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Abstract Leaf osmotic potentials (ys) of 104 plant
species from different habitats, i.e., fixed sand dunes,
lowland and wetlands in Hunshandak Sandland, Inner
Mongolia, China, were investigated. The values of ys
were strongly species-specific, and varied from
�6.54 MPa ( Caragana microphylla), to �0.44 MPa
(Digitaria ischaemum); 75% of plants investigated had ys
from �1.01 to �3.0 MPa. Shrubs were found to have the
lowest ys, with an average value of �3.19 MPa, while
grasses showed the highest ys. The order of plant ys is
shrubs<trees<grasses. The result may relate to anatomical
features of shrubs. C4 photosynthetic pathway plants
showed lower ys values. The ys values of 104 species
were negatively correlated with their rooting depths
(r2=0.42; P <0.001). High hydraulic pressure resulting
from the deep roots may well explain this trend. The value
of ys increased as the environment became wetter,
ranging from �0.79 MPa in wetlands to �2.09 MPa in
fixed sand dunes. Although soil salt content was higher in
wetlands, we did not find any effect on ys.

Keywords Osmotic potential · Habitats · Plant functional
types · Root depth · Hunshandak Sandland

Introduction

Perennial plants in arid areas have to tolerate many
environmental stresses such as extreme drought (Bata-
nouny 2001; Wicken 1998), harsh irradiation (Peltier et
al. 1997; Jiang and Zhu 2001; Aranda et al. 2001), high
temperature (S�nchez-Blanco et al. 1998), and even
severe cold in winter (Weiser 1970; Hurme et al. 1997;

Repo et al. 2000; Kontunen-Soppela 2001). Different
plants have developed different mechanisms to cope with
threatening habitats; for example, annual plants can
utilize much shorter growth periods to complete their life
cycles than perennials, which enables them to escape
more stresses (Gutterman 1993).

Osmotic potential (ys) represents the potential ability
of plants to absorb water from environments, which is an
important indicator of drought tolerance. The value of ys
can be regulated by many factors, which characterize the
plant’s attempt to minimize difference in water potential
between the plant body and its environment (Batanouny
2001). To cope with the prolonged annual dry period,
which occurs in most arid areas, different plant functional
types (PFTs) have evolved different survival mechanisms,
which might be reflected by the leaf ys (Walter 1963;
Evenavi et al. 1971). Plants exhibiting osmotic regulation
can normally lower their own internal water potentials by
the synthesis or accumulation of osmotically active
substances, e.g., carbohydrates (Oleksyn et al. 2000;
Lawlor and Cornic 2002), lipid composition (Sutinen
2000), and protein accumulation (Taulavuori et al. 1999;
Kontunen-Soppela et al. 2000).

Although the simple osmotic potential is regarded as a
good criterion of the ability of desert plants to extract
water (Fern�ndez and Reynolds 2000), it is quite difficult
to quickly measure many samples in a natural habitat or
for some particular species such as grasses or mosses.
Before the invention of the Dewpoint PotentiaMeter, the
comparison of a large number of species in a short time
was almost impossible. It has been suggested that there is
a wide range of ys values in the leaves of desert plants
(Abdel and Batannouny 1964), but the real situation of
many species in different habitats and PFTs is poorly
understood.

Therefore, in this study, with help of a Dewpoint
PotentiaMeter (WP4, Decagon Devices, Pullman, Wash-
ington, USA), we have studied osmotic potentials in more
than 100 species in Hunshandak Sandland, one of the five
large sand areas in China. The species we measured
belong to different PFTs, which colonize different
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habitats. By doing so, we tried to discover (1) whether or
not perennial plants have lower ys than annuals, (2)
whether or not deep rooted species have lower ys in the
same habitat with their complex soil-plant-atmosphere
continuums, and (3) which are the habitats in which plants
have characteristic ys and the possible reasons for such
discrimination.

Materials and methods

Study area

The investigation was conducted at Hunshandak Sandland Ecosys-
tem Research Station (43�5604700N, 116�0801500E) of the Chinese
Academy of Sciences, based in Xilingel League of Inner Mongolia
Autonomous Region, China (Fig. 1). The prevailing climate is the
temperate arid and semi-arid type, with temperatures of average
annual, July and January being respectively 1.7�C, 16.6�C and
�24.1�C. The area receives an annual precipitation about 350 mm,
with uneven distribution throughout the year. Rainfall fluctuates in
different years, from 150 mm in a drought year to 450 mm in the
wettest year. The year of 2001 was a drought year, with a total
precipitation 201 mm. However, the annual potential transpiration
is from 2,000 to 2,700 mm and is 7 times the total precipitation
(Zhu 1980). The main habitats are shifting sand dune, fixed sand
dune, lowland and wetland. Here, the main soil types include brown
calcareous soil in lowland, deep sandy soil in shifting sand dune
and fixed sand dune, and dark meadow soil in wetland. The detailed
background of the four habitats is given in Table 1.

The woody components of the vegetation are dominated by
Ulmus pumila var. sabulosa (native species), Salix gordejevii
(native species), and Salix matsudana (exotic species). Grass
components are primarily Corispermum heptapotamicum, Salsola
collina, and Leymus chinensis in fixed sand dune. In lowland and
wetland, mesophyte plants such as Plantago cornuti, Inula
britanica, and Stemmacantha uniflora are predominant. All the
plants were measured in terms of their leaf osmotic potentials, root
depths, growth forms and other characteristics that are listed in
Table 2.

Sampling

Plants

The experiment was conducted from 8 to 14 July 2001. There was
no rain for 10 days before measurement and it did not rain during
the experiment. All the plant samples were collected between 0900
and 1000 hours on each clear day. Five to eight fully expended
leaves from the top of shrubs and grasses, and the lower canopy of
trees, with their twigs, sheaths or petioles, were sampled. There-
fore, none of the leaves were injured and were kept as whole leaves.
Samples were kept in a sealed plastic bag and stored in an ice-box
after being collected, then were transported to the laboratory
1,500 m away from the sampling sites, and measured as soon as
possible. Samples awaiting measurement were kept in a refrigerator

with temperature controlled at about 3�C. Usually the longest
waiting time was 2 h, which satisfied the 3-h recommended
maximum storage period. Pre-testing also showed that there was
little difference between the fresh samples and 3-h samples. Three
replications were made for each species. The root depths in this
study were referenced from Chen (1986) or measured directly by
us.

Soils

Soil sample collections were performed just after all the plant
samples were collected at each habitat. Samples were taken with a
soil drill from 0–20 cm, 20–40 cm, 40–60 cm and 60–100 cm
beneath the surface, and were then stored in a soil box sealed by
adhesive plaster, and taken to the laboratory for measurements. Soil
moisture contents at the four different habitats were determined by
a Delta-T Device Moisture Meter (Profile Probe, Type PR1/6). The
test depths comprised 20 cm, 40 cm, 60 cm, and 100 cm (not shown
in the present paper). In addition to the osmotic potential
measurements, monthly rainfall values and temperature values in
2001 were taken from the closest meteorological station located
2 km from the site.

Osmotic potential measurement

Osmotic potential measurements were taken immediately after the
leaf samples were brought into laboratory, with a WP4 Dewpoint
PotentiaMeter (Decagon Devices, Pullman Washington, USA). It

Fig. 1 Location of the experimental site in Hunshandak Sandland

Table 1 Soil description of ex-
perimental sites of shifting sand
dunes, fixed sand dunes, low-
land and wetland in Hunshan-
dak Sandland

Soil characteristics Habitats

Shifting sand dunes Fixed sand dunes Lowland Wetland

Organism (g/kg) 0.3 1.89 5.4 13.2
Total N (g/kg) 0.03 0.26 0.47 1.18
Total P (g/kg) 0.09 0.29 0.34 0.46
Total K (g/kg) 15.0 18.0 18.1 21.4
Total salt content (g/kg) 0.23 0.44 0.78 0.86
pH value 6.6 7.8 8.5 8.6
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Table 2 Leaf osmotic potentials (ys) and roots depth of different
plant species with different growth forms (G grasses, S shrubs, T
trees), different photosynthetic pathway (C3, C4 and CAM) on

different habitats (F fixed sand dunes, L lowland, W wetland) in the
Hunshandak Sandland in summer 2001. The means of three
measurements are reported €SD

Family Species Growth
form

Photosynthetic
way

Habitats Roots depth
(cm)

ys (MPa)

Juncaceae Juncus bufonius L. G C3 L 5 –0.73€0.10
Gramineae Digitaria ischaemum Schreb. G C3 W 8 –0.44€0.21
Ranunculaceae Anemone silvestris L. G C3 L 8 –0.88€0.12
Crassulaceae Orostachys malacophyllus (Pall.) Fisch. G CAM L 9 –0.79€0.28
Plantaginaceae Plantago cornuti Gouan G C3 W 9 –0.66€0.27
Gramineae Eragrostis poaeoides L. G C4 L 9 –1.57€0.14
Liliaceae Allium mongolicum Regel G C3 L 10 –0.73€0.04
Gentianaceae Nymphoides peltata S.G.Gmel. G C3 W 10 –0.87€0.17
Scrophulariaceae Linaria vulgaaris Mill. G C3 L 10 –1.20€0.07
Gramineae Leymus chinensis (Trin.) Tzvel. G C4 F 10 –2.24€0.14
Chenopodiaceae Suaeda glauca (Bunge.) Bunge G C4 L 10 –2.43€0.26
Compositae Inula britanica L. G C3 F 12 –1.32€0.13
Gramineae Echinochloa crusgalli (L.) Beauv. G C4 W 13 –1.38€0.20
Campanulaceae Campanula rotumdifolia L. G C3 L 14 –1.24€0.11
Compositae Taraxacum dissectum (Ledeb.) Ross. G C3 L 15 –0.99€0.32
Ranunculaceae Ranunculus intramongolicus Y.Z.Zhao G C3 L 15 –1.34€0.58
Gramineae Calamagrostis epigejos (L.) Beauv. G C3 F 15 –2.24€0.08
Gramineae Setaria viridis (L.) Beauv. G C4 F 15 –2.34€0.20
Polygonacaceae Polygonum hydripiper L. G C3 F 16 –0.79€0.29
Dipsacaceae Scabiosa comosa Fisch.ex Roem G C3 F 17 –1.41€0.21
Solanaceae Solanum tuberosum L. G C3 F 18 –0.96€0.25
Compositae Leontopodium leontopodioides Willd. G C3 F 18 –1.08€0.26
Compositae Echinops gmelini Turcz. G C3 F 18 –1.76€0.57
Chenopodiaceae Corispermum heptapotamicum Iljin G C3 F 20 –0.98€0.25
Liliaceae Allium ramosum L. G C3 L 20 –1.08€0.45
Cyperaceae Scirpus yagara Ohwi G C3 W 20 –1.09€0.17
Compositae Sonchus oleraceus L. G C3 L 20 –1.16€0.04
Cyperaceae Carex duriuscula C.A.Mey G C3 W 20 –1.39€0.05
Asclepiadaceae Cynanchum thesioides (Freyn.) Schum G C3 F 20 –1.65€0.10
Chenopodiaceae Chenopodium glaucum L. G C4 F 20 –2.06€0.32
Rosaceae Potentilla Strigoas Pall. G C3 F 20 –2.30€0.14
Polygonacaceae Polygonum manshuricola Kitag. G C3 F 23 –0.86€0.09
Ranunculaceae Halerpests ruthenica (Jacq.) Ovcz. G C3 L 24 –1.54€0.03
Rosaceae Potentilla sericea L. G C3 F 24 –1.68€0.14
Gramineae Agropyron cristatum (L.) Gaertn. G C4 F 25 –2.02€0.14
Rosaceae Potentilla anserine L. G C3 F 25 –2.27€0.35
Chenopodiaceae Salsola collina Pll. G C4 F 25 –2.36€0.65
Compositae Xanthium sibiricum Patrin G C3 L 26 –0.97€0.10
Moraceae Cannabis sativa L. G C3 F 26 –1.70€0.29
Leguminosae Vicia amoena Fisch. G C3 F 28 –1.21€0.35
Compositae Artemisia annua L. G C4 F 28 –1.82€0.19
Plantaginaceae Plantago major L. G C3 F 29 –1.10€0.05
Umbolliferae Ferula bungeana Kitag. G C3 F 30 –0.84€0.09
Labiatae Thymus serpyllum L.var.mongolicus

Roem
G C3 F 30 –0.87€0.27

Compositae Aster tataricus L. G C3 F 30 –1.06€0.37
Compositae Artemisia demissa L. G C3 F 30 –1.22€0.23
Rosaceae Sanguisorba officinalis L. G C3 L 30 –1.36€0.10
Loganiaceae Buddleja alternifolia Maxim. G C3 L 30 –1.77€0.66
Compositae Heteropapus hispidus Willd. G C3 F 30 –1.81€0.78
Chenopodiaceae Bassia dasyphylla (Fisch.) O. Kuntze G C3 F 30 –2.48€0.12
Compositae Saussurea japonica (Thunb.) DC. G C3 F 32 –0.80€0.09
Compositae Stemmacantha uniflora (L.) Dittrich G C3 L 34 –0.56€0.05
Leguminosae Oxytropis glabra (Lam.)DC. G C3 L 34 –1.84€0.18
Compositae Cirsium japonicum Fisch.ex DC. G C3 L 35 –0.98€0.12
Crassulaceae Rhodiola dumulosa S.H.Fu. G C3 L 35 –2.38€0.18
Compositae Cirsium esculentum (Sievers)C.A.Mey G C3 L 36 –1.33€0.11
Umbolliferae Cnidium monnieri (L.) Cuss. G C4 F 38 –1.89€0.05
Compositae Saussurea runcinata DC. G C3 L 39 –0.76€0.12
Equisetaceae Equisetum ramosissimum Desf.Fl. G C3 F 39 –1.35€0.30
Rosaceae Potentilla flagellaris L. G C3 L 39 –2.63€0.37
Compositae Taraxacum mongolicum Hand. G C3 F 40 –1.12€0.09
Amaranthaceae Amaranthus retroflexus L. G C3 F 40 –1.47€0.18
Compositae Artemisia ordosica Krasch. S C4 F 40 –1.67€0.14
Gramineae Leymus secalinus (Georgi) Tzvel. G C4 F 40 –3.05€0.18
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measures osmotic potential by equilibrating the temperature of the
liquid phase water of plant tissues, i.e. discs cut from the leaf
samples, with the vapor phase water in the headspace of a closed
chamber, then measuring the vapor pressure of that headspace. The
dew point sensor measures the dew point temperature of the air, and
the infrared thermometer measures the sample temperatures. The
sample osmotic potential could be calculated by a formula
automatically on the basis of the sample’s temperature and the
vapor pressure of that headspace. It measures the sum of the
osmotic and matric potentials in a sample. Osmotic potential
depends on the concentration of dissolved substance in the water,
while matric potential depends on the absorptive forces binding
water to a matric. Therefore the plants’ tissues, such as leaves,
roots, branches, osmotic potential, can be determined during
measurement. Soil has a mainly matric component. When mea-
surements were changed from plant materials to soils, the
calibration of WP4 should be carried out with the standard KCI
solution (0.5 mol l�1).

Data analysis

All the original data of leaf osmotic potentials of different species
and soil matric potentials in different habitats were entered into
SPSS for the preliminary statistic. The correlation between osmotic

potentials and rooting depth was calculated using the non-
parametric Kendall’s correlation test. Patterns were performed
using the SIGMAPLOT, and program and tabulations were
produced using EXCELL.

Results

Changes of osmotic potentials among species

The results showed (Table 2) that the 104 species
measured had quite different osmotic potentials values,
ranging from �0.44 MPa in Digitaria ischaemum to
�6.54 MPa in Caragana microphylla. Spiraea trilobata,
Clematis aethusifoli a and Artemisia frigid had relative
lower values of osmotic potential, with �4.83 MPa,
–3.94 MPa and �3.34 MPa respectively. However, 75%
of species had ys from �1.01 MPa to �3.0 MPa. Some
species (18%) showed ys higher than �1.0 MPa, with only
7% of the species in Hunshandak possessing ys lower
than �3.0 MPa.

Table 2 (continued)

Family Species Growth
form

Photosynthetic
way

Habitats Roots depth
(cm)

y s (MPa)

Leguminosae Gueldenstaedtia multiflora Bunge. G C3 F 41 –2.01€0.07
Polygonacaceae Polygonum divaricatum L. G C3 F 42 –1.47€0.07
Leguminosae Melilotus suaveolens Ledeb. G C3 L 45 –1.48€0.19
Caryophyllaceae Dianthus chinensis L. G C4 F 45 –2.75€0.15
Chenopodiaceae Chenopodium aristatum L. G C4 F 45 –3.04€0.14
Urticaceae Urticaceae cannabina L. G C3 F 46 –1.92€0.47
Polygonacaceae Polygonum sibiricum Laxm. G C3 F 50 –1.52€0.08
Gramineae Phragmites australis (Cav.) Trin. G C3 L 50 –1.56€0.24
Ranunculaceae Thalictrum squarrosum Steph.ex Willd G C3 F 50 –1.67€0.73
Caryophyllaceae Silene repens var.angustifolia Turcz. G C4 F 50 –2.29€0.36
Leguminosae Thermopsis lanceolata R.Br. G C4 F 50 –2.58€1.04
Umbolliferae Bupleurum sibiricum Vest. G C3 F 55 –2.30€0.73
Liliaceae Asparagus schobcrioides Kunth G C3 F 56 –2.98€0.08
Salicaceae Salix matsudana Koidz G C3 L 60 –1.61€0.17
Gramineae Cleistogenes squarrosa (Trin.) Keng G C3 F 60 –1.96€0.22
Leguminosae Sphaerophysa salsula (Pall.) DC.Prodr. G C3 F 60 –2.08€0.43
Saifragaceae Ribes pulchellum Turez. S C3 F 60 –2.16€0.62
Compositae Artemisia argyi L�vl. et Van. G C3 F 60 –2.52€0.27
Cruciferae Thellungiella salsuginea (Pall.) Schulz G C3 F 64 –2.08€0.33
Leguminosae Hedysarum scoparium Fisch. et Mey. S C3 F 70 –1.76€0.10
Leguminosae Medicago falcate L. G C3 F 70 –1.97€0.28
Gramineae Bromus inermis Leyss. G C3 F 80 –1.76€0.21
Iridaceae Iris lactea Pall.var.chinensis Fisch. G C3 L 80 –2.16€0.07
Chenopodiaceae Agriophyllum pungens (Vahl) Link G C3 F 90 –1.40€0.08
Salicaceae Salix gordejevii L. S C3 F 90 –2.62€0.15
Ranunculaceae Clematis aethusifolia Turcz. G C4 F 90 –3.94€0.42
Solanaceae Lycium chinense Mill. S C3 F 96 –1.98€0.15
Rosaceae Malus baccata (L.) Borkh. T C3 F 100 –2.99€0.09
Rosaceae Spiraea trilobata L. S C3 F 100 –4.83€0.71
Gramineae Psammochla villosa (Trin.) Bor G C3 F 100 –2.12€0.17
Caprifoliaceae Lonicera chrysantha Turcz. S C4 F 100 –2.66€0.17
Leguminosae Amorpha frnticosa L. T C3 F 100 –1.96€0.20
Compositae Artemisia frigida Willd. G C4 F 100 –3.34€0.26
Ranunculaceae Thalictrum petaloideum L. G C3 F 100 –3.29€0.28
Leguminosae Astragalus efoliolatus Pall. G C3 F 100 –1.55€0.53
Salicaceae Salix microstachya. S C3 F 120 –2.6€0.15
Betulaceae Betula fruticosa Pall. T C3 F 120 –1.51€0.17
Gramineae Achnatherum splendens (Trin.) Nevski. G C3 L 150 –2.33€0.03
Ulmaceae Ulmus pumila L. var. sabulosa Zhao. T C3 F 200 –2.28€0.38
Leguminosae Caragana microphylla Lam. S C3 F 250 –6.54€0.29
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Variations in different plant functional types

Among trees, shrubs and grasses, shrubs were found to
have the lowest osmotic potential, with an average value
being �3.19 MPa, while grasses showed the highest ys. In
terms of ys the order is as follows: shrubs<trees<grasses
(Fig. 2). Plants with different photosynthetic pathways
showed different values of ys. The lowest and the highest
ys appeared in C4 plants and CAM plants (Fig. 2). Deep
rooted plants had relatively low leaf osmotic potentials.
Further, we have observed that leaf ys was significantly
negatively correlated to rooting depth in all habitats
(r2=0.42, P <0.001) (Fig. 3).

Leaf osmotic potentials in different habitats

Leaf osmotic potentials increased along with the elevation
of soil salt content from fixed sand dune, to lowland to
wetland. Plants living in the wetland showed the highest
ys, while those in the fixed sand dune had the lowest ones.
There was a great fluctuation in the ys values of species
distributed in different habitats, with the average value
changing from �0.85 MPa in wetland, to �2.43 MPa in
fixed sand dune (Fig. 4).

Discussion

Although leaf osmotic potentials could be affected by
many eco-physiological features of plants, e.g., leaf
longevity (Kontunen-Soppela and Laine 2001), and leaf
water content (Esch and Mengel 1998), it is an innate
physiological characteristic of plants and shows the
ability of plants’ tissues to absorb water moisture from
soil. Furthermore, environmental factors such as precip-
itation (Matos et al. 1997; Terwilliger and Zeroni 1994),
temperature (Laroche et al. 2001), light intensity (Marce-
lo et al. 2000) and soil salt content (S�nchez-Blanco et al.
1998; Zimmermann et al. 2002), can impact leaf ys, so the
value of ys reflects the capability of plants to resist
unfavorable environmental conditions.

In the present study, we have found that perennial
shrubs showed the lowest ys, followed by trees (Fig. 2).
The result may indicate that perennial woody plants
possess lower ys than annual plants through which strong
resistance to drought stress could be developed (Sarvas
1974; Ismael et al. 2000; Andrea and Sebastiano 2000;
Garc�a-Plazaola and Becerril 2000). This may also be due
to xeric characteristics such as small leaf area (Li 1996),
few stomata (Meinzer 2002), thick leaves (Liu 1986),
high osmoprotectant (Hare et al. 1998) and extensive root
systems (Batanouny 2001). For instance, the woody
species Caragana microphylla with small leaf area in

Fig. 3 Regression relationship between rooting depth and osmotic
potential of all tested plants in three different habitats in
Hunshandak Sandland. The relationship is correlate significant at
P <0.001 level and equation is expressed as Y=�0.0146 X�1.1289
(r2=0.42, n=104). The osmotic potential values were obtained
through three replications of each plant

Fig. 4 The average leaf osmotic potential of all species in three
habitats in the Hunshandak Sandland. The mean values of all plants
in the same habitats are presented

Fig. 2 Osmotic potentials of different plant functional types (PFTs)
in Hunshandak ( AG annual grasses, PG perennial grasses). The
mean values of all plants with the same PFT are presented
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the present study showed extensive roots as well as low ys
(Table 2). The relationship between leaf ys and rooting
depth will be discussed later.

Compared with those of C3 and CAM, the lower
osmotic potentials in C4 plants (Fig. 2) may be associated
with high photosynthetic rates (Jiang et al. 1999) and
accumulation of photosynthesis-soluble sugars (Walter
1974; Lawlor and Cornic 2002). It has been well
documented that accumulated osmolytes derived from
photosynthesis-soluble sugars induce low osmotic poten-
tial in some species (Guicherd et al. 1997; Alarc�n et al.
1993; Mendes et al. 2001). Further experiments need to
demonstrate this phenomenon.

The CAM photosynthetic pathway plant, Orostachys
malacophyllus , possessed a higher osmotic potential in
the present research (Fig. 2). The probable reason may be
due to the water status of its cell protoplasts that is largely
independent of the water status of the environment (Smith
and L�ttge 1985; Wicken 1998; Herrera et al. 2000).

The deep rooting systems of plants are particularly
important in maximizing water absorption from deep
soils. The results obtained by several researchers con-
firmed that the rooting depth of seedlings might increase
significantly in response to drought (Reader et al. 1992;
Serraj and Sinclair 2002). In our experiment, we found
that the deepest rooting plants presented lowest ys
(Fig. 3). The negative linear correlation between leaf ys
and rooting depth observed in both habitats (r2=0.42; P
<0.001) (Fig. 3) indicated the strong effect of plant root’s
depth on ys, mediated either by hydraulic pressure
(Etherington 1975) or drought (Shalhevet 1993). Low ys
in leaves will support the maintenance of a potential
gradient for water uptake at low soil water potential under
high evaporative demands causing deficits in the plant
(Kassas and Batanouny 1984; Daudet et al. 2002). The
relationship between rooting depth and osmotic potential
is interactive. Even as for annual grasses, species with
lower ys usually had deeper root systems (Fig. 3),
indicating that the plants escape progressive desiccation
of the upper soil layers through rapid root growth
reaching the permanently wet layer (Migahid and Abdel
1953; Levitt 1980; Batanouny 2001).

The osmotic potentials of some plants, i.e. Atriplex
halimus, and Limonium delicatulum, growing in saline
habitats are lower than individuals growing in other
habitats (Khan and Aziz 1998; Walter 1964). In contrast,
we found that leaf ys increased with elevating soil salt
content in different habitats (Fig. 4). Sufficient soil water
availability in the top 0–40 cm soil layer (Table 3) of
wetland might contribute to it, since ys is closely related
to the water supply (Munns 2002; Batanouny 1980).
Another reason may be that plants were adapted to avoid
the effects of salt (Bao 1994).

In conclusion, the leaf osmotic potentials of 104
species in Hunshandak Sandland were strongly species-
specific. However, there were great differences that were
closely related to different PFTs and habitats. Deep
rooting plants, perennial woody plants and C4 plants had
lower values of leaf ys, with the series: deep root-

ing<shallow rooting, shrubs<trees<grasses and
C4<C3<CAM. In different habitats, leaf ys decreased
with increasing wetness, with the order being fixed sand
dune<lowland<wetland.
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