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Abstract Transgenic trees are major products of tree
biotechnology. This relatively young field of both plant
biotechnology and tree biology concentrates on (1) im-
provement of pathogen, pesticide, and stress resistance,
(2) manipulation of lignin content and composition, and
(3) improvement of growth. Transgenic trees also have a
great potential in other areas of applied and environmen-
tal research, such as in the production of phytochemicals
and in phytoremediation of polluted soils. However, ge-
netically modified trees are also excellent tools for phys-
iological research. Transgenic trees are indispensable in
investigations of the regulation of wood formation, long-
distance transport, and tree growth cycles. In addition,
transgenic poplars contribute significantly to our under-
standing of the regulation of sulfur nutrition. In this re-
view we concentrate on the use of transgenic tree species
to improve knowledge in tree and, more generally, plant
physiology rather than to cover extensively the field of
commercial tree biotechnology or the biological safety
of transgenic plant release.
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Introduction

Since the first successful transformation of a tree spe-
cies in 1987 (Fillatti et al. 1987) transgenic trees have
become essential tools for forest tree biotechnology and
tree physiology. Trees have proved to be as suitable as
herbaceous plants as subjects for molecular methods of
basic research and tree breeding. This was demonstrat-
ed, for example, by construction of expressed sequence

tag (EST) libraries from pine and poplar xylem tissues
(Allona et al. 1998; Sterky et al. 1998), successful appli-
cation of promoter analysis with gus or green fluores-
cent protein reporter genes (Tian et al. 1999; Chen et al.
2000), optimization of in situ RNA hybridization in
poplar xylem tissue (Regan et al. 1999), and the use of
proteomics to address the protein composition of xylem
(Van der Mijnsbrugge et al. 2000). Despite the draw-
backs of long breeding cycles and large genome sizes,
biotechnological approaches have and will have a great
impact on forestry and tree breeding. Genetic maps
based on random amplified polymorphic DNA (RAPD),
amplified fragment length polymorphism (AFLP), or
microsatellite markers have been constructed for several
tree species including poplar, Eucalyptus, oak, Acacia,
Douglas-fir, and pine (Krutovskii et al. 1998; Cervera et
al. 2000; Moran et al. 2000). These markers were uti-
lized to map quantitative trait loci (QTL), e.g. for
growth parameters in pine and poplar (Wu 1998; Kaya
et al. 1999), timing of bud set and flush in poplar 
(Frewen et al. 2000), or wood properties in loblolly pine
(Sewell et al. 2000).

Many transgenic trees were generated to address spe-
cific questions in tree physiology and tree biotechnology
(Fig. 1). The field of forest biotechnology has been sub-
jected to several recent reviews (Séguin et al. 1998; 
Robinson 1999; Merkle and Dean 2000; Dinus et al.
2001; Peña and Séguin 2001; Van Raemdonck et al.
2001). This review aims to overview the use of transgen-
ic trees to improve knowledge in tree and, more general-
ly, plant physiology, but not to cover in detail commer-
cial tree biotechnology and lignin manipulation (Baucher
et al. 1998; Whetten et al. 1998; Grima-Pettenati and
Goffner 1999; Sederoff et al. 1999), or to discuss the
preferences and disadvantages of transgenic trees for for-
est management (reviewed by Jouanin 2000) or the prob-
lems connected with the release of genetically manipu-
lated forest trees into the natural environment (reviewed
by Mullin and Bertrand 1998).
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Commercial tree biotechnology

The number of tree species for which in vitro propaga-
tion and transformation protocols exist is growing (re-
viewed in Tzfira et al. 1998a; Bajaj 1999), as well as the
number of genetically modified trees being tested in
field trials (approx. 140 field-trials with 17 species)
(Mullin and Bertrand 1998; McLean and Charest 2000).
Beside the pioneer genus Populus tree biotechnology
concentrates on transformation of conifers, where only a
few stable transgenic lines exist, and economically im-
portant species such as Eucalyptus, grape, and apple.

As in crop plant biotechnology, the first traits ex-
pressed in trees and tested in field release experiments
were insect, herbicide, and disease resistance (Jouanin et
al. 1998; Séguin et al. 1998; Robinson 1999). Genes cod-
ing for Bacillus thuringiensis toxins were introduced into
several tree species including poplar, walnut, white
spruce, and larch (reviewed in Jouanin 2000). Another
strategy for engineering insect resistance was employed
by overexpressing proteinase inhibitors in poplar, result-
ing in toxicity of such plants for Chrysomela tremulae
(Leple et al. 1995) or Plagiodera versicolora (Klopfen-
stein et al. 1997). Transgenic aspens and poplars were
manipulated for resistance against the herbicides glypho-
sate (Donahue et al. 1994; Strauss et al. 1997), chlor-
sulfuron (Brasileiro et al. 1992), and phosphinotricine 
(DeBlock 1990; Jouanin et al. 1993). Papaya overex-
pressing the ring-spot virus coat protein and thus less
susceptible to infection by this virus (Gonsalves 1998)
was the first commercial transgenic tree (McLean and
Charest 2000; Chiang et al. 2001).

Lignin is a complex phenolic polymer which is locat-
ed in the cell wall of higher plants and has essential
functions for mechanical support, solute transport, and
disease resistance. However, lignin must be removed
from wood during paper manufacture, which is connect-
ed with considerable energy demand, chemical consump-

tion, and environmental pollution. Therefore, reduction
of lignin content and manipulation of its composition are
among the most important targets of tree biotechnology,
as documented by the number of recent reviews on lig-
nin biosynthesis and accomplishments of genetic engi-
neering in the manipulation of lignin (Campbell and 
Sederoff 1996; Douglas 1996; Baucher et al. 1998;
Whetten et al. 1998; Grima-Pettenati and Goffner 1999;
Sederoff et al. 1999; Merkle and Dean 2000; Peña and
Séguin 2001; Van Raemdonck et al. 2001).

Although the major traits introduced into tree species,
i.e. insect resistance, low lignin, enhanced growth, or po-
tential for phytoremediation, promise a positive impact
on the environment and, in the long term, a preservation
of natural forests, there are several possible risks to 
the native forest ecosystems (reviewed in Mullin and
Bertrand 1998; Mathews and Campbell 2000). Increas-
ing knowledge about the control of flower development
in trees, however, opens up strategies to reduce or pre-
vent the danger of vertical gene transfer to the wild tree
species via genetic engineering of sterility (Strauss et al.
1995). Another problem specific to tree species, com-
pared to the conventional agriculture crops, is the neces-
sity for long-term stability of the transgene over several
vegetation periods (Fladung 1999; Kumar and Fladung
2001). In addition, risk assessment investigations aimed
at, for example, root-soil interactions, transfer of the
transgene to the wild plants, and possibility of horizontal
gene transfer must be part of field-trials with transgenic
trees as discussed by McLean and Charest (2000), Peña
and Séguin (2001), or Strauss et al. (2001).

Tree physiology

Transgenic trees in sulfur metabolism

Sulfur is an essential element found in plants mostly in
its reduced form in amino acids cysteine (Cys) and me-
thionine (Met). Plants take up sulfur in the oxidized form
of sulfate, reduce it, and incorporate it into the amino 
acid skeleton of O-acetylserine forming Cys. Cys can be
utilized for synthesis of proteins or be further metabo-
lized to Met, glutathione (GSH) (Leustek et al. 2000;
Saito 2000), secondary sulfur-containing compounds
(Schnug 1993), and phytochelatins (Rauser 1999; 
Cobbett 2000). The tripeptide GSH fulfils various impor-
tant metabolic and regulatory functions such as (1) sulfur
storage, transport, and regulation of sulfate uptake and
transport (Herschbach and Rennenberg 2001a), (2) pro-
tection against oxidative stress caused by active oxygen
species (AOS) (Polle and Rennenberg 1994; Noctor and
Foyer 1998), (3) detoxification of xenobiotics after con-
jugation by glutathione-S-transferase (GST) (Lamoureux
and Rusness 1993), (4) detoxification of heavy metals
via phytochelatins (Rauser 1999; Cobbett 2000), (5)
building and maintenance of protein tertiary structure
and reactive states (Gilbert 1990; Kunert and Foyer
1993), and (6) regulation of gene expression (Wingate et

Fig. 1 Transgenic trees in tree physiology and biotechnology
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al. 1988; Link et al. 1997). To investigate the mecha-
nisms of GSH action in these processes several plant
species were manipulated in GSH synthesis. Transgenic
poplars overexpressing bacterial genes for enzymes in-
volved in GSH synthesis represent the best characterized
species and contributed significantly to our knowledge
of regulation of sulfur nutrition and GSH synthesis in
plants (Table 1).

GSH is synthesized in two steps. First, Cys is joined
to glutamate in reaction catalysed by γ-glutamylcysteine
synthetase (γ-ECS). GSH synthetase (GSH-S) then con-
nects the resulting γ-glutamylcysteine with glycine to
form GSH. GSH synthesis is regulated by the supply of
the constituent amino acids and by feedback inhibition
of γ-ECS by GSH (Hell and Bergmann 1990; Rennen-
berg 1997; May et al. 1998; Noctor et al. 1998b). Over-
expressing bacterial gene for γ-ECS in poplar hybrid
Populus tremula × P. alba either in the cytosol (Foyer et
al. 1995; Noctor et al. 1996; Arisi et al. 1997) or in the
chloroplast (Noctor et al. 1998a) increased foliar and
root GSH concentration (Strohm et al. 1995; Noctor et
al. 1996, 1998a; Arisi et al. 1997; Herschbach et al.
2000). Overexpression of GSH-S did not affect foliar
GSH concentrations, thus confirming the major role of 
γ-ECS in the control of GSH synthesis. Since in the γ-
ECS overexpressing poplars Cys and Met concentrations
were not diminished either in the leaves or in the roots
(Herschbach et al. 2000) sulfate reduction and Cys for-
mation must be adjusted to the higher demand for GSH
synthesis.

The third amino acid constituting GSH, glycine, is
produced through photorespiration and is limiting for
GSH synthesis in the dark (Noctor et al. 1997a, b, 1999).
Furthermore, overexpression of γ-ECS in the chloro-
plast, but not in the cytosol causes higher foliar concen-
trations of valine, leucine, isoleucine, tyrosine, and ly-
sine (Noctor et al. 1998a). Since these amino acids are
built predominantly in the chloroplasts, it seems that
overexpression of γ-ECS in the chloroplast also changed
the nitrogen metabolism. Consequently, transgenic pop-

lars manipulated in GSH synthesis represent essential
tools to study not only the regulation of sulfate assimila-
tion but also interactions between nitrogen and sulfur
metabolism.

Concentration of GSH increased in the phloem of
poplars overexpressing γ-ECS, confirming its role as the
major transport form of reduced sulfur (Herschbach et al.
1998). The observed linear correlation of the GSH con-
centration in the phloem with that in the leaves and the
roots suggests that either GSH synthesis in the leaves is
restricted by its export or phloem transport is determined
by GSH synthesis in the leaves (Herschbach et al. 2000).

Both reduced sulfur, mainly as GSH, and sulfate are
transported in the phloem to the roots (Herschbach and
Rennenberg 2001b). Correlation analysis revealed that
the sulfate-to-GSH ratio may be able to control sulfate
uptake and loading into the xylem under both enhanced
(γ-ECS overexpressing poplar) and decreased (H2S fumi-
gation) sulfate demand in poplar. In addition to the great-
er sulfate uptake the poplars overexpressing γ-ECS
showed an enhanced GSH concentration in xylem sap
(Herschbach et al. 2000). Because GSH does not ex-
change between the phloem and the xylem in deciduous
trees, GSH in the xylem must have originated from GSH
synthesis in roots (Herschbach and Rennenberg 1997,
2001b). Elucidation of the contribution of sulfate reduc-
tion in the roots to the reduced sulfur budget of the
whole plant and its regulation by reduced sulfur from the
shoot demands new transgenic poplar lines manipulated
in sulfur metabolism, e.g. in the key enzyme of sulfate
reduction, adenosine 5’phosphosulfate reductase.

Transgenic trees in stress physiology

Oxidative stress

AOS, i.e. singlet oxygen (1O2), superoxide radicals
(O2

·–), hydrogen peroxide (H2O2), and hydroxyl radicals
(OH·–), are formed in plant cells due to exposure to envi-

Table 1 List of transgenic trees overexpressing genes involved in sulfur or nitrogen metabolism

Tree species Gene overexpressed Origin of the Compartment Promoter Line coding Literature
coding sequence

Populus tremula × P. alba γ-Glutamylcysteine Escherichia coli Cytosol CaMV 35S gsh28 ggs Noctor et al. (1996); 
synthetase Arisi et al. (1997)

Populus tremula × P. alba γ-Glutamylcysteine Escherichia coli Chloroplast CaMV 35S Lggs Noctor et al. (1998a)
synthetase

Populus tremula × P. alba Glutathione Escherichia coli Cytosol CaMV 35S gsh Foyer et al. (1995); 
synthetase Arisi et al. (1997)

Populus tremula × P. alba Glutathione Escherichia coli Chloroplast CaMV 35S Lgsh Noctor et al. (1998a)
synthetase

Populus tremula × P. alba Glutathione Escherichia coli Cytosol CaMV 35S 35 gor Foyer et al. (1995)
reductase

Populus tremula × P. alba Glutathione Escherichia coli Chloroplast CaMV 35S 70 L gor Foyer et al. (1995)
reductase

Populus tremula × P. alba Glutamine Pinus pinaster Cytosol CaMV 35S Gallardo et al. (1999)
synthetase
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ronmental stress caused by light, chilling, drought, nutri-
ent deficiency, wounding, pathogens, ozone, herbicides,
or sulfur dioxide (Polle and Rennenberg 1993). AOS can
be detoxified directly by radical scavengers such as as-
corbate, GSH, carotenoids, or tocopherol, or enzymati-
cally by superoxide dismutase (SOD), catalase, or vari-
ous peroxidases (Noctor et al. 1998b; May et al. 1998).
The most abundant scavenger as well as peroxidase sub-
strate is ascorbate. Ascorbate can be regenerated from its
oxidized form, dehydroascorbate, in the ascorbate–GSH
cycle, which is active both in the cytosol and chloroplast
(Polle and Rennenberg 1993; Noctor and Foyer 1998).
The concentration of oxidized glutathione (GSSG) or its
ratio to reduced GSH is a measure of the extent of oxida-
tive stress (Foyer and Rennenberg 2000). It was, there-
fore, expected that increasing the GSH concentration or
reduction status would increase plant capacity to cope
with oxidative stress. Again, transgenic poplars manipu-
lated in GSH synthesis or overexpressing enzymes in-
volved in detoxification of AOS proved to be excellent
tools in addressing physiology of stress resistance in
plants (Table 2).

Surprisingly, overexpression of γ-ECS in transgenic
poplar, resulting in increased GSH content, did not in-
crease resistance against the herbicide paraquat, although
this was enhanced in wild-type poplar upon simulta-
neous feeding with GSH (Will 1998). Overexpression of
glutathione reductase (GR) in the chloroplast, which in-
creased foliar GSH content and reduction state, also did
not improve tolerance to paraquat but the plants were
less susceptible to photoinhibition (Foyer et al. 1995).
On the other hand, increased ascorbate peroxidase and
GR activity in transgenic cotton overexpressing MnSOD
in chloroplasts (Payton et al. 1997) and overexpression
of GR in the chloroplasts of tobacco resulted in a slightly
increased resistance against both high light and paraquat
triggered damage (Foyer and Rennenberg 2000). It
seems, therefore, that the capacity to regenerate GSH by
GR activity may be more important for protection
against oxidative stress than enhanced foliar GSH con-
centration (Foyer et al. 1995).

Clearly, manipulation of other enzymes involved in
the detoxification of AOS, such as SOD, may potentially
improve stress resistance. Beside transgenic tobacco and
cotton (Rennenberg and Polle 1994; Payton et al. 1997)
transgenic poplars overexpressing FeSOD in the chloro-

plast (Table 2) were produced but the increased SOD ac-
tivity did not affect photoinhibition of photosystem II.
Apparently, SOD is not limiting for protection against
this stress (Tyystjärvi et al. 1999). Under certain condi-
tions, e.g. at low intercellular CO2 concentrations, over-
expression of FeSOD prevented the photochemical chlo-
rophyll a fluorescence quenching and stimulated the su-
peroxide producing Mehler reaction (Arisi et al. 1998). It
is thus plausible to conclude that the function of GSH in
detoxification of AOS resulting from Mehler reaction
and photoinhibition may be different.

Whereas in the chloroplast AOS derive from photoin-
hibition and through the Mehler reaction, ozone expo-
sure results in AOS production at the cell surface, i.e. at
the plasma membrane or in the apoplast (Laisk et al.
1989; Polle 1998). Investigations with transgenic poplars
overexpressing γ-ECS or GSH-S in the cytosol or GR in
the cytosol or in the chloroplast clearly demonstrated
that increasing these foliar enzyme activities was not
sufficient to improve tolerance to chronic or acute ozone
exposure (Will et al. 1997; Strohm et al. 1999). More-
over, these studies revealed that ozone sensitivity was
dependent on leaf age, with highest ozone tolerance in
young leaves, and thus probably controlled by leaf de-
velopment. Due to the absence of a correlation between
ozone resistance and the foliar GSH content, cell-type-
specific GSH concentrations and/or differences in the
subcellular distribution might be more important param-
eters for the increase in ozone (and other oxidative
stress) tolerance (Foyer and Rennenberg 2000).

Stress by heavy metals and pesticides

Some heavy metals are essential micro-nutrients for
plants (Cu, Ni, Zn) whereas others have no or an un-
known physiological role (Pb, Hg, Cd). Plants have de-
veloped different mechanisms to keep the intracellular
metal concentrations below the toxic level such as im-
mobilization, exclusion, and chelating (Rauser 1999).
Most heavy metals can be chelated by Cys-rich proteins,
metallothioneins, or by phytochelatins (PCs), small poly-
peptides consisting of repeating γ-EC units (Rauser
1999; Cobbett 2000).

PCs are synthesized from GSH by PC synthase (Grill
et al. 1989). The sulfhydryl groups of Cys residues bind

Table 2 List of transgenic trees manipulated in genes involved in stress defense

Tree species Gene manipulated Origin of the Compartment Promoter Orientation Literature
coding sequence

Liriodendron tulpifera Mercuric reductase Escherichia coli Cytosol CaMV 35S Sense Rugh et al. (1998)
(merA)

Populus tremula × P. alba Fe superoxide Arabidopsis Chloroplast CaMV 35S Sense Arisi et al. (1998)
dismutase (FeSOD) thaliana

Populus tremula × P. alba Chalcone synthase Petunia Cytosol CaMV 35S Sense Nicolescu et al. 
(chs) (1996)

Juglans nigra × J. regia Chalcone synthase Walnut CaMV 35S Antisense Euch et al. (1998)
(chs)



sponse. Flavonoids play an important role in defence
against pathogens, protection from UV radiation, and in
rhizogenesis (Curir et al. 1990). In order to characterize
their role in rhizogenesis, the activity of chalcone syn-
thase, a key enzyme in flavonoid biosynthesis, was de-
creased in walnut by an antisense strategy (Euch et al.
1998). The transgenic plants were characterized by very
low levels of flavonoids correlating with enhanced ad-
ventitious root formation. Auxin accumulation was not
varied in the transgenic lines. The plants were, however,
more sensitive to exogenous auxin applications, leading
to leaf and root necrosis. It seems that since flavonoids
regulate auxin transport, the transport of sucrose re-
quired for root formation is also affected (Haissig 1990).
On the other hand, overexpression of chalcone synthase
led to increased flavonoid levels in cortical and peripher-
al tissues of stems; nevertheless increased protection
against pathogens in these plants remains to be demon-
strated (Nicolescu et al. 1996).

Transgenic trees in nitrogen metabolism

To our knowledge only one transgenic tree manipulated
in nitrogen metabolism has been reported. Overexpres-
sion of a Pinus pinaster glutamine synthetase under 
control of the CaMV35 promoter in poplar (Populus
tremula × P. alba) resulted in increased total soluble pro-
tein and chlorophyll contents and led to significantly bet-
ter growth (Gallardo et al. 1999). These experiments thus
confirm that glutamine synthetase has a high control
over ammonium assimilation (Lam et al. 1996). Since ni-
trogen availability in the soil might be a limiting factor
for plant growth, an increased efficiency of nitrogen uti-
lization may improve tree growth, development, and
stress resistance.

Plant hormones

Plant hormones, such as auxin (indole-3-acetic acid,
IAA), gibberellins (GA), cytokinins, or abscisic acid
(ABA), are involved in the regulation of plant growth
and development (Kende and Zeevaart 1997). Since they
also influence wood formation (Little and Savidge 1987)
the manipulation of endogenous hormone levels in stem
tissues of trees is of great interest. Analysis of genetical-
ly modified trees helped to establish the specific roles of
plant hormones in tree physiology (Table 3).

IAA is crucial for the structure and activity of vascu-
lar cambium, in particular cambial cell division. The in-
crease of IAA concentration via simultaneous overex-
pression of iaaM (Trp-2-mono-oxygenase) and iaaH (in-
dole-3-acetamide hydrolase) genes for IAA synthesis
from Agrobacterium tumefaciens T-DNA in Populus
tremula × P. tremuloides resulted in alterations in
growth, development, and wood formation (Tuominen et
al. 1995). The lower rate of cambial cell division and the
longer duration of expansion resulted in decreased xylem
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the heavy metal ions and the resulting complexes are ex-
creted into the vacuole. Heavy metals induce the synthe-
sis of PCs via post-translational activation of PC syn-
thase and induction of γ-ECS (Rauser 1999; Cobbett
2000; Foyer and Rennenberg 2000). In Brassica juncea
overexpression of the bacterial gene for γ-ECS resulted
in enhanced PC concentration and increased Cd toler-
ance (Zhu et al. 1999a, b). Since exposure of the γ-ECS
overexpressing poplars to Cd also increased PC content,
GSH synthesis seems to limit PC production and, conse-
quently, heavy metal detoxification (Rennenberg and
Will 2000). The exposure to Cd also induced activities of
malic enzyme and isocitrate dehydrogenase, correspond-
ing with the increased demand for NADPH for reduction
of GSSG by GR (Arisi et al. 2000). Surprisingly, despite
the increased PC synthesis, the γ-ECS overexpressing
poplars were not more tolerant to high concentrations of
Cd (Rennenberg and Will 2000). The observed differ-
ences between B. juncea and poplar might be caused by
general differences between herbaceous and deciduous
plants or related to the specific S-metabolism of B. jun-
cea (glucosinolate synthesis). However, since Cd accu-
mulation correlated with PC levels, poplars overexpress-
ing γ-ECS accumulated more Cd. Apparently, increased
Cd binding due to higher PC synthesis may diminish the
active intracellular Cd pool in the roots, thus resulting in
higher uptake of Cd (Rennenberg and Will 2000).

Differences in herbicide tolerance are often based on
the plant capacity to detoxify the herbicide, e.g. through
the GST reaction and subsequent excretion of the conju-
gate into the vacuole (Edwards et al. 2000). It is thus not
surprising that growth of transgenic poplars overexpressing
γ-ECS in the cytosol or in the chloroplast was less reduced
upon treatment with chloroacetanilide herbicides than that
of the wild-type (Gullner et al. 2001). The reduced herbi-
cide effects correlated with increased GST activity reveal-
ing once more the important role of GSH in plant defence.

Phytoremediation, the use of plants to remove con-
taminants from soil or water, is a promising approach to
cope with environmental pollution (Salt et al. 1998).
Trees might be more suitable for phytoremediation than
herbaceous plants because of their high biomass and
long generation cycles (discussed in Kopriva and Rennen-
berg 2000). Accordingly, overexpression of the bacterial
mercuric reductase in yellow poplar (Liriodendron 
tulipifera) resulted in transgenic plants that were resis-
tant to toxic levels of mercuric ions and able to release
elemental mercury (Rugh et al. 1998). Also, the trans-
genic poplars overexpressing γ-ECS are attractive for
phytoremediation of heavy metals and herbicides due to
the higher uptake capacity for Cd and increased GST ac-
tivity, respectively (Rennenberg and Will 2000; Gullner
et al. 2001).

Secondary compounds

Many secondary plant compounds, e.g. glucosinolates,
alkaloids, or flavonoids, are involved in plant stress re-
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production and was related to a lower peak level and a
wider radial distribution of IAA within the cambial meri-
stem (Tuominen et al. 1997). Since the overall growth of
the transgenic lines was also altered, in the next study
the iaaM gene was expressed in poplar under control of a
cambium-specific rolC promoter (Tuominen et al. 2000).
The rolC promoter from Agrobacterium rhizogenes ex-
hibits tissue-specific changes during the annual growth
cycle and dormancy and is also sensitive to chilling and
sucrose (Nilsson et al. 1996b). However, although the
IAA concentration in the cambial region was 35–40%
higher than in wild-type plants, no changes in the radial
distribution pattern of IAA and thus no changes in devel-
opmental pattern or cambial growth rate were observed
(Tuominen et al. 2000). It seems therefore that it is not
the absolute amount of IAA but its distribution pattern
that regulates the development of secondary xylem.

GAs are a group of plant diterpene compounds that
influence shoot elongation, leaf expansion and shape,

flowering, seed germination, and, in trees, differentiation
of xylem fibres (Kende and Zeevaart 1997). There-
fore, GA 20-oxidase, the key enzyme controlling GA
biosynthesis, was overexpressed in Populus tremula ×
P. tremuloides resulting in faster growth and increased
biomass in the transgenic plants (Eriksson et al. 2000).
The stem diameter increased as a result of increased
number and length of xylem fibres. On the other side,
root initiation was negatively affected in young plantlets
of the transgenic lines; the effect disappearing at later
growth stages. These results show that manipulation of
GA levels may lead to trees that grow faster and produce
more biomass but also provide tools to study the molecu-
lar mechanisms behind GA control of growth and devel-
opment.

Isopentenyl transferase (IPT) is an important enzyme
in the biosynthesis of cytokinins. Cytokinins stimulate
organogenesis and are necessary for regeneration of
plants from cell cultures or calli. The overexpression of

Table 3 List of transgenic trees manipulated in hormone contents

Tree species Gene overexpressed Origin of the Compartment Promoter Orientation Literature
coding sequence

Populus tremula × Trp-2-mono- Agrobacterium Cytosol Mannopine Sense Tuominen et al. 
P tremuloides oxygenase (iaaM), tumefaciens synthase (1995)

indole-3-acetamine (iaaM) 
hydrolase (iaaH), CaMV 35S
iaaM + iaaH (iaaH)

Populus tremula × Trp-2-mono- Agrobacterium Cytosol RolC Sense Tuominen et al. 
P tremuloides oxygenase (iaaM) tumefaciens (2000)
expressing iaaH
Populus tremula × GA-20-oxidase Arabidopsis Cytosol CaMV 35S Sense Eriksson et al. (2000)
P tremuloides thaliana
Populus tremula × Phytochrome A Oat Cytosol CaMV 35S Sense Olsen et al. (1997)
P tremuloides (phyA)
Malus domestica Phytochrome B Arabidopsis Cytosol CaMV 35S Sense Holefors et al. (2000)

(phyB)
Populus nigra Homeobox OSH1 Rice Cytosol CaMV 35S Sense Mohri et al. (1999)
Populus tremula × P. alba Isopentenyl Agrobacterium Cytosol Ipt Sense Von Schwartzenberg 

transferase (ipt) tumefaciens et al. (1994)
Populus sieboldii × Isopentenyl Agrobacterium Cytosol CaMV 35S Sense Ebinuma et al. (1997)
P. grandidentata transferase (ipt) tumefaciens
Populus tremula × rolC Agrobacterium Cytosol CaMV 35S Sense Fladung et al. (1996); 
P tremuloides rhizogenes Nilsson et al. (1996a)
Populus tremula × rolC Agrobacterium Cytosol rbcS Sense Fladung et al. (1997)
P tremuloides rhizogenes
Populus tremula rolB + rolC Agrobacterium Cytosol rolC Sense Tzfira et al. (1998b, 

rhizogenes 1999)
Malus domestica rolB Agrobacterium Cytosol rolB Sense Welander et al. 

rhizogenes (1998); Zhu et al. 
(2001)

Malus domestica rolA Agrobacterium Cytosol rolA Sense Holefors et al. (1998)
rhizogenes

Poncirus trifoliata rolC Agrobacterium Cytosol CaMV 35S Sense Kaneyoshi and 
rhizogenes Kobayashi (1999)

Actinidia deliciosa rolA, rolB +rolC Agrobacterium Cytosol rolA, Sense Rugini et al. (1991)
rhizogenes rolB + rolC

Pyrus communis rolC Agrobacterium Cytosol rolC Sense Bell et al. (1999)
rhizogenes
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A. tumefaciens ipt gene in poplar resulted in transgenic
plants with strongly altered phenotypes: low apical dom-
inance, branching shoots, short internodes, and inability
to form roots. plants contained 5–17 times higher levels
of zeatin and other cytokinins (Von Schwartzenberg et al.
1994). Most importantly, shoots differentiated from
transgenic calli even in the absence of phytohormones in
the medium. The ipt gene can thus be used as a select-
able marker for transformation and in combination with
transposable element Ac, which enables loss of the chi-
meric ipt gene, to generation of marker-free transgenic
plants (Ebinuma et al. 1997).

Cytokinin levels in plants were also modified by
overexpression of rol genes of Agrobacterium leading to
morphological changes in the transgenic plants (Spena 
et al. 1987). Transgenic poplars (Populus tremula ×
P. tremuloides) overexpressing the rolC gene from 
A. rhizogenes were characterized by reduced IAA,
changes in cytokinin composition, and in GA to ABA ra-
tios dependent on the tree region, resulting in dwarfed
phenotype, loss of apical dominance, and premature bud
and leaf development (Nilsson et al. 1996a; Fladung et
al. 1997). The wood structure in these transgenic trees
was not significantly different but initiation of wood pro-
duction was delayed from that of wild-type poplars.
Moreover, latewood lacked the thick-walled fibres and
discoloration, and the formation of tyloses was slightly
altered (Grünwald et al. 2000). When both rolB and rolC
were expressed under control of their native promoters
the apical dominance was still lost; the transgenic plants,
however, displayed an enhanced growth rate and delayed
winter dormancy (Tzfira et al. 1999). In contrast, trans-
genic fruit trees overexpressing rol genes showed a 
reduced internode length and biomass production 
(Holefors et al. 1998; Bell et al. 1999; Kaneyoshi and
Kobayashi 1999; Zhu et al. 2001). Nevertheless, all trees
overexpressing rol genes also exhibited extensive root
formation in a hormone-free medium, larger root surface

area, as well as rapid adventitious root formation which
together might result in shorter propagation times (Tzfira
et al. 1998b). These characteristics are of major impor-
tance for fruit tree breeders, since dwarfing rootstocks,
which are used to increase productivity, are difficult to
root from cuttings. Indeed, overexpression of rolB gene
from A. rhizogenes in kiwi trees or apple rootstocks sig-
nificantly increased rooting on a hormone-free medium
(Rugini et al. 1991; Kaneyoshi and Kobayashi 1999; Zhu
et al. 2001). Although the overexpression of rolB in 
apple resulted in increased sensitivity to auxin, elevated
auxin was necessary to induce rooting in vitro (Welander
et al. 1998).

In addition, the rice homeobox gene OHS1 also af-
fects the hormone metabolism and thus induces morpho-
logical aberrations. Overexpression of OSH1 gene in
poplars resulted in morphological changes such as slen-
der leaves, dwarf plants, or loss of apical dominance
(Mohri et al. 1999). Evidently, the manipulation of hor-
mone metabolism is an effective tool to study the regula-
tory mechanisms of tree development and wood forma-
tion.

Transgenic trees in reproduction biology

Trees usually have a long juvenile growth period before
they reach their reproductive phase. Flower development
in poplar also differs significantly from that of herba-
ceous plants (Boes and Strauss 1994). The male and fe-
male flowers develop on separate trees from axillary in-
florescences. Instead of four concentric whorls of organs
poplar flowers have only two. Nevertheless, homologues
of genes involved in flower development in Arabidopsis
and Antirrhinum were identified from several tree spe-
cies: LEAFY and Floricaula from Pinus radiata, Euca-
lyptus, and poplar (Mouradov et al. 1998; Southerton et
al. 1998; Rottmann et al. 2000), AGAMOUS from black

Table 4 List of transgenic trees manipulated in flowering

Tree species Gene manipulated Origin of the Compartment Promoter Orientation Literature
coding sequence

Populus tremula × LEAFY Arabidopsis Cytosol CaMV 35S Sense Weigel and Nilsson 
P. tremuloides thaliana (1995)
Populus tremula × LEAFY Arabidopsis Cytosol CaMV 35S Sense Rottmann et al. 
P. alba, P. tremula × thaliana (2000)
P. tremuloides, 
P. trichocarpa ×
P. deltoides
Populus tremula × PTLF Populus Cytosol CaMV 35S Sense, Rottmann et al. 
P. alba, P. tremula × (LEAFY homolog) trichocarpa antisense (2000)
P. tremuloides,
P. trichocarpa ×
P. deltoides
Citrus sinensis × LEAFY Arabidopsis Cytosol CaMV 35S Sense Peña et al. (2001)
Poncirus trifoliata thaliana
Citrus sinensis × APETALA1 Arabidopsis Cytosol CaMV 35S Sense Peña et al. (2001)
Poncirus trifoliata thaliana
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spruce (Rutledge et al. 1998), and AP1 from Eucalyptus
(Kyozuka et al. 1997). Genetic manipulations of flower-
ing genes are mainly aimed to shorten flowering and
generation time (Table 4). In citrus expression of 
Arabidopsis genes LEAFY and APETALA1 induced flow-
ering within the first year. The shortening of the juvenile
period was stable and also observed in the zygotic and
nucellar-derived seedlings demonstrating the stability of
the trait (Peña et al. 2001). In poplar, however, the influ-
ence of flowering genes is more complex. The expres-
sion pattern of the endogenous LEAFY homologue,
PTLF, in poplar differed significantly from that of
LEAFY in Arabidopsis, since PTLF was also expressed
in vegetative tissues (Rottmann et al. 2000). Overexpres-
sion of LEAFY from Arabidopsis in poplar affected shoot
meristems and accelerated flower development (Weigel
and Nilsson 1995). On the other hand, overexpression of
PTLF from Populus trichocarpa in several Populus spe-
cies induced precocious flowering in only two of 19
transgenic lines, although in Arabidopsis overexpressing
PTLF flowering was accelerated (Rottmann et al. 2000).
The transgenic Populus lines produced anthers rather
than carpels on originally female flowers, indicating the
original role of LEAFY in male flowering (Frohlich and
Parker 2000). Transgenic poplar lines with high levels of
PTLF overexpression, however, exhibited abnormal veg-
etative morphology, such as increased ramification of
branches from the current year’s growth in their third
year. In theory, antisense expression of the PTLF should
abolish or at least delay the formation of flowers in
transgenic poplars. The evaluation of such plants is,
however, difficult due to the fact that poplars need 5 or
more years before they are reproductively mature and
changes in flowering can be detected. The increased
knowledge about the control of flower development in
trees thus opens up a way to produce sterile plants, with
high impact for the biological safety of transgenic plants
release (Strauss et al. 1995).

The cause of transition from vegetative to reproduc-
tion growth is still not clear, although genes such as
LEAFY and environmental factors seem to be involved.
LEAFY and other flower controlling genes may interact
with genes controlling responses to day length (Haughn
et al. 1995). Moreover, the growth cycle of trees is depen-
dent on perception of environmental signals, primarily
light. The exact role of different light photoreceptors is,
however, not known yet. The function of phytochrome A,
which is known to control flowering in Arabidopsis, in
the detection of photoperiod in trees was studied by over-
expression of oat phytochrome A gene in poplar (Olsen et
al. 1997). The transgenic trees did not reduce the levels of
GA and IAA under short day conditions and thus did not
stop growing even at 6 h photoperiod. It seems, therefore,
that the level of phytochrome A expression affects plant
hormone metabolism and might thus be responsible for
different photoperiodic responses of photoperiodic eco-
types. In addition Malus domestica trees overexpressing
phytochrome B could be a useful tool to analyse light-
and hormone-regulated processes (Holefors et al. 2000).

Conclusions

The methods of molecular biology have a great impact
on plant science, including investigations of trees. Trees
possess several specific physiological characteristics
such as long life cycles from a few to many decades and
centuries, wood production, phases of dormancy com-
bined with storage processes, or a long distance between
the shoot and the roots. Biotechnology thus plays a ma-
jor role in attempts to explore and exploit tree genetic
variation and to improve tree characteristics. Genetically
modified trees are, however, not only products for agro-
forestry to increase wood production and quality. As
demonstrated in this review, transgenic trees are out-
standing tools for studying aspects specific of tree physi-
ology, but also general plant physiological processes.
Transgenic trees expressing genes involved in hormone
biosynthesis provide knowledge on the role of genetic
and hormonal factors in tree growth and development,
but also provide material to study the general role of
these substances in plants. Our knowledge on regulation
of sulfur nutrition and GSH synthesis in higher plants
was significantly improved by investigations with trans-
genic poplars. Although trees are not as easy for labora-
tory use as herbaceous plants due to their slower growth,
large size, and long reproduction cycles, they are in-
creasingly exploited for investigations of other than tree-
specific problems. Transgenic poplar, as the most com-
mon model system for perennial plants, will become
more useful to demonstrate differences and similarities
to annual plants’ physiology.
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