
Abstract This paper is the first of a series focusing on the
biomechanical analysis of live trees. The finite element
method (fem) is the most common method used for the
analysis of complex mechanical structures. Several fem
industrial codes exist, but they need to be adapted to cal-
culate the mechanical behaviour of growing trees. A gen-
eral incremental model has been developed for this specif-
ic application. In this model, time was discretised and for
any developmental stage, a new equilibrium was written
considering the increment of weight due to the mass of
new wood layers and new vegetative elements being add-
ed. Maturation strains of new-formed cells were also con-
sidered for the simulation of the shoot reorientation pro-
cess. This model was intended for use at the whole plant
level. A multi-layer beam finite element is presented,
which is well adapted to discretise tree limbs. The shape
evolution of the structure was represented at each time
step by the nodal displacement vector. The mechanical
stresses induced as a result of growth were determined
within the stem using a cumulative process taking into ac-
count the past history of each growth ring. The first basic
results of growth stresses and shape evolution were com-
pared with already published results at the branch level.

Keywords Trees · Biomechanics · Growing structure ·
Finite element method · Multi-layer beam element

Introduction

The stem and branches of trees undergo internal stresses
which are due to two types of actions: the self-weight of

the structure, which mainly results in compression forces
and bending or torsion moments, and internal growth
stresses which originate in xylem during cell lignifica-
tion (Archer 1986). In both cases, the development of in-
ternal stresses and the deformation of tree limbs must be
considered as a cumulative process and account for
growth and architectural patterns of the plant, as well as
its loading history. In the past, several analytical models
have been developed in order to calculate growth stresses
at a local level in the stem (Kubler 1959; Gillis 1973;
Archer 1986; Fournier et al. 1990). These studies found
a technological interest that has mainly focused on the
splitting or twisting of planks. Studies on the analysis of
the movement of growing branches submitted to self-
weight have also been carried out (Ford 1985; Cannell et
al. 1988; Castéra and Morlier 1991; Alméras et al. 2002).
The main goal of these studies is to determine if a rela-
tionship exists between geometry and weight of axes, so
that the deflection of the structure remains within allow-
able loading limits. However, when the stresses and
shape of a structure are calculated as cumulative process-
es, this concept should be valid at any stage of develop-
ment. Some interesting studies have considered these
two mechanical aspects at the same time, i.e. bending of
the stem under incremental loads as well as reorientation
due to non-axisymmetric maturation strains (Wilson and
Archer 1974; Fournier et al. 1994). This last approach
has been maintained in this current paper in order to ana-
lyse numerically the relationships between the swaying
movement of the stem and the heterogeneity of the inner
wood structure, e.g. occurrence of reaction wood and cu-
mulated growth stresses. The finite element method
(fem) is the most common numerical method used in sol-
id mechanics to determine the stress, strain and displace-
ment fields in an equilibrated domain (Zienkiewicz and
Taylor 1998). However, fem industrial software is not
adapted to calculate the mechanical behaviour of live
trees. Instead, a general incremental finite element for-
mulation has been developed. This model took into con-
sideration the progressive volume extension due to
growth, as well as the resulting incremental biomechani-
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cal behaviour, i.e. superposition of stresses and strains,
deformation of the structure and biomechanical response
to gravitropism (Timell 1986). In a new and original ap-
proach this model has been applied at the whole tree 
level rather than at the plant organ level (Mattheck and
Kubler 1995). For this purpose, the description of a 
Bernoulli 3D multi-layer beam element is presented. The
geometry of such an element is appropriate to describe
tapered structures. The multi-layer model is also a natu-
ral choice with regards to the radial variation of wood
properties that results from the growth of the cross-sec-
tion. Simple applications of the model have been run.
Growth stress calculations have been compared to the
Kubler (1959) analytical formulation in the case of a cyl-
inder that was submitted to axisymmetrical maturation
strains. Shape evolution of a single growing branch is
shown and discussed. The application to branching struc-
tures will be presented in a subsequent paper.

Materials and methods

Model development, general incremental formulation

In solid mechanics, the calculation of stresses, strains and dis-
placements by fem is carried out by discretising the displacement
field. This discretised field is substituted into the expression of the
virtual work principle (VWP) (Zienkiewicz and Taylor 1998).
Discretisation is obtained choosing control points or nodes in the
domain and writing the displacement field under the form

(1)

in which U is the column vector which contains the three displace-
ment components Ux, Uy and Uz with regards to the global referen-
tial axis; q is the column vector containing all the unknown nodal
displacements. Matrix N contains shape functions depending on
spatial co-ordinates. Usually, these functions are polynomials, the
degree of which depends on the number of nodes.

The strain field can then be expressed as

(2)

The strain shape function matrix B is inferred from N by deriva-
tion according to strain-displacement relations.

A growing tree is a domain that is evolving. For numerical cal-
culation, the time variable has to be discretised. At any time tn that
the equilibrium of the domain Ωn is reached, the equations to be
satisfied are written in the standard form of VWP

(3)

BT is the transpose of matrix B. σn is the column vector of the
stress field components; fn is the vector of nodal external loads ap-
plied on Ωn at time fn. This vector can contain concentrated loads,
e.g. fruit or leaf weight, as well as equivalent nodal forces due to
distributed loads such as self-weight or prevailing wind loading.

After a period of time ∆tn=tn+1–tn when growth has occurred,
the structure has occupied the new domain Ωn+1 which can be ex-
pressed by

(4)

corresponds to the domain Ωn which has been deformed under
the applied loads during ∆tn. ∆Ωn is the new volume of material
resulting from the growth at the periphery of Ωn.

The new equilibrium at time tn+1 is naturally written as

(5)

In order to simplify the demonstration, the strain shape function
matrix B used in Eq. 3 has been extended to the new domain ∆Ωn.
Rigorously, nodes have to be added in ∆Ωn and strain shape func-
tions have to be recalculated. In both cases, strains are continuous
at the interface of the two domains Ωn and ∆Ωn.

The fem incremental formulation, representing the new equi-
librium reached during the period of time ∆tn, results from the dif-
ference (Eq. 5)–(Eq. 3) with regards to Eq. 4. Assuming that the

deformed domain is very close to the initial domain ,
this incremental formulation can be written as

(6)

Let σn+1–σn=∆σn and fn+1–fn=∆fn. As the part ∆Ωn did not exist be-
fore time tn+1, it can be considered that σn=0 in ∆Ωn, i.e. σn+1=∆σn
in ∆Ωn. Finally, the finite element formulation of the equilibrium
equations, which must be satisfied during the time increment ∆tn
is given in the incremental form:

(7)

This equation only concerns the equilibrium of the incremental
loading that is applied on the whole structure during the period
∆tn. Compared to the classical incremental formulation used for
time dependent problems (Owen and Hinton 1980), the presence
of the second term in the left-hand member, which refers to the
equilibrium of the new domain ∆Ωn should be noted.

Equation 7 can now be written in terms of nodal displace-
ments. According to Eq. 2, the strain increment is expressed as

(8)

The strain ∆εn can be separated into elastic and maturation
strains as

(9)

Maturation strains (MS) refer to the volume changing of new
wood cells during differentiation and maturation process. MS in-
crement occurring in a time interval ∆tn=tn+1–tn is defined by:

(10)

Using Eq. 9 and Eq. 10, the constitutive equation is written in in-
cremental form

(11)

denoting D the material stiffness matrix at the current material
point. As D could be time dependent, an index n has to be added
to the term.

Substituting from Eq. 8 the strain increment in Eq. 11, incre-
mental form Eq. 7 is resumed to the linear system

(12)

Kn is the stiffness matrix that is used to calculate the equilibrium
of domain Ωn+1, ∆Fn is the sum of both the nodal vector of exter-
nal static load increment ∆fn, and the nodal load vector ∆Λn issu-
ing from MS:

(13)

The ∆εn continuity assumption at the interface of the two domains
Ωn and ∆Ωn allows the MS restraint by the internal core Ωn to be
taken into consideration. This restraint induces displacements. The
load vector Eq. 13 creates the same increment of node displace-
ments as the MS.
The matrix Kn is given by

(14)
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Finally, at each period of time ∆tn, we get:

1. The displacement increment ∆qn, solving the system given by
Eq. 12

2. The strain increment ∆εn substituting ∆qn back into Eq. 8
3. The stress increment ∆σn from Eq. 11.

The growth stresses occurring in the domain Ωn+1 are calculated
using the recurrence formula:

(15)

During the total period of growth (t0, tN), the incremental process
which is described above is repeated N times. Due to the cumula-
tive process (Eq. 15), stresses at time tN could be written as

(16)

Nevertheless, considering new layers ∆Ωp(P=0, N–1) appear suc-
cessively, it is necessary to take into consideration the date tp
when ∆Ωp has been made. Let be the stress increment calcu-
lated during the period of time ∆tn in the domain ∆Ωp, the total
stresses in this domain at tN results from the addition of N–p incre-
ments according to the formula

(17)

Regarding to this cumulative formula, it appears that the growth
stress field in a layer ∆Ωp depends on the age of this layer, i.e. the
older the layer, the more increments that have been cumulated.
Eq. 17 is a time discretised formulation of growth stresses which
is useful for numerical calculations. The continuous analytical ex-
pression was first described by Kubler (1959) for axisymmetric
growth. This was used to validate the finite element approach that
is presented here.

Finite element calculation of a complex structure requires the
geometrical domain to be discretised with simple shape elements
(mesh). The discretisation of the displacement vector U (Eq. 1) is
written at the element level, i.e. the shape functions are calculated
on each element e. Element e is associated with an elementary
stiffness matrix which can be written like Eq. 14 in the form

(18)

The global stiffness matrix Kn comes from the assembly of ele-
mentary stiffness matrices . This assembly phase is described by
Zienkiewicz and Taylor (1998). Calculation of vector ∆Fn is per-
formed in the same way using the two elementary nodal load vec-
tors and . The next paragraph shows the calculation of
these elementary vectors in the case of using beam elements.

Modelling growth with beam elements

Slender branch shape results from growth speed differences be-
tween radial and axial directions. Beam theory which is based 
on decoupling between the axial direction x and the (y, z) trans-
verse plane (cf. Appendix), is particularly well adapted to model
structures composed of elongated limbs. The above general incre-
mental theory has been developed for a multilayer 3D straight 
Bernoulli beam element.

The strain/displacement relations (Eqs. 2, 8) are defined con-
sidering the decomposition Be=G(y, z)be(x) where matrices G and
be are given in the Appendix (Eqs. 33, 35). Beam element e is de-
scribed by its constant length Le and its cross-section area . Sec-
ondary growth is taken into account extending matrix G to the
new peripheral layer . The elementary stiffness matrix (Eq. 18)
then becomes

(19)

This extension induces the cross-section area remains
plane during ∆tn. This modelling is a simple way
to take into account the restriction of MS by the internal core .

Growth in length requires new elements to be added to the
stem extremity, involving all the elements that did not have the
same age at a fixed time. Denoting tp(e) the date of creation of ele-
ment e, the total cross section area results from the addition of
n–p(e) layers according to the formula

(20)

Substituting Eq. 20 in Eq. 19 and using the factorised expression
of Be allows the elementary stiffness matrix to be calculated as

(21)

where is the 3×3 diagonal material stiffness matrix in the layer
which appears at tj in element e. The term between the square
bracket is the 4×4 multi-layer beam stiffness matrix. It depends on
the cross-section shape and it can be calculated explicitly for sim-
ple forms or by a numerical integration scheme.

If self-weight is the only external force considered, the vector
of nodal load increment applied at tn on element e is expressed us-
ing an incremental form of Eqs.39 and 40.

(22)

where is the vector of concentrated loads at nodes and the
vector of distributed loads defined by

(23)

Substituting Eq. 37 in Eq. 13 gives the nodal load vector issu-
ing from MS:

(24)

The term between the square brackets is the 4×1 vector of forces
and moments cinematically equivalent to the restrained MS. The
calculation of this vector is governed by the choice of models de-
scribing the cross-section shape and the vector of MS .
Samples will be shown in a sec-
ond part of this series of papers. For instance, it is easy to show
that axisymmetric models for both and do not induce
bending moments nor torsion moment, but only axial load.

Results and discussion

Growth stresses in an axisymmetric case

A very simple case of growing cylindrical solid has been
considered in order to evaluate the model of growth
stress calculation (Eqs. 7–17). The domain grows in the
radial direction, reaching radius R at time T. Length L
was fixed. The material was assumed to be elastic, iso-
tropic and homogeneous, with constant longitudinal
Young’s modulus E. Self weight has been neglected here
in order to focus on stresses due to MS. New layers were
submitted to constant and homogeneous axisymmetric
longitudinal MS α0. In this example cross-sections were
supposed to move in the longitudinal direction without
distortion. The longitudinal displacement component Ux
then depends on the single longitudinal variable x. Two
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nodes are sufficient to discretise the problem. One node
was clamped and the displacement Ux of the other one
was denoted q as presented in Fig. 1. According to Eq. 1,
the displacement field Ux was linearly interpolated on in-
terval [0, q] as . Matrices B and D were reduced
to scales: B=1/L and D=E.

During the period of growth [t0=0, tN=T], N steps of
calculation have been considered. Let ∆Sn be the layer
cross section area which has been formed during the pe-
riod ∆tn=tn+1–tn and Sn the inner cross section area of the
domain that already existed at the beginning of the step.
The new equilibrium at this stage was given by the linear
system Kn∆qn=∆Λn. The global stiffness matrix was cal-
culated using Eq. 14: . Nodal axial load
due to MS was given by Eq. 13 : ∆Λn=Eα0∆Sn.

The n+1th displacement increment of the top node
was then . At any point in the layer ∆Ωp,
which appeared at tp, growth stresses were calculated at
time T with regards to Eq. 8, Eq. 11 and Eq. 17:

(25)

The famous continuous analytical expression σ(r)=
–Eα0(1+2ln r/R) of accumulated growth stresses given
by Kubler (1959) can be easily deduced from Eq. 25 by
tending the step number N towards infinity. When the in-
cremental cross-section area is small enough, it can be
neglected at the denominator and approximated at the
numerator as ∆Sn≈2πrn∆rn where . At the limit,
the sum is substituted by an integral in Eq. 25. It be-
comes

where rp is the external radius of the cylinder at time tp.
Calculation of this integral gives the Kubler’s formula
for r=rp.

The model has been run considering N=10, 20 and
100 steps of calculation (rings) to reach radius R. Results
are presented in Fig. 1 taking the following characteris-
tics: α0=–200 µdef, E=3,000 MPa.

Branch shape simulation

Our finite element model has been applied to calculate
the shape evolution of a non-ramified growing branch.
At each period of time ∆tn, both primary lengthening and
radial extension were considered. A series of multi-layer
cylinders have been used to approximate tree branch ge-
ometry (Fig. 2). Each new length increment has been
represented by a new cylinder. Each new ring appearing
at the branch periphery has been represented by a new
layer on the existing cylinders. The branch was submit-
ted to the corresponding increment of weight. As they
were considered thin enough, i.e. with a small diame-
ter/length ratio, the cylinders were modelled using Ber-
noulli 3D beam elements (cf. Appendix). For each step
n⊂[0, N–1], global stiffness matrix Kn was assembled us-
ing the expression of given in Eq. 21. In the same
way, assembly of the nodal incremental load vector ∆Fn
was performed using elementary vectors given in
Eq. 22. Maturation strains did not have been considered,
i.e. for all elements. Additional concentrated
loading has also been taken into consideration when the
branch was supposed to bear needles. At each step of
calculation, the displacement increment ∆qn was ob-
tained solving Eq. 12. The branch geometry was updated
at the end of the step calculating the new node co-ordi-
nates of elements. The following growth was applied to
the deformed shape.

The following numerical inputs were chosen accord-
ing to averaged measured data of maritime pine trees
(Pinus pinaster Ait.). The branch initial leaning angle is
50° from vertical. At any step, the length of new ele-
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Fig. 1 Comparison of growth
stress calculation with Kubler’s
analytical model (1959) for 10,
20 and 100 steps of calculation



ments, which correspond to the new growth units (GU)
appearing at the branch top, is fixed to 25 cm. The evo-
lution of element radius during the simulation is given in
Table 1. Wood material is considered homogeneous and
isotropic. The longitudinal Young’s modulus is fixed to
3,000 MPa. The distributed load density Py is taken as
1 g.cm–3. Two strategies of primary growth have been
tested. The first one assumed that the new element that
appeared at any stage n was oriented in the direction of
the bearing element (Fig. 3a). The second strategy as-
sumed that the new element was connected with a fixed
global orientation of 50° from vertical (Fig. 3b). This last
example has been also simulated taking into account ad-
ditional loading due to the existence of needles
(Fig. 3b’). Each group of needles weighed 20 g and it
was supposed to stay on the branch during five complete
steps (needle life span). Global vector of concentrated

load increment has been applied according to scheme
Fig. 4. To be rigorous, two calculations per step would
be performed in order to take into account the appear-
ance and disappearance of total leaf weight for decidu-
ous leaves. We performed only one calculation per step. 

Numerical results of simulated branch shape evolu-
tion (Fig. 3) are given in Table 2 for the three samples. It
is clear that branch form is highly sensitive to the distri-
bution of needle biomass as well as the orientation of
new vegetative elements that appear at the branch tip.
Similar calculations using a finite difference method
have been performed by Castéra and Morlier (1991),
considering more complex and realistic loadings. How-
ever, resulting branch shapes are comparable to those
shown in the present paper.
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Fig. 2 Geometrical representa-
tion of a tree axis. At each 
cycle of growth, a new layer of
matter ∆Ωn appears on the ex-
isting structure Ωn. The axis
geometry has been approximat-
ed by a series of multi-layer
cylinders. According to this
representation, the structure
was discretised with beam ele-
ments ei that were connected to
each other by nodes ni. Growth
in length (primary growth)
needed to have one or more
new elements introduced at the
top end whereas cross-section
extension (secondary growth)
was taken into account by add-
ing a new cross-section area
∆Sn at the element periphery

Table 1 Time evolution of growth unit radius (mm) of simulated branch

Growth 20 0.20
Unit 19 0.20 0.66
number 18 0.20 0.64 0.89

17 0.20 0.62 0.86 1.07
16 0.20 0.60 0.83 1.03 1.21
15 0.20 0.57 0.80 0.99 1.16 1.32
14 0.20 0.56 0.77 0.95 1.12 1.27 1.42
13 0.20 0.53 0.74 0.91 1.07 1.22 1.36 1.50
12 0.20 0.52 0.71 0.88 1.03 1.17 1.31 1.44 1.57
11 0.20 0.50 0.69 0.85 0.99 1.13 1.26 1.39 1.51 1.64
10 0.20 0.49 0.67 0.82 0.96 1.09 1.21 1.34 1.46 1.58 1.70

9 0.20 0.48 0.65 0.80 0.93 1.05 1.17 1.29 1.41 1.52 1.64 1.75
8 0.20 0.46 0.63 0.77 0.90 1.02 1.13 1.24 1.35 1.46 1.58 1.69 1.80
7 0.20 0.45 0.61 0.75 0.87 0.98 1.09 1.20 1.30 1.41 1.52 1.63 1.73 1.85
6 0.20 0.43 0.59 0.72 0.84 0.95 1.06 1.16 1.26 1.36 1.46 1.57 1.67 1.78 1.88
5 0.20 0.42 0.57 0.69 0.81 0.92 1.02 1.12 1.22 1.31 1.41 1.51 1.61 1.71 1.81 1.92
4 0.20 0.39 0.53 0.66 0.77 0.87 0.97 1.07 1.17 1.26 1.35 1.45 1.54 1.64 1.74 1.84 1.95
3 0.20 0.40 0.52 0.64 0.74 0.84 0.94 1.03 1.13 1.22 1.31 1.40 1.49 1.58 1.68 1.78 1.88 1.98
2 0.20 0.35 0.49 0.59 0.70 0.80 0.89 0.98 1.07 1.16 1.25 1.34 1.42 1.52 1.61 1.70 1.80 1.90 2.00
1 0.20 0.35 0.45 0.57 0.66 0.75 0.84 0.93 1.02 1.11 1.20 1.28 1.37 1.45 1.54 1.63 1.73 1.82 1.92 2.02

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Step number
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Fig. 3a, b Stepwise evolution of branch shape during growth simu-
lation under self weight loading. a Apical growth occurred in the di-
rection of the bearing element; b apical growth occurred in a fixed
global direction; b’ addition of concentrated loads due to needles

Fig. 4 Application of concentrated load increment corresponding
to needle weight. A weight increment was applied when new
group of needles appeared at the top branch. The weight of nee-
dles older than 5 years was removed

Conclusion

The study of plant biomechanics is used to investigate
the relationship between the growth and the mechanical
behaviour of plants under internal or external loading.
For this purpose, an incremental finite element formula-
tion of a linear elasticity problem has been presented.
The originality of this model is its adaptation to growing

structures, i.e. domains with time dependent volume.
The time is discretised in periods during which a new
layer of matter is added on the external surface of the
volume. Load increments – which can originate both
from weight increment, maturation strains in the new
domain and other external forces – are applied on the
new whole domain. The general fem formulation, which
is given in this paper, can be used to investigate classi-
cal problems such as calculation of growth stress distri-
bution in a piece of wood (Kubler 1959; Archer 1986).
Growth stresses calculated with this formulation were in
coherence with the Kubler analytical model in the axi-
symmetric case. Shape evolution of a growing branch
(Archer and Wilson 1970; Castéra and Morlier 1991;
Fournier et al. 1994) can also be investigated with this
numerical approach. However, the most original appli-
cation is at the tree level. This provides an interesting
numerical way to supply physiological functions and
mechanical support (Niklas and O’Rourke 1982; Mor-
gan and Cannell 1988) considering the whole branching
system. For this purpose, a 3D multi-layer beam ele-
ment has been proposed. This element integrates the ra-
dial extension and cumulative stress processes. The
model has been applied to very simple examples at the
stem or branch level. Realistic shapes have been ob-
tained in accordance with the literature. This general
method could be implemented in existing plant architec-
ture simulation software. This is the subject of a subse-
quent paper.
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Appendix

In beam theory, plane sections remain plane during the deforma-
tion process and suffer no extension. The thin beam theory adds
the well-known Bernoulli-Euler assumption. This consists of ne-
glecting shear deformations due to flexion, which is equivalent to
stating normals remain normal during the deformation. Using
these assumptions the local displacements can be written under a
form where transversal co-ordinates y and z are separated from the
longitudinal co-ordinate x:

(26)

The generalised displacements (Fig. 5) ux, uy, zu, ω, , are
functions of the single variable x.

The strains are available as

(27)

with the generalised strains, i.e. traction strain ε, flexion strains Ky
and Kz, torsion strain Kx, given in terms of generalised displace-
ments as

(28)

Nodes of a beam finite element are positioned on x-axis. Nodal
displacements correspond to the generalised displacement values
given at each node. Figure 6 shows the numbering of the nodal
displacements for two node beam element. Shape
functions which are classically associated with a Bernoulli beam
element are Lagrangian first order polynomials (L functions) and
Hermitian third order polynomials (H functions).



(29)

where Le is the length of the element and is the dimension-
less co-ordinate.

The choice of such shape functions makes certain displace-
ment continuity from one element to another. Displacement disc-
retisation is written as

(30)

or under the matrix form

(31)
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Table 2 (X, Y) positions (cm)
of element nodes at simulation
steps 1, 10, 15 and 20 for
branches a apical growth oc-
curred in the direction of the
bearing element; b apical
growth occurred in a fixed
global direction; and b’ addi-
tion of concentrated loads due
to needles

Fig. 5 In beam theory, the displacements U of any point M are de-
fined by the six components of the generalised displacements. ux,

uy, uz are the displacements of point G. ω, are the posi-
tive rotations of the cross-section normal . are the local
directions of the beam. is called the beam reference axis

Fig. 6 Numbering of the nodal displacement vector components
in the local axis attached to element e

Branch a Branch b Branch b’ Branch a Branch b Branch b’

X Y X Y X Y X Y X Y X Y

Step 1 Step 20
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

19.2 16.0 19.2 16.0 20.6 14.4 20.5 14.4 20.4 14.4 22.6 11.0

Step 10
42.9 25.5 42.7 25.8 47.6 15.5

0.0 0.0 0.0 0.0 0.0 0.0
66.6 33.7 66.2 34.6 73.2 15.5

19.8 15.2 19.8 15.2 22.0 12.1
91.1 39.2 90.5 41.3 98.8 12.8

40.6 29.1 40.5 29.3 46.0 20.2
116.2 42.2 115.2 46.2 124.2 7.9

62.2 41.9 61.8 42.4 70.9 26.2
141.4 43.1 140.2 49.8 149.4 1.9

84.2 53.8 83.4 55.2 95.8 31.7
166.8 42.0 165.3 52.5 174.6 –4.9

106.7 64.9 105.1 67.7 121.0 37.1
192.0 39.2 190.6 54.5 199.7 –11.9

129.4 75.5 126.8 80.3 145.9 43.2
217.1 35.0 216.0 56.3 225.0 –18.7

152.3 85.7 148.2 93.3 170.5 50.5
242.0 29.5 241.4 58.2 250.4 –25.1

175.4 95.6 169.3 106.9 194.5 59.2
266.7 22.9 266.7 60.4 276.0 –30.5

198.5 105.2 189.9 121.1 217.8 69.7
291.1 15.4 292.1 63.2 301.8 –34.9

221.7 114.6 209.9 136.2 240.0 82.2
315.3 7.2 317.3 66.9 327.8 –37.8

Step 15

339.2 –1.7 342.3 71.7 353.9 –39.0

0.0 0.0 0.0 0.0 0.0 0.0

363.0 –11.0 367.0 77.7 379.9 –38.3

20.2 14.8 20.1 14.8 22.3 11.5

386.5 –20.7 391.3 85.2 405.8 –35.5

41.8 27.4 41.7 27.6 46.9 17.8

409.8 –30.7 415.0 94.3 431.1 –30.4

64.5 37.9 64.1 38.7 72.3 20.8

433.0 –40.8 437.8 105.1 455.8 –22.9

88.0 46.8 87.2 48.5 97.9 22.0

456.0 –51.2 459.7 117.6 479.4 –13.0

112.1 54.1 110.7 57.5 123.7 22.1

478.8 –61.6 480.3 131.9 501.7 –0.7

136.5 60.1 134.4 66.0 149.5 22.0
161.2 64.9 158.2 74.2 175.4 22.0
186.2 68.8 182.0 82.5 201.3 22.6
211.2 71.9 205.6 91.2 227.1 24.2
236.4 74.4 229.1 100.5 252.8 27.1
261.5 76.3 252.2 110.5 278.2 31.5
286.7 77.8 274.9 121.5 303.2 37.6
311.9 79.0 296.9 133.7 327.6 45.7
337.0 79.9 318.2 147.0 351.1 55.8
362.1 80.7 338.5 161.6 373.4 68.2
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Substituting Eq. 30 in Eq. 28 we obtain the generalised strain
shape matrix be so that

(32)

with ee the column vector containing εe, , , for element e.
Matrix be is given by:

Equation 27 is written in the matrix form

(34)

where εe is the column vector containing , and matrix G
is defined by

(35)

Substituting Eq. 32 in Eq. 34, we obtain strain expressions in
terms of nodal displacements:

(36)

The strain shape matrix Be due to beam assumptions have the fol-
lowing particular form

(37)

The elementary nodal load vector fe due to self weight is defined
as performing the same mechanical work into nodal displacement
qe as body forces Pe into displacement Ue. This definition is 
written as

(38)

where Ωe is the volume of element e.
The beam cross-section area Se is supposedly small enough to

neglect moments of body forces, i.e. using notation in Fig. 5,
. According to Eqs. 26 and 31, fe is given by

(39)

where pe is the 4×1 vector of self-weight distributed density

(40)

30

(33)


