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Abstract The seasonal savannas (cerrados) of Central
Brazil are characterized by a large diversity of evergreen
and deciduous trees, which do not show a clear differen-
tiation in terms of active rooting depth. Irrespective of the
depth of the root system, expansion of new foliage in de-
ciduous species occurs at the end of the dry season. In this
study, we examined a suite of leaf traits related to C assim-
ilation, water and nutrients (N, P) in five deciduous and six
evergreen trees that were among the dominant families of
cerrado vegetation. Maximum CO2 assimilation on a mass
basis (Amass) was significantly correlated with leaf N and P,
and specific leaf area (SLA; leaf area per unit of leaf mass).
The highest leaf concentrations of both nutrients were mea-
sured in the newly mature leaves of deciduous species at the
end of the dry period. The differences in terms of leaf N and
P between evergreen and deciduous species decreased dur-
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ing the wet season. Deciduous species also invested less in
the production of non-photosynthetic leaf tissues and pro-
duced leaves with higher SLA and maintained higher water
use efficiency. Thus, deciduous species compensated for
their shorter leaf payback period by maintaining higher po-
tential payback capacity (higher values of Amass) and lower
leaf construction costs (higher SLA). Their short leafless
period and the capacity to flush by the end of the dry season
may also contribute to offset the longer payback period of
evergreen species, although it may involve the higher cost
of maintaining a deep-root system or a tight control of plant
water balance in the shallow-rooted ones.

Keywords Carbon isotope discrimination . Leaf level
traits . Photosynthesis . Stable isotope ratios . Water
use efficiency

Introduction

The central plains of Brazil are occupied by a complex of
seasonal savannas, known locally as “cerrado.” The cerra-
dos of central Brazil are the second most extensive plant
formation in South America and cover 2.0×106 km2 of
land area (Eiten 1972). Like other Neotropical savannas,
the cerrado is characterized by strong rainfall seasonal-
ity, coupled with constantly high diurnal air temperatures.
The soils are generally deep and well drained. Superfi-
cial soil layers dry out during the dry season that extends
from May to September, while deeper soil layers exhibit
a much higher degree of water constancy throughout the
year (Franco 2002). The nutrient-poor, acid soils represent
an additional limiting factor for plant growth in this region.
P is particularly limiting in these ecosystems (Haridasan
2000, 2001).

The upper canopy of cerrado vegetation typically con-
sists of 6- to 8-m-tall, deciduous and evergreen trees (Eiten
1972). The coexistence of tree species with contrasting phe-
nological behaviors in savanna ecosystems has been taken
as an indication of differences in depth of the root systems,
whereby drought-deciduous species are expected to have
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more superficial root systems and a tight stomatal regu-
lation of transpiration. Deep-rooted evergreen trees would
be able to supply enough water to maintain high rates of
transpiration and CO2 assimilation during the dry period
(Goldstein et al. 1989). On the other hand, one could ex-
pect that deciduous species should have a less conservative
strategy for water use because of the short payback inter-
val (short leaf life-span), while evergreen species should
have a more conservative strategy of water use (Lloyd
and Farquhar 1994). Deciduous species could overcome
this limitation if they are able to sustain higher photosyn-
thetic rates per unit of water loss in relation to evergreen
species. However, evergreen and deciduous cerrado trees
may not show such contrasting strategies of water use and
leaf C balance in response to the seasonal drought. Com-
parisons of hydrogen isotope composition of xylem water
and soil water samples collected at different depths do not
suggest a clear differentiation in terms of active rooting
depth between deciduous and evergreen trees in the Cerrado
(Table 1; Jackson et al. 1999). High atmospheric evap-
orative demand and hydraulic constraints result in strong
stomatal limitation of transpiration and a prolonged midday
depression of photosynthetic rates in both evergreen and
deciduous species during both the wet and the dry seasons
(Johnson et al. 1983; Franco 1998; Moraes and Prado 1998;
Meinzer et al. 1999; Naves-Barbiero et al. 2000; Franco
and Lüttge 2002). Indeed, evergreen and deciduous cer-
rado trees showed similar stomatal responses to changes in
air saturation deficit (Bucci et al. 2004). Moreover, many
deciduous trees remain leafless for only short periods, and
are able to flush new leaves during the dry season (Rivera
et al. 2002).

Photosynthesis is strongly affected by N availability. This
reflects a combination of the larger proportional invest-
ment of N in photosynthetic machinery and the widespread
N limitation in natural ecosystems. Studies in a range
of ecosystems have shown that deciduous species gener-
ally have higher N concentrations per unit leaf mass and
photosynthetic rates than evergreen species (Mooney and
Gulmon 1982; Field and Mooney 1986; Sobrado 1991,
1994; Eamus and Cole 1997; Reich et al. 1992, 1997). On
the other hand, some field studies have reported that pho-
tosynthesis is more limited by P availability in P-deficient
soils (Reich and Schoettle 1988; Cordell et al. 2001). A
detailed assessment of the nutrient relations of the selected
species was beyond the scope of this study. However, mea-
surements of leaf N and P content and specific leaf area
(SLA; leaf area per unit of leaf mass) coupled with gas ex-
change measurements allowed us to address questions re-
lated to leaf C balance, patterns of leaf phenology and nutri-
ent allocation in cerrado trees. We also measured seasonal
changes in leaf δ13C, N and P, predawn and midday leaf
water potential, as well as patterns of leaf phenology and
leaf life-span. Foliar δ13C values of plants obtaining their
CO2 from the same sources are considered to be an inte-
grated, long-term estimate of intrinsic water use efficiency
(WUE) (Ehleringer and Cooper 1988; Meinzer et al. 1990).
Lower values of SLA generally reflect more investment of
N in non-photosynthetic components (Field and Mooney

1986). Deciduous species are constrained by the shorter leaf
life-span. Thus, we expected that deciduous species would
invest less in the production of non-photosynthetic tissues
and would produce leaves with higher SLA and higher
N and P concentrations. Deciduous species should also
have higher photosynthetic rates and WUE than evergreen
species, because of the well-known linear relationship be-
tween photosynthesis and leaf N and the close correlation
between N and P concentrations.

Materials and methods

Study site, plant material and leaf phenology

The study was carried out at the ecological reserve of the
Instituto Brasileiro de Geografia e Estatı́stica (IBGE), lo-
cated approximately 33 km south of Brasilia. The study
site (15◦56′S, 47◦53′W, altitude 1,100 m) is a seasonal
savanna having a relatively continuous layer of perennial
grasses with a discontinuous layer of deciduous and ever-
green trees with a low and almost shrubby growth form.
Most trees and shrubs have a thick bark, twisted trunks
and scleromorphic leaves. Soils are deep, well-drained,
strongly acid dystrophic latosols, with high Al content. The
climate is Aw by Köppen’s classification and according to
the weather station records of the IBGE ecological reserve,
the average rainfall is 1,483 mm (1980–1997) with a dis-
tinct dry season from May to September. The dry season of
1995 was particularly severe. Although annual rainfall was
1,684 mm, it rained only 37 mm from May to September.
Annual rainfall was 1,384 mm in 1996, but it rained a to-
tal of 112 mm from May to September. Average (diurnal)
relative humidity is around 80% during the rainy season
and drops to 55% during the dry season when daily mini-
mum relative humidity reaches values as low as 15%. Mean
annual temperature is about 22◦C.

A total of 11 woody species were selected based on
their phenology and abundance among dominant families
of cerrado vegetation (Table 1). These species are com-
monly found throughout the cerrado domain. In a study
of the floristic composition of 98 sites of cerrado and
Amazonian savanna, encompassing most of the area of
such vegetation in Brazil, these species occurred in 15%
(Miconia ferruginata) to 82% (Qualea grandiflora) of the
sites (Ratter et al. 1996).

Starting in September, 1995, branches or twigs of five
individuals of each species were marked in such a way
that individual leaves could be identified, their abscission
noted and the formation of new mature leaves recorded.
Five twigs or branches were marked on each individual
where possible, since the growth habit of some species,
with limited branching, provides few growing points. This
was the case with Schefflera macrocarpa and Kielmeyera
coriacea, for example. Monthly observations were carried
out from September 1995 to November 1998. In order to
define the duration of the leafless period, observations were
made on a weekly basis from the end of June to the end of
October, when four individuals of Dalbergia miscolobium
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were included, starting in June 1997. Based on these obser-
vations, pattens of leaf phenology were obtained, as well
as estimates of leaf longevity.

Measurements of leaf gas-exchange
and leaf water potential

Maximum CO2 assimilation (ACO2 ), stomatal conductance
at ACO2 (gwv), intrinsic WUE (ACO2 /gwv) and the ratio of
intercellular to ambient CO2 partial pressure (pi/pa) were
determined under ambient conditions with a portable pho-
tosynthesis system (301-PS CID, Vancouver, Wash.). The
301-PS was configured in the open system mode. Gas ex-
change measurements were carried out towards the end of
the dry season (August) of 1996 and at the peak of the
wet season (January and February) of 1997. Because of the
small compound leaves, we used a LI-6200 (Li-Cor, Lin-
coln, Neb.) to measure gas exchange in Pterodon pubescens
and D. miscolobium. These measurements were made only
in January 1996 and problems with the humidity sensor
prevented the calculation of gwv and pi/pa. Leaf gas ex-
change was measured in two or three sunlit leaves of four
(Q. grandiflora in 1996) to six (all others) pre-marked in-
dividuals during a 2- to 4-h period between 0800 hours and
1200 hours.

predawn and midday leaf water potentials were used as
indicators of plant water status. Leaf water potential was
measured with a pressure chamber (model 3005-14442;
Soil Moisture, Santa Barbara, Calif.) in August of 1996
and February of 1997. One leaf of three to six individuals
was sampled at each time. Measurements were done in the
same individuals used in the gas exchange measurements.

Isotopic and nutrient analysis

Several adult leaves per individual were selected and pooled
by individual. The leaves were then transported to the lab-
oratory where their area was determined. They were then
oven-dried at 70◦C and their dry leaf mass determined for
calculation of SLA (ratio of leaf area to leaf dry mass).
The dried leaves were finely ground and a subsample was
taken for total N and P determinations. N was determined
in diluted acid digests according to the micro-Kjeldhal
procedure (Bataglia et al. 1978). Total extractable P was
determined colorimetrically by complex formation with
molibdovanadate according to Bataglia et al. (1978). An
additional subsample was taken for δ13C determination.
Samples were sent to Mountain Mass Spectrometry (Ev-
ergreen, Colo.), where the relative abundance of 13C and
12C in the CO2 produced from combustion of the samples
was analyzed by mass spectrometry. C isotopic discrimina-
tion (�) was calculated as (δ13Cair–δ13Cplant)/(1+δ13Cplant),
where δ13Cplant is the C isotope ratio of the plant mate-
rial and δ13Cair is that of the air (−8‰), as described by
Farquhar and Richards (1984).

Samples for C isotope and nutrient analysis were taken in
September and November 1995, and March 1996. To relate

leaf N and P to CO2 assimilation, additional samples for
nutrient analysis were taken in January 1996 (P. pubescens
and D. miscolobium) and January 1997 (all other species),
when gas exchange measurements were performed.

Data analysis

Although we examined a large number of species, we
recognise that we do not have enough species to clearly
distinguish the four different phenological groups depicted
in Table 1. Thus, we pooled briefly deciduous and decidu-
ous species in a single functional group, as leaf life-span in
all of them is <1 year and they remain leafless for at least
several days. New leaves emerge after leaf abscission. The
other six species were grouped as evergreens. They always
maintain a green canopy and leaf life-span is at least 1 year.
However, we kept all four phenological groups separated in
most figures and tables and clear differences among them
were highlighted.

The statistical package Statview for Windows 5.0 (SAS
Institute) was used to analyze the data. A multivari-
ate ANOVA (MANOVA) followed by the Fisher’s pro-
tected least significant difference multiple comparison test
(Fisher’s) was applied to analyze the effects of leaf phe-
nology and season on leaf N, P and �. Because the inter-
action term was significant, the variables were first log10
transformed to restore the additivity of the data (Sokal and
Rohlf 1995). We did not have a complete C isotope data
set for P. pubescens and Q. grandiflora. Thus, these two
species were not included in the analyses. However, all the
available data for these two species were included in the
figures.

We used unpaired t-tests or Mann-Whitney U-tests to
evaluate the differences between evergreen and deciduous
in regard to SLA and ACO2 on a mass and leaf area basis
and paired t-tests to evaluate the effect of drought on gas
exchange parameters and leaf water potential of evergreen
species. Significance was determined as P<0.05 unless
otherwise noted.

Results and discussion

The timing of bud break was variable among evergreen
species, while all deciduous species flushed by the end
of the dry season (Table 1). Evergreen leaf-exchangers
simultaneously shed the leaves and produced new ones,
while the briefly deciduous species remained leafless for
short periods of time of <3 weeks. The other deciduous
species remained leafless for periods of about 3–6 weeks
(Table 1). There was variation between the evergreen
species with regard to leaf longevity. M. ferruginata
retained its leaves for approximately 24 months, while
Schefflera macrocarpa and Roupala montana tended to re-
tain their leaves for approximately 18 months. Leaf life-
span was about 12 months for the three evergreen leaf-
exchangers and 10–11 months for the deciduous species.
Although there was not a sharp separation in terms of
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active rooting depth between the two phenological groups
in the dry season, most deciduous species were apparently
extracting water from deeper soil layers than the evergreens
(Table 1).

Deciduous and evergreen species had similar rates of
ACO2 at the peak of the wet season (Table 1). gwvs were
also similar between the two phenological types, ranging
from 133 mmol m−2 s−1 to 228 mmol m−2 s−1. Differ-
ences in maximum CO2 assimilation and stomatal con-
ductance between evergreen and deciduous trees are fre-
quently small in savannas and dry deciduous forests (Gold-
stein et al. 1989; Sobrado 1991, 1994; Eamus and Cole
1997). Deciduous species invested less in the production of
non-photosynthetic leaf tissues and produced leaves with
higher SLA (t-test; P=0.016; Table 1). These differences
were reflected in CO2 assimilation rates on a mass basis
(Amass). Values of maximum Amass of deciduous and ever-
green species averaged 92.9 µmol kg−1 s−1 and 62.7 µmol
kg−1 s−1, respectively. These differences were statistically
significant (t-test; P=0.019). Thus, deciduous species com-
pensated their shorter leaf pay back period by an increase
in the potential payback capacity (maximum Amass), when
soil water was not limiting. Prado and Moraes (1997) re-
ported Amass values within this range for 20 cerrado woody
species at a site near the southern limit of cerrado vege-
tation, but they did not include information on leaf phe-
nology. Amass increased with SLA for both evergreen and
deciduous species (Fig. 1a). The relationship was similar
to the general one fitted for data across biomes (Reich et al.
1999).

Photosynthesis is strongly affected by N availability and
it is well known that photosynthetic capacity increases lin-
early with leaf N concentration (Field and Mooney 1986;
Reich et al. 1995). Indeed, Eamus and Prior (2001) showed
that, for a range of tree species from different seasonally
dry ecosystems, leaf N increases with light-saturated ACO2 ,
with no clear distinction between evergreen and deciduous
species. This was also found in the present study. Max-
imum CO2 assimilation was significantly correlated with
leaf N and leaf P on a mass basis (Fig. 1b, c) but not on an
area basis (not shown). The close correlation between Amass
and both leaf SLA and N suggests that decreasing SLA is
associated with greater allocation of biomass to structural
components of the leaf rather than metabolic components
(Field and Mooney 1986; Reich et al. 1998).

� Fig. 1 Relationships between a maximum CO2 assimilation on a
mass basis (Amass) and specific leaf area (SLA); b Amass and leaf N
concentration; c Amass and leaf P concentration. Each point is the
mean of two to six trees per species. The lines are regressions fit-
ted to the data: a Amass=15.108+8.9262(SLA), r=0.901, P<0.001,
n=11; b Amass=12.132+4.4782(leaf N), r=0.841, P=0.001, n=11;
cAmass=−19.221+0.1438(leaf P), r=0.766, P=0.016, n=9. The dot-
ted line describes the log–log relationship between Amass and SLA
(logAmass=−0.22+1.08log10SLA; Reich et al. 1999) and between
Amass and leaf N [logAmass=0.13+1.42log10(leaf N); Reich et al.
1999] fitted to data from six biomes. SmSchefflera macrocarpa,
MfMiconia ferruginata, RmRoupala montana, SpSclerolobium pan-
iculatum, VeVochysia elliptica, OhOuratea hexasperma, DmDal-
bergia miscolobium, PpPterodon pubescens, QpQualea parviflora,
QgQ. grandiflora, KcKielmeyera coriacea
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Fig. 2 Relationship between leaf N and P based on measurements
taken in the dry and the rainy season. The line is the regression fitted
to the data: leaf N=4.0398+0.0106(Leaf P), r=0.653, P<0.0001,
n=41

Indeed, using multiple linear regression, Amass was highly
significantly related to the combination of leaf N and SLA
(r=0.92, P=0.0006). As expected, there was also a signif-
icant correlation between leaf N and leaf P (Fig. 2) across
species. Thus, deciduous and evergreen trees shared com-
mon relationships between leaf traits, which suggests that
selective pressures impose strong constraints on functional
trait variability in cerrado environments. On the other hand,
the results of the MANOVA gives support to the hypothesis
that evergreen and deciduous species have different com-
binations of leaf traits, at least in terms of leaf N, P and �
and that these combinations are influenced by seasonality
(Table 2).

Soil water availability is generally not a limiting factor
during the wet season in cerrado ecosystems (Franco 2002).
However, high atmospheric evaporative demand and hy-

Table 2 Results of the
multivariate ANOVA for the
effects of leaf phenology and
time of the year on leaf traits
(leaf N, P and C isotopic
discrimination)

Source of
variation

F-value P-value

Phenology
Wilks’ λ 9.968 0.0004
Pillai
trace

9.968 0.0004

Season
Wilks’ λ 9.805 <0.0001
Pillai
trace

8.989 <0.0001

Phenology×season
Wilks’ λ 1.997 0.0903
Pillai
trace

1.791 0.1256

draulic constraints impose a strong stomatal limitation of
transpiration and a prolonged midday depression of photo-
synthesis during both the wet and the dry seasons (Franco
1998; Moraes and Prado 1998; Meinzer et al. 1999; Naves-
Barbiero et al. 2000; Franco and Lüttge 2002). This would
be particularly critical during the dry season, which is char-
acterized by very low values of relative humidity (Franco
2002). Most evergreen species showed a decline in the max-
imum CO2 assimilation rates and stomatal conductances in
the dry season, while leaf-to-air vapour pressure deficit
(VPD) increased substantially (Fig. 3). The magnitude of
the decrease was larger for stomatal conductance; as a re-
sult three species had a significant increase in ACO2 /gwv.
On the other hand, pi/pa remained constant for five out
of the six species. The only exception was Vochysia ellip-
tica, where pi/pa showed a small, but significant increase
by the end of the dry season. This deep-rooted species had
the least variation in both predawn and midday leaf water
potential (Fig. 4). Although statistically significant (t-test;
P≤0.02), these seasonal differences in predawn and mid-
day water potential were relatively small, when compared
to trees of Venezuelan dry forests (Sobrado 1986) but sim-
ilar to those of evergreen species of Australian savannas
(Duff et al. 1997; Myers et al. 1997). Seasonal variations
in predawn and midday water potential in evergreen cer-
rado species may partially reflect nocturnal transpiration
that would limit plant recharge during night-time (Bucci
et al. 2004).

We do not report measurements of gas exchange and
of leaf water potential in deciduous species because they
were leafless or had only very young leaves when we
took the dry season measurements. However, other stud-
ies have reported that stomatal conductance in deciduous
cerrado species also declined significantly during the dry
season, while seasonal variations in leaf water potential
were relatively small (Cardinot 1998; Maia 1999; Naves
2000; Bucci et al. 2004). This decrease in stomatal conduc-
tance in both phenological groups is mostly a response to
the strong increase in air saturation deficit during the dry
season (Bucci et al. 2004). Indeed, evergreen and decidu-
ous cerrado species showed similar stomatal responses to
changes in air saturation deficit (Bucci et al. 2004).

These seasonal changes in maximum ACO2 and gwv could
affect WUE (CO2 assimilation/transpiration) of evergreen
and deciduous species. Although WUE can be calculated
from diurnal cycles ofACO2 and transpiration, we did not
follow this approach because of the uncertainties involved
in attempting to integrate instantaneous measurements to
represent a whole season. Instead, we used changes in leaf
� to assess WUE on a seasonal basis. Eleven of the 13
species studied by Mattos et al. (1997) in a cerrado area in
southern Brazil showed a decrease in leaf � (higher WUE)
during the dry season. The decrease ranged from 0.3‰ to
4‰ and it was statistically significant at the community
level. They related their results to a larger decrease in gwv in
comparison toACO2 . However, they based this conclusion
on gas exchange results for only two of the 13 species.
Although we were not able to detect a seasonal variation
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Fig. 3 Seasonal changes in
maximum CO2 assimilation
(ACO2 ), stomatal conductance
atACO2 (gwv), intrinsic WUE
(ACO2 /gwv), the ratio of
intercellular to ambient CO2
partial pressure (pi/pa) and
leaf-to-air vapour pressure
deficit (VPD) for six evergreen
cerrado trees. Data were
collected at the peak of the rainy
season (wet) and at the end of
the dry season (dry). Each bar
represents the mean+1 SE (n=6
trees per species). For other
abbreviations, see Fig. 1

in leaf � at the community level, leaf � was significantly
higher for deciduous species (Fig. 5a).

C isotope discrimination is largely dependent on the ratio
of intercellular to ambient CO2 concentrations prevailing
when the leaf C is assimilated (Farquhar et al. 1982, 1989).
Thus a decrease in pi/pa should reflect diffusional limi-
tations to CO2 uptake from reductions in stomatal con-
ductance and/or an increase in carboxylation efficiency
(higher CO2 assimilation rates; Ehleringer 1994). Higher
foliar δ13C values were reported in shallow-rooted decidu-
ous species of a Venezuelan seasonally tropical dry forest,
when compared to foliar δ13C values of deep-rooted ever-
green species (Sobrado and Ehleringer 1997). They related
their results to a stronger stomatal control in the shallow-
rooted deciduous species. On the other hand, Medina and
Francisco (1994) observed an increase in foliar δ13C val-
ues toward the end of the dry season in both the evergreen
Curatella americana and the deciduous Godmania macro-
carpa in a Venezuelan savanna. They concluded that the
similarity of WUE in both species were the result of higher

photosynthetic capacity in G. macrocarpa and lower stom-
atal conductances in C. americana. The effects of drought
on stomatal conductance are apparently similar for decid-
uous and evergreen cerrado trees (Bucci et al. 2004). Thus,
differences between evergreen and deciduous cerrado trees
in terms of WUE are probably the result of an increase
in carboxylation efficiency, which could be achieved by
producing new leaves with a higher N concentration. In-
deed, there was a significant difference in leaf N and P
between deciduous and evergreen species and a significant
seasonal variation (Fig. 5b, c). The highest leaf N and P
concentrations were measured in the newly mature leaves
of deciduous plants that were produced at the peak of the
dry season. It was also the period when the largest dif-
ferences between deciduous and evergreen species were
measured. The differences in terms of leaf N and P be-
tween the two phenological groups decreased during the
wet season. There was also a significant relationship be-
tween leaf values of � and leaf N (r=0.41; P=0.026), as
well as between � and P (r=0.48; P=0.007).
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Fig. 4 Midday and predawn leaf water potentials during the dry
(August 1996) and rainy season (February 1997) for six evergreen
cerrado trees. Data expressed as means±1 SE (n=3–6 trees per
species). Open symbols Measurements taken in the dry season, solid
symbols measurements taken in the dry and wet seasons. For abbre-
viations, see Fig. 1

The use of leaf δ13C or � values as an integrated measure
of WUE has to be examined with caution because it depends
on assumption that CO2 concentration of the air (pa) and
leaf-to-air VPD (ei − ea) will not change seasonally:

WUE = [pa(1 − pi/pa)]/[1.6(ei − ea)] (1)

and

� = [a + (b − a)pi/pa]10−3 (2)

where a and b are 4.4‰ and 27‰, respectively (Farquhar
et al. 1989).

Although one can perhaps assume small seasonal vari-
ations in pa, ei−ea increased substantially during the
drought, from about 1.48 kPa to 2.40 kPa (Fig. 3). De-
ciduous species would still maintain higher WUE than ev-
ergreens at the end of the dry season, if we assume that both
phenological groups would have similar values of leaf-to-
air VPD.

One could still expect that C return per unit dry weight
invested N and C should be higher in evergreens because
leaves are photosynthetically active for longer periods
(Sobrado 1991) and lower amortized leaf construction costs
to replace the tree crown, provided that the leaves are held
by more than a year (Givnish 2002). However, maximum C
return in evergreens is greatly constrained by the combined
effects of partial leaf loss and reductions in photosynthetic
rates during the dry season (Franco 1998) and leaf damage
by herbivores and pathogens (Marquis et al. 2002). Decid-
uous species and several evergreens flush leaves before the
rains begin (Table 1), so that the most vulnerable stage of
development (the new leaf stage) has already passed by
the time the herbivorous insect activity begins (Marquis
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Fig. 5 Seasonal changes in leaf a C isotopic discrimination �, b N
and c P concentrations for evergreen and deciduous species growing
in a cerrado site at the Instituto Brasileiro de Geografia e Estatı́stica
reserve. Leaf samples were collected on 17 September or 6 October
1995 (end of dry season), 2 November 1995 (start of rainy season)
and 7 March 1996 (peak of rainy season). Evergreen species: � S.
macrocarpa, • M. ferruginata, � R. montana, � S. paniculatum, filled
diamondV. elliptica, asteriskO. hexasperma. Deciduous species: �
D. miscolobium, ◦ P. pubescens, � Q. grandiflora, � K. coriacea ♦ Q.
parviflora. There were statistically significant differences (P<0.05;
Fisher’s PSLD test) between evergreen and deciduous species in
terms of leaf �, N and P. At the community level, leaf N concentra-
tions were significantly different between the end of the dry period
and the peak of the rainy period and between the start and the peak
of the rainy period. In terms of leaf P concentrations, there were
significant differences between the end of the dry and the start of the
rainy season and between the start and the peak of the rainy season.
There was no significant effect of seasonality on leaf �
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et al. 2002). However, leaf damage by pathogen attack is
much higher than damage by herbivores in cerrado ecosys-
tems and fully expanded leaves continued to accrue damage
throughout their lives (Marquis et al. 2001, 2002). The
lower SLA of the evergreen species also suggests larger
leaf construction and maintenance costs and this should
also be considered (Sobrado 1991; Eamus and Prior
2001).

Total daily water loss of deciduous and evergreen species
showed little seasonal variation (Meinzer et al. 1999; Bucci
et al. 2004). In the case of evergreens, partial leaf loss and
partial stomatal closure was enough to compensate for the
increase in evaporative demand of the air during the drought
period. On the other hand, this would result in a significant
decrease in daily C gain at the crown level. Thus, the effect
of drought on plant WUE would be even more substantial,
as the tree would not reduce water loss in the dry season,
but it would fix less C. On the other hand, deciduous species
would have to face the higher belowground costs associ-
ated with maintaining a deep-root system that characterizes
most of them (Table 1). However, deciduous species remain
completely leafless for only short periods (a few weeks
to <2 months) and leaf flushing occurs primarily in the
late dry season (Table 1; Maia 1999; Naves 2000; Rivera
et al. 2002). This allows them to quickly achieve full crown
development and maximal C gain when the rains begin.
Moreover, the higher leaf N and P concentrations of the
newly developed crown of deciduous species would po-
tentially allow higher photosynthetic rates than evergreen
trees at the end of the dry season and during the transition
from the dry to the wet period.

Some shallow-rooted deciduous and evergreens are also
able to flush before the onset of the rainy season (Table 1).
In this case, a tight control of transpiration by reductions
in stomatal conductance and partial or total leaf shedding
coupled with osmotic adjustment and internal water storage
may allow the plant to stabilize water balance (Bucci 2001;
Eamus and Prior 2001). It has to be pointed out that only
the upper soil layers are really depleted of water (Franco
2002). On the other hand, one could expect that the onset
of leaf flush in these species would be greatly constrained
in dry years and that small differences in root distribution
may play a critical role.

In conclusion, Amass was significantly positively corre-
lated with SLA, leaf N and P, which were higher in leaves
of deciduous species. Thus, deciduous species compen-
sated for their shorter leaf pay back period by maintaining
higher potential payback capacity (higher values of maxi-
mum Amass) and lower leaf construction costs (higher SLA).
The short leafless period of deciduous species may also par-
tially offset the longer payback period of evergreen species,
although it may involve the higher cost of maintaining a
deep-root system or a tight control of plant water balance.
On the other hand, evergreens may be greatly constrained
in terms of producing leaves with a long life-span, be-
cause of accrued leaf damage by herbivores and pathogens
and substantial reductions in stomatal conductance and
partial leaf loss to stabilise water balance during the dry
season.
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árboles de sabanas neotropicales: efectos de la disponibilidad
de agua y nutrientes. PhD thesis. Universidade de Buenos Aires,
Buenos Aires

Bucci SJ, Goldstein G, Meinzer FR, Franco AC, Campanello P,
Scholz FG (2004) Mechanisms contributing to seasonal home-
ostasis of minimum leaf water potential and predawn disequi-
librium between soil and plant water potential in Neotropical
savanna trees. Trees (in press)

Cardinot GK (1998) Efeitos de diferentes regimes de queimas
nos padrões de rebrotamento de Kielmeyera coriacea Mart. e
Roupala montana Aubl., duas espécies tı́picas do cerrado. Mas-
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