explained by

Hour. �RD=33.05, �df=1, p<0.001), leaf angle (�RD=6.162,
�df=1, p=0.013), shading-dependent effects of the xantho-
phyll cycle pool size (Shade.[ln(100+VAZ/chl (mmol mol−1))];
�RD=11.64, �df=2, p=0.003) and species-dependent effects of the
de-epoxidation state (Species.DPS; �RD=22.48, �df=1, p<0.001)

Shade Species Hour Intercept Slope.[leaf
angle (◦)]

Slope.[ln(100+VAZ/chl
(mmol mol−1))]

Slope.[DPS]

30 Aegiceras Predawn −2.90 −0.006 −0.089 1.606
70 Aegiceras Predawn −2.52 −0.006 0.557 1.606
100 Aegiceras Predawn −2.68 −0.006 0.578 1.606
30 Avicennia Predawn −2.55 −0.006 −0.089 0.590
70 Avicennia Predawn −2.17 −0.006 0.557 0.590
100 Avicennia Predawn −2.33 −0.006 0.578 0.590
30 Aegiceras Midday −2.29 −0.006 −0.089 1.606
70 Aegiceras Midday −1.91 −0.006 0.557 1.606
100 Aegiceras Midday −2.07 −0.006 0.578 1.606
30 Avicennia Midday −1.94 −0.006 −0.089 0.590
70 Avicennia Midday −1.56 −0.006 0.557 0.590
100 Avicennia Midday −1.73 −0.006 0.578 0.590

Photoprotection mechanisms

Chlorophyll a/b ratios were typical of sun plants (Anderson
et al. 1988). Lower leaf chl content in salinity extremes
may represent a protective strategy in which the capture
of photons is reduced to match the capacity for energy
transduction and use, as has been suggested for sunlit leaves
of Xylocarpus granatum in the field (Kitao et al. 2003).
Lower chlorophyll may also reduce leaf absorptance and
enable avoidance of high leaf temperatures when stomatal
conductance is low (Havaux and Tardy 1999).

Steeper leaf angles under high growth irradiance and in
more saline treatments may be adaptive in avoiding ex-
posure to excess photons (Björkman et al. 1988) and leaf
temperatures (Andrews et al. 1984) when the sun is near
the zenith. Additive effects of shading and salinity on leaf
angle, and a small slope of the relationship between log-
transformed Fv/Fm and leaf angle suggest that temperature
was the more important causal driver.

My models (Table 1, Fig. 7) reflected the role of steep
leaf angles in avoiding photoinhibition, and a role for the
xanthophyll cycle in protective downregulation, and were
consistent with Hypothesis 3. The species- and shading-
dependent nature of the relationships presumably reflects
the importance of lumen pH and other factors in the de-
velopment of nonradiative dissipation and depression of
Fv/Fm (Gilmore and Yamamoto 1992, 1993; Gilmore and
Govindjee 1999; Müller et al. 2001). Nonlinear relation-
ships between reductions in Fv/Fm and the extent of de-
epoxidation of the xanthophyll cycle pool are in accordance
with other reports (Adams et al. 1994; Cheng 2003).

Xanthophyll cycle pool sizes and DPS reflected historic
exposures to excess irradiance, and excess irradiance at the
time of sampling, respectively, as in other studies (e.g.,
Laing et al. 1995). In general, depression of Fv/Fm was as-
sociated with increases in the pool size and increases in the
midday DPS of the xanthophyll cycle pigments, suggest-

ing a key role for Z (and A) in the protective dissipation of
excess excitation energy. The pattern of response of xan-
thophyll cycle pool size to salinity suggested an increase
in the capacity for Z-associated protective dissipation of
excess excitation energy in salinity extremes, except at the
highest salinity in Ae. corniculatum.

Aegiceras corniculatum and Av. marina showed similar
responses of the xanthophyll cycle pool size to growth
irradiance and had similar leaf angles. Species differences
in DPS, and its effect on Fv/Fm were key factors. This
is in contrast to mature canopies of Rhizophoraceae, for
which species’ differences in strategies for photoprotection
were manifest as differences in pool size or leaf angle
(Lovelock and Clough 1992), suggesting phylogeny or
ontogeny may influence strategies of photoprotection.
The lesser diurnal depression and relaxation of depres-
sion of Fv/Fm, and lesser diurnal de-epoxidation and
re-epoxidation of xanthophylls in Av. marina than Ae.
corniculatum, suggests a greater protective, longer-term
down-regulation in Av. marina and more extreme but
transient protective response under excess excitation in
Ae. corniculatum (Adams et al. 1994).

Predawn depression of Fv/Fm in Av. marina and high
salinity may be related to the presence of de-epoxidised
xanthophylls (as observed in another study of Av. marina,
Sobrado and Ball 1999), and sustained engagement of
xanthophyll cycle-dependent thermal dissipation (Adams
et al. 1994; Verhoeven et al. 1997). Such sustained en-
gagement in the dark could occur if the trans-thylakoid pH
gradient was maintained by ATP hydrolysis (Gilmore and
Yamamoto 1992; Gilmore and Björkman 1995). In leaves
of Av. marina and seedlings grown under salinity extremes,
a sustained higher DPS should result in more rapid
induction of nonradiative dissipation of excess excitation
energy. In leaves of Ae. corniculatum and seedlings grown
under moderate salinity, lower predawn DPS may result in
slower development of nonphotochemical quenching under
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Fig. 7 Predicted values of transformed Fv/Fm for given values of
a range of measures of photoprotection, for the models given in
Table 1. Dotted lines show the 95% confidence intervals in all cases.
a Effect of leaf angle at midday for leaves of Ae. corniculatum in
100% sunlight with the mean xanthophyll cycle pool size and mean
de-epoxidation state. b Effect of xanthophyll cycle pool size under
three shading treatments at midday for leaves of Ae. corniculatum
with an angle of 45◦ and the mean de-epoxidation state. c Effect of
de-epoxidation state in Ae. corniculatum and Av. marina at midday
for leaves with an angle of 45◦ and the mean xanthophyll cycle pool
size

conditions of excess excitation, requiring minutes to hours
for de-epoxidation (Bilger et al. 1989; Demmig-Adams
1990; Thayer and Björkman 1990; Adams et al. 1994).

An adverse effect of high salinity on the β,β-carotene
pathway was suggested by lowered levels of VAZ in Ae.
corniculatum and lowered levels of Neo in both species
in 100% seawater. Greater Z-dependent quenching might
therefore be expected in Av. marina than in Ae. cornicula-
tum in 100% seawater. Reductions in Neo at midday and in
high salinity have implications for the synthesis of abscisic
acid (Lee and Milborrow 1997; Niyogi 1997; Schwartz
et al. 1997).

An adverse effect of high salinity on the β,ε-carotene
pathway in Ae. corniculatum was suggested by lowered
levels of L in this species in 100% seawater, which may
have adverse effects on the capacity for nonradiative dissi-
pation of excess excitation energy (Pogson et al. 1998). In-
creasing growth irradiance resulted in an accumulation of L
relative to chl, as in previous studies (Thayer and Björkman
1990; Niyogi 1997), which may enhance nonphotochemi-
cal quenching (Niyogi 1997; Pogson et al. 1998). Diurnal
midday declines in L under low growth irradiance suggest
the possible operation of a lutein-epoxide cycle (Bungard
et al. 1999).

Possible ecological significance of species’ differences

The two sympatric species showed different extents of
chronic and diurnal photoinhibition, diurnal de-epoxidation
of the xanthophyll cycle pigments, and effects of high salin-
ity on L and xanthophyll cycle pool sizes. Species’ differ-
ences may be of ecological significance, and be indicative
of their relative performance along salinity and irradiance
gradients in habitats where they co-occur.

The greater long-term down-regulation and lesser diurnal
depression of the photochemical efficiency of PSII in leaves
of Av. marina suggest this species will be favoured under
conditions of persistent excess photon dose, for example,
during periods of consecutive sunny days, in exposed envi-
ronments, and at high salinities. However, this strategy may
result in lower net carbon gain under low excitation pres-
sure, such as in the understorey or in habitats with moderate
salinities. Greater diurnal depressions in the photochemi-
cal efficiency of PSII, but lesser long-term downregulation
in leaves of Ae. corniculatum suggest this species will be
favoured under conditions where excess excitation is less
frequent, for example during cloudy weather, in shaded en-
vironments, and at low salinities. However, this strategy
may result in lower net carbon gain under high excitation
pressures, such as in exposed sites or in habitats with high
salinities.

The chlorophyll fluorescence characteristics of leaves
provide a rapid assay of the activity of PSII, and a use-
ful noninvasive tool for monitoring the responses of plants
to stress in numbers appropriate to addressing ecologi-
cal questions (Ball et al. 1994). Confidence in upscaling
of the leaf level patterns observed here to whole plants
and communities requires additional measurements of
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processes at intermediate scales (Jarvis 1995; Körner
1995). I have therefore explored the relationship between
the responses reported here and species-specific interactive
effects of light and salinity on the net assimilation rate for
the whole canopy, and the growth, survivorship and distri-
bution of the two species in the field (Christian 1999).
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