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Abstract. The relative infrequency of renal stones in 
children is probably the main reason for the paucity of 
literature devoted to the study of urolithiasis in pediatric 
patients. Nonetheless, when pediatricians do address the 
issue, the contents of their papers reflect those prevalent in 
the adult literature; with one notable exception. Papers 
dealing with the potential role of urinary macromolecules 
in pediatric stone disease are very scarce indeed; to my 
knowledge, only four have been published in the English 
literature in the last 15 years. One of these is to be found in 
this issue and, like the remaining three, it compares the 
urinary excretion of glycosaminoglycans in healthy chil- 
dren and those with stones. This article briefly reviews the 
history of the association of urinary macromolecules, par- 
ticularly glycosaminoglycans and proteins, with calcium 
oxalate urolithiasis, and discusses in more detail the pub- 
lished experimental evidence for their fulfilling a deter- 
minant role in stone formation. 
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Visiting the sins of the fathers 

The literature on human kidney stones is probably much 
like that devoted to any other human pathology, abounding 
in clinical controversy, experimental contradiction, and 
scientific polemic. However, on one point there seems to be 
no argument: in comparison to their seniors, kidney stones 
seldom occur in children. This rarity undoubtedly accounts, 
at least in part, for the scarcity of papers related to pediatric 
stone disease. A cursory electronic scan of the urolithiasis 
literature between 1991 and 1995 reveals that of a total of 
553 papers, only 46 were specifically concerned with 
children - marginally fewer than those dealing with ur- 
inary stones in a remarkable assortment of animals, ranging 
from hens, dalmations, goats, sheep, horses, monkeys, and 
cats, through to, of all things, the green iguana! 

Nonetheless, the leitmotivs contained in papers about 
stones in childhood tend to mirror the recurring themes that 
continue to appear, with almost predictable regularity, in 
the adult literature. This habit seems to have persisted to the 
present time. Thus, recent pediatric stone papers comprise, 
in addition to the inevitable case reports, papers describing 
the epidemiology of stone disease [e.g., 1-3], findings of 
retrospective case note reviews [e.g., 4-6],  or results of the 
performance of metabolic studies in juvenile stone formers 
[e.g., 7-10] or normal controls [11], in which were deter- 
mined the urinary excretion of what are popularly referred 
to as promoters (calcium, oxalate, uric acid) and inhibitors 
(citrate, pyrophosphate, magnesium) of stone formation. Of 
the metabolic factors presumed to be important in stone 
formation, hypercalciuria has commanded more than its 
share of attention [e.g., 8, 12, 13] - as it has always done in 
adults, although probably with questionable justification 
[14]. Furthermore, the current predominance of studies 
evaluating extracorporeal shock wave lithotripsy (ESWL), 
now so obvious in the adult stone literature, is also be- 
coming distressingly evident in pediatric papers [e.g., 15, 
16]; distressing, not because such essential studies are 
being performed, but because the widespread use and 
success of ESWL have created the unfortunate illusion that 
the stone problem has been solved, and we can all go home 
and forget about basic metabolic research [17]. 

It might seem then that children are, at least as far as the 
urolithiasis literature is concerned, just little adults. But are 
they? Unfortunately, we do not know, because there is one 
glaring discrepancy between the adult and pediatric stone 
literature: virtually all the published basic research on 
kidney stone formation has been performed in adults. This 
is hardly surprising, since children with stones are unusual 
- unlike their parents, who form stones with convenient 
frequency, can consent to participation in research, and, 
most attractive of all, excrete gallons of urine just begging 
to be studied. Moreover, where basic metabolic information 
has been sought, it has been concerned primarily with the 
inorganic constituents of urine - particularly calcium. 
Consequently, during the last 15 years only a handful of 
studies have addressed the possible role of urinary macro- 
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molecules in the formation of stones in children, and these 
have been concerned with the excretion of total urinary 
glycosaminoglycans (GAGs) in stone-forming children and 
healthy controls [18-20]. Contained in this issue is another 
comparative study by Harangi et al. [21], which differs in 
one important respect from its predecessors: these authors 
compared the excretion of individual GAGs in their pedi- 
atric subjects. This distinction is crucial, because, as will 
become evident in the ensuing discussion, recent research 
in adults has demonstrated that it is no longer possible to 
draw conclusions about the possible influence of macro- 
molecules in stone formation simply by studying them as a 
single, combined whole. Human urine fairly bristles with 
an enormous range of macromolecules, each of which will 
bring to bear its own individual influences in the formation 
of stones, and it is these that form the basis of this review. 

Kidney stones: more than meet  the eye 

All kidney stones contain macromolecules. These con- 
stitute what has come to be known as the organic matrix, by 
analogy with their counterparts in salubrious forms of 
biomineralization, where they fulfil a range of functions 
ranging from provision of a structural framework to con- 
trolling the initiation and cessation of crystal deposition 
[22]. The organic matrix is interlaced throughout the entire 
stone structure, occupying far more space than would be 
suggested by its contribution of only 2.5% to the total 
weight [23]. For many years, our knowledge of matrix 
composition was limited largely to a series of papers pub- 
lished by Boyce et al. in the 1950s and 1960s. Boyce [24] 
reported that the organic component of the EDTA-soluble 
portion of matrix consisted of 64% protein, 9.6% non- 
amino sugars, 5% hexosamine as glucosamine, 10% bound 
water, and the remainder, "inorganic ash." We now know 
that GAGs, previously more commonly known as muco- 
polysaccharides, comprise a significant proportion of stone 
matrix [25]. Rich in saccharides, they probably account for 
the sugars detected by Boyce. Stones also contain lipids 
[26], but because their contribution to matrix is minor in 
comparison with those of proteins and GAGs, inevitably, it 
is the study of these latter two classes of macromolecules 
that has dominated research on stone matrix. 

Although published some 30 years ago, the quantitative 
composition of matrix published by Boyce continues to be 
cited in the stone literature, principally because the in- 
vestigation of stone matrix is fraught with such immense 
difficulties that, until relatively recently, few workers pos- 
sessed the fortitude, the inclination, or the technical means 
to identify its components, much less attempt to elucidate 
their possible role in stone pathogenesis. Matrix is ob- 
stinately difficult to dissolve: three-quarters of the material 
released by demineralization of stones by EDTA treatment 
remains as an undissolved precipitate [27], and this ham- 
pered past attempts to identify its component macro- 
molecules. The interpretation of findings was also com- 
plicated by the recognition that alterations to the molecular 
structure of the matrix macromolecules could occur during 
their initial deposition in the stone structure, as well as 
during their storage and isolation [28]. These considera- 

tions are further compounded by the derivation of matrix 
components from two different sources - normal macro- 
molecules present in urine, which become embedded inside 
stone crystals when they first precipitate in the renal col- 
lecting system, and others not usually found in urine, but 
which are released as a result of injury to the urinary tract 
caused by those crystals or the developing stone, or both 
[24, 29] - which are chickens? Which are eggs? 

Although these difficulties, for many years, severely 
impeded the molecular characterization of individual ma- 
trix components and the investigation of their possible 
functions in stone pathogenesis, they have, fortunately, now 
been largely eliminated by the study of mineral crystals 
freshly precipitated from urine [29-31]. Such crystals, 
which are the precursors of stones, contain only those 
macromolecules normally present in urine, and their study 
eliminates any confounding involvement of macro- 
molecules released as a result of any injurious effects of the 
stone itself. Progress has also been accelerated by the de- 
velopment and widespread availability of modern physical, 
biochemical, and immunological techniques, which have 
enabled the positive identification of a number of specific 
macromolecular matrix components. This represents an 
enormous advance in the study of matrix macromotecules, 
for only by knowing their individual identities will it be 
possible to deduce their functions, if at all, in stone 
pathogenesis. 

Molecules in search of  a function 

As adults, we all face the daily threat of kidney stones, for 
the simple reason that our urine is supersaturated with 
calcium oxalate (CaOx) under everyday conditions [32]. It 
is no surprise then that our urines contain crystals of CaOx, 
the major component of most renal calculi, from time to 
time. But we don't all form stones. In fact, approximately 
90% of us will never succumb to the disease. This im- 
munity is generally attributed to a lack in our urine of 
substances that promote the nucleation, growth, or ag- 
gregation of CaOx crystals, or alternatively, an abundance 
of molecules that inhibit these processes. The urines of 
stone formers, however, are supposedly rich in promoters, 
or deficient in inhibitors, thus explaining their tendency to 
excrete CaOx crystals in greater quantities and clustered 
into larger aggregates than those in the urine of healthy 
control subjects [33, 34]. However, while the roles of ur- 
inary calcium, oxalate, and uric acid as promoters of CaOx 
crystallization, and citrate and magnesium as inhibitors, are 
widely acknowledged, the functions of urinary macro- 
molecules have, for the reasons outlined above, remained 
somewhat of a mystery. The simple fact that they are there 
suggests that they must fulfil some function in stone for- 
mation. And it is imperative that we identify that function, 
since it is possible that urinary macromolecules may per- 
haps direct the course of stone pathogenesis as modulators 
of crystallization: they might induce CaOx crystal nuclea- 
tion and promote the subsequent growth and/or aggregation 
of those crystals; actively bind to the surfaces of preformed 
crystals and retard (but not completely prevent) further 
solute deposition or crystal aggregation; or bind to the 
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crystal surfaces yet have no influence on further crystal- 
lization events. In fact, they probably do all of these, de- 
pending upon ambient conditions [35], and ultrastructural 
evidence indicates clearly that macromolecules are in- 
volved in both the crystal nucleation and enlargement 
phases of stone pathogenesis [36]. 

However, the mere presence of macromolecules in stone 
matrix tells us nothing about the nature of that involvement, 
because paradoxically, irrespective of whether urinary 
macromolecules act as passive adsorbants, promoters, or 
inhibitors, they will still be present in the final stone. De- 
spite years of research designed to unravel the role of 
macromolecules in stone pathogenesis, the area continues 
to excite debate and generate confusion: we still do not 
know, with any degree of certainty, why macromolecules 
are in stones, how they came to be there, what effects their 
inclusion into the structure may have had, and whether their 
presence reflects cause or effect of the stone. What we do 
know, however, is that generalization is impossible. Each 
urinary macromolecule will have its own specific effects, 
and to discover what they are, it is first necessary to de- 
termine which ones are actually present in stones and then 
to study those effects in detail. 

Glycosaminoglycans 

Experimental findings 

A possible role for GAGs, or mucopolysaccharides as they 
were then known, in CaOx stone formation became ap- 
parent almost 30 years ago when a group of chemists 
showed that heparin, chondroitin sulfate (ChS), and hya- 
]uronic acid (HA) affected the precipitation of CaOx [37]. It 
was not long before the significance of the findings was 
realized by workers in the stone field, and GAGs soon came 
to be regarded as potential inhibitors of stone formation, if 
not naturally, then at least as possible therapeutic agents. 
Moreover, their study proved remarkably easy: unlike 
proteins, there are few GAGs, and a number of these are 
freely available from commercial sources. A veritable rash 
of studies soon followed the revelations of Crawford et al 
[37]. Most of these have consisted of testing the effects of a 
pure GAG, usually ChS or heparin, on various aspects of 
CaOx crystallization in inorganic milieux. A list of the 
findings of these studies, which is by no means complete, is 
shown in Table 1. 

In addition to ChS and heparin, several synthetic GAGs 
[sodium pentosan polysulfate (SPP), G871, G872] have 
been tested to assess their potential usefulness as treatments 
for stone prevention. With only two exceptions, all the 
GAGs tested inhibited various aspects of CaOx crystal- 
lization. Those exceptions included the demonstration by 
Robertson and Scurr [42] that ChS promotes CaOx crystal 
nucleation in an inorganic, artificial urine, and a report by 
Sallis and Lumley [53] that a GAG fraction isolated from 
human urine did not affect crystal growth. On balance, 
therefore, the body of evidence reported in the stone liter- 
ature demonstrates that GAGs are capable of retarding 
CaOx crystallization - at least in inorganic media. But can 

Table 1. Effects of glycosaminoglycans (GAGs) on calcium oxalate 
(CaOx) crystallization in inorganic reaction media 

GAG Effect Reference 

ChS Inhibits "growth and Robertson et al. 1973 [38] 
aggregation" 
Inhibits nucleation Pak et al. 1979 [39] 
Inhibits growth, aggregation Ryall et al. 1981 [40] 
Inhibits growth Fellstrrm et al. 1986 [41] 
Inhibits growth, Robertson, Scurf, 1986 [42] 
agglomeration, 
mass deposition 
Promotes nucleation Robertson and Scurr 1986 

[42] 
Scurr and Robertson 1986 
[43] 
Kohri et al. 1989 [44] 

Inhibits agglomeration 

Heparin 

Inhibits nucleation; 
promotes growth rate, 
suspension density 

Inhibits "growth and 
aggregation" 
Inhibits nucleation 
Inhibits growth, aggregation 
Inhibits growth 
Inhibits growth, 
agglomeration, 
mass deposition 
Inhibits agglomeration 

Inhibits nucleation, mass 
deposition 

SPP Inhibits growth, 
agglomeration 
Inhibits growth 
Inhibits growth, promotes 
agglomeration 
Inhibits growth 
Inhibits growth 
Inhibits growth, 
agglomeration 

G871/872 Inhibits growth, 
agglomeration 

Urinary Inhibit "growth and 
GAGs aggregation" 

HS Inhibits "growth and 
aggregation" (not measured 
directly; inferred 

Robertson et al. 1973 [38] 

Pak et al. 1979 [39] 
Ryall et al. 1981 [40] 
Ryall et al. 1981 [40] 
Robertson and Scurr 1986 
[42] 

Scurr and Robertson 1986 
[43] 
Kohri et al. 1989 [44] 

Norman et al. 1984 [45] 

Martin et al. 1984 [46] 
Grases et al. 1989 [47] 

Osswald et al. 1989 [48] 
Suzuki et al. 1989 [49] 
Cao et al. 1992 [50] 

Cao et al. 1992 [50] 

Bowyer et al. 1979 [51] 

Yamaguchi et al. 1993 [52] 

ChS, Chondroitin sulfate; SPP, sodium pentosan polysulfate; HS, 
heparan sulfate 

the results be used to draw conclusions about the role of 
GAGs in stone formation? 

Apparently not. The studies listed in Table 1 have been 
largely responsible for the widely held belief that GAGs are 
responsible in vivo for contributing to the prevention of 
calculi in healthy people; but this belief is, in reality, 
nothing more than misplaced trust in data interpreted be- 
yond the limits of experimental design. First, heparin has 
been used as the basis for proposing a role for GAGs in 
stone formation, yet heparin is not present in human urine 
[54, 55]. Second, to suppose that the action of a GAG, or of 
any inhibitor in an inorganic reaction medium, can be ex- 
trapolated to conclusions about its possible effects under 
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T a b l e  2. Effects of GAGs on CaOx crystallization in urine and in vivo 

GAG Effect Reference 

ChS 

HS 

SPP 

No effect on CaOx deposition in Osswald et al. 1989 [48] 
rat kidneys 
No effect on metastable limit, Ryall et al. 1991 [57] 
mass deposition, 
aggregation 
Promotes large calculus 
formation in rats 
Promotes nucleation 
(only from stone formers) 

Enhances nucleation, inhibits 
growth 
No effect on metastable limit, 
mass deposition; 
inhibits aggregation 

Inhibits growth 
Inhibits deposition in rats 
Inhibits deposition in rats 
Inhibits deposition in rats 

Michelacci et al. 1992 [58] 

Shum and Gohel 1993 [59] 

Shum and Gohel 1993 [59] 

Suzuki and Ryall 1996 [60] 

Suzuki et al. 1989 [49] 
Suzuki et al. 1989 [49] 
Osswald et al. 1989 [48] 
Miyazawa et al. 1989 [61] 

physiological conditions is, indeed, a monumental leap of 
faith. Literally countless studies (some of them my own) 
measuring the inhibitory effects of many substances on 
CaOx crystallization in artifical, inorganic solutions have 
rewarded us with a great deal of information about the basic 
inhibitory mechanisms of a variety of natural and synthetic 
substances. However, although indispensable to the progess 
of research on the role of inhibitors in stone pathogenesis, 
their findings simply cannot be presumed to reflect how 
those inhibitors will act under physiological conditions. Yet 
the results of such studies continue to be cited as evidence 
that agents capable of inhibiting CaOx crystallization in a 
watery medium fulfil some critical role in the urinary soup, 
and thereby, in stone formation, despite the fact that caution 
about the practice has been advocated for many years [56] 
- and caution is clearly warranted. 

Table 2 presents the results of studies designed to test 
the effects of ChS, SPP, and heparan sulfate (HS) on CaOx 
crystallization in urine, or in animal models in vivo. It is 
immediately apparent that the inhibitory effects of ChS, so 
obvious in inorganic solutions, are no longer evident. In 
fact, the work of Michelacci et al. [58] would suggest that a 
high urinary concentration of ChS actually encourages 
stone formation! Both ChS (although only that derived 
from stone formers) and HS have been reported to en- 
courage the nucleation of CaOx crystals in urine [59], and it 
may be argued that this could be an advantage, since pro- 
motion of nucleation causes precipitation of smaller, more 
numerous crystals that can be harmlessly flushed from the 
urinary tract. However, those effects were observed after 
freezing the urine specimens to induce crystal precipitation, 
a process that will inevitably alter the solubility of com- 
ponent macromolecules and may therefore affect their ac- 
tivity. At 37 ~ [57] ChS has no effect on the amount of 
oxalate required to induce CaOx crystallization in urine, or 
on the mass deposition or degree of aggregation of the 
crystals. However, this work was carried out in ultrafiltered 
urine which lacked its normal macromolecular comple- 
ment, and although the results suggest that ChS will have 

no effect on CaOx crystallization in urine in vivo, we 
cannot rule out the possibility, however slight, that other 
urinary macromolecules could potentiate any small effects 
that ChS might have. 

Of greater interest is the observation that HS enhances 
CaOx crystal nucleation and inhibits growth in frozen urine 
[59], but more particularly, potently inhibits aggregation in 
undiluted, ultrafiltered urine at 37 ~ [60]. Crystal ag- 
gregation is commonly recognized as a critical step in stone 
formation, since it is the only mechanism by which free 
crystalline particles can attain a size sufficient to occlude a 
renal tubule in the time taken for urine to travel through the 
nephron. Although the synthetic GAG, SPP, is obviously 
not naturally present in urine, its consistent ability to reduce 
CaOx crystal growth or deposition, both in vivo and in 
vitro, certainly suggests that it could, nonetheless, find 
application in the treatment of stones in recalcitrant stone 
formers. 

I have purposely delayed discussion of studies carried 
out to determine which GAGs are actually present in kid- 
ney stones, because to have revealed the results before 
reviewing the findings of the inhibitory experiments listed 
in Tables 1 and 2, would probably have left readers won- 
dering why most of them were ever undertaken at all. The 
truth is that many of them predate the information about 
GAGs in stones; but then again, many of them do not. 

GAGs in stones and crystals 

Although the early work of Boyce [24] suggested that 
stones contained GAGs, their presence has been confirmed 
only in the last 10 years [25, 52, 62]. In fact, it can be 
calculated that GAGs may account for up to 20% of matrix 
macromolecules, having been shown to comprise between 
0.19% and 0.58% of the entire stone weight [25], and this 
certainly suggests that they may influence the course of 
stone formation. HS and, to a lesser extent, HA account for 
all the GAGs in CaOx stones [25, 52, 62]. ChS cannot be 
detected in CaOx stones, although small quantities of it are 
reportedly present in magnesium ammonium phosphate and 
apatite stones [25]. Perhaps the most puzzling feature of 
these findings, in view of its high concentration in urine, is 
the complete absence of ChS from stones. ChS is easily the 
most abundant of the GAGs in normal human urine: these 
comprise approximately 60% ChS, 15%-20% HS, 11% 
low-sulfated ChS, and 4 % -  10% HA [54, 55]. Other GAGs, 
namely keratan sulfate and dermatan sulfate, are generally 
regarded as being present in trace quantities. Harangi et al. 
[21] reported their relative contributions to the GAG frac- 
tion of children's urine as 7.3% and 3.3%, respectively. The 
mismatch in GAG pattern between stones and urine sug- 
gests that the incorporation of GAGs into stones is selec- 
tive, with HS and HA being included in the structure at the 
expense of the more plentiful ChS. This selectivity is also 
evident in studies of GAG inclusion into CaOx crystals 
precipitated from urine: such crystals, like stones, contain 
only HS [52, 63]. In fact ChS can be detected in CaOx 
urinary crystals only in the complete absence of HS [63], 
indicating that the two probably compete for the same 



660 

Table 3. Excretion of GAGs in stone formers (SF) and normal subjects 
(N) 

Finding Comment Reference 

SF<N Roberston et al. 1978 [64] 
SF = N Samuell 1981 [65] 
SF = N Caudarella et al. 1983 [66] 
SF = N Ryall and Marshall [67] 
SF = N children Baggio et al. 1983 [18] 
SF = N Ryall et al. 1984 [68] 
SF = N male>female Hesse et al. 1986 [69] 
SF<N Baggio et al. 1987 [70] 
SF = N SF>N in type I AH Hwang et al. 1988 [71] 
SF<N recurrent SF only Nikkil~i 1989 [72] 
SF = N unselected SF Nikkil/i 1989 [72] 
SF<N recurrent SF Nikkil~i 1989 [72] 
SF = N children Lama et al. 1990 [20] 
SF<N children > adults Michelacci et al. 1989 [19] 
SF<N Nesse et al. 1992 [73] 
SF = N Akinci et al. 1992 [7] 
SF = N children: differences in Harangi et al. 1996 [21] 

some individuals GAGs 

AH, Absorptive hypercalciuria 

stones, and the differences between the inhibitory effects of 
ChS and HS, the findings are sufficiently interesting to 
tempt us to discover more about urinary GAGs and their 
potential effects in stone formation. There is some evidence 
that keratan sulfate may be present in stones of various 
mineral types [62], although its inhibitory effect on CaOx 
crystallization has never, to my knowledge, been measured; 
neither has that of dermatan sulfate. 

It is therefore obvious that a reduced excretion of total 
urinary GAGs is not a consistent feature of kidney stone 
disease - either in adults or in children, which is hardly 
surprising when we consider the fact that ChS, which ac- 
counts for more than half of the GAGs in urine, is not in 
stones or crystals, and does not inhibit CaOx crystallization 
in urine. On the basis of available information, there may 
be some merit in assessing the urinary output of HS as a 
factor contributing to stone formation, but there is little, if 
any, evidence to support a function for ChS in the genesis 
of the disease. The routine measurement of total GAG 
excretion in the investigation of stone formers is therefore 
indeed "irrational" [7] and should be discontinued. 

binding sites on the CaOx crystal surface. The most im- 
portant ramification of these findings is that, with the 
benefit of hindsight, many of the studies examining the 
effects on CaOx crystallization of several GAGs, particu- 
larly ChS and heparin, now seem illogical. So too does the 
measurement of total urinary GAG excretion as a diag- 
nostic marker of stone formation. 

Urinary GAG excretion 

The flurry of experimental activity following the discovery 
of Crawford et al. [37], as well as the revelation that several 
GAGs could inhibit various aspects of CaOx crystal- 
lization, prompted people to test whether differences in the 
excretion of urinary GAGs could account for the occur- 
rence of stone disease. As with most urinary parameters 
proposed as diagnostic markers for urolithiasis, the results 
are disappointingly inconclusive. Table 3 lists a large 
number of studies, again not exhaustive, in which the ur- 
inary excretion of GAGs in stone formers was compared 
with that in healthy controls. Although a number of them 
report a deficiency in the urine of stone patients, an even 
greater number find no such distinction. Several studies on 
GAG excretion in children are presented in Table 3 
[18-20],  including that of Harangi et al. [21] in this vo- 
lume. With only one exception [19], no differences between 
juvenile stone formers and healthy children could be dis- 
cerned, although Harangi et al. [21] found that patients with 
renal hypercalciuria excreted significantly less keratan 
sulfate than did the normal children oi' stone formers with 
absorptive hypercalciuria. However, their output of der- 
matan sulfate was considerably greater than that of the 
other patients and healthy controls, so that, overall, the total 
GAG excretion was the same in all groups. The physio- 
logical significance of this difference in pattern of GAG 
excretion can only be guessed at, but in view of the known 
selectivity of GAG incorporation into CaOx crystals and 

Proteins 

Although it has been known for many years that proteins 
constitute approximately 60% of the EDTA-soluble organic 
matrix of stones [24], most proteins now known to be 
present in stones defied identification until only recently. 
Human serum albumin and ct- and [3-globulins were spe- 
cifically detected by Boyce et al. [27] in 1962. Boyce and 
Garvey [23] also reported the presence of Tamm-Horsfall 
glycoprotein (THG), which they called "uromucoid," but 
the finding was called into doubt by the absence from 
matrix of sialic acid, which forms the side chains of THG 
[74]. This apparent inconsistency was, for a number of 
years, neatly circumvented by hypothesizing that the in- 
corporation of THG into matrix was accompanied by de- 
sialylation, a notion that was rapidly despatched when later 
studies by Melick et al. [75] demonstrated the unequivocal 
presence of THG in stones. The presence of THG in stones 
of various composition led these authors to surmise that 
THG must be passively absorbed into the structure, a 
speculation which, as we shall see, is supported by recent 
experimental evidence. The remaining proteins found in 
stone matrix have all been identified within the last 10 
years - a welcome consequence of technical advances in 
molecular biology and protein chemistry, and the wide- 
spread cormnercial availability of specific antibodies. 

The number of individual proteins detected in stones 
increases each year, and those whose presence has been 
unequivocally demonstrated are listed in Table 4. However, 
as discussed earlier, the mere presence of a protein in stone 
matrix does not automatically bestow upon it a defined 
function in the stone's formation, and at the present time 
little can be said about the possible roles of most of the 
proteins listed in Table 4. However, recent years have seen 
rapid progress in the study of several stone proteins, and the 
remainder of this section will be devoted to a discussion of 
what is currently known about them. 
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Table 4. Proteins detected in CaOx kidney stones 

Protein Reference 

Human serum albumin 
c~ and ~/-globulins 
Tamm-Horsfall glycoprotein 
Nephrocalcin 
cx- 1 -Microglobulin 
Hemoglobin 
Neutrophil elastase 
Transferrin 
Uropontin (osteopontin 
c~- 1-Antitrypsin 
CD59 protein (protectin) 
Superoxide dismutase 
l~2-Microglobulin 
cq-Acid glycoprotein 
Apolipoprotein A1 
Retinol-binding protein 
Renal lithostathine 
Urinary prothrombin fragment l 
Inter-a-trypsin inhibitor 

Boyce et al. 1962 [27] 
Boyce et al. 1962 [27] 
Melick et al. 1980 [75] 
Nakagawa et al. 1987 [76] 
Morse and Resnick 1988 [30] 
Petersen et al. 1989 [77] 
Petersen et al. 1989 [77] 
Fraij 1989 [78] 
Shiraga et al. 1992 [79] 
Umekawa et al. 1993 [80] 
Binette and Binene 1993 [81] 
Binette and Binette 1994 [82] 
Dussol et al. 1995 [83] 
Dussol et al. 1995 [83] 
Dussol et al. 1995 [83] 
Dussol et al. 1995 [83] 
Dussol et al. 1995 [83] 
Stapleton et al. 1996 [84] 
Unpublished findings from the 
author's laboratory 

The intriguing and contradictory properties of THG 
have contributed greatly to the general confusion sur- 
rounding its function in stone formation, and this is re- 
flected in the fact that the excretion of THG does not seem 
to differ between stone formers and healthy subjects [65, 
97, 98]. One notable exception to this is the study of Baggio 
et al. [18] which, in addition to urinary GAG excretion, 
compared that of THG in pediatric stone patients and 
healthy children. They found that the daily excretion of 
THG was raised in the stone-forming group; however, there 
was no difference in urinary concentration. 

Years of study of THG have therefore yielded less 
bounty than we might have hoped. We know that the pro- 
tein can act as both a promoter and an inhibitor of CaOx 
crystallization processes in experimental systems, but what 
it does in vivo remains a mystery. Of one thing though we 
can be reasonably confident - it is certainly not the only 
urinary protein likely to be involved. 

Nephrocalcin 

Tamm-Horsfall glycoprotein 

THG has been the subject of intense investigation for many 
years and it would be impossible to review all that has been 
published about it: so much is known about THG that it has 
been the subject of at least two recent reviews [85, 86]. The 
protein has long been a puzzle. Although it is the most 
abundant protein in human urine and the predominant 
component of renal casts, its precise function remains un- 
known. It is found in the kidneys of all placental in- 
vertebrates [87], where it is localized to the luminal aspect 
of the epithelial cells of the distal convoluted tubules [88] 
and distributed throughout the epithelial cells of the thick 
ascending limb of the loops of Henl6 [89]. THG is excreted 
in large quantities, 20-200 mg each day [90], so it is 
somewhat surprising that it is present in stone matrix in 
only trace amounts and is completely absent from CaOx 
crystals precipitated from whole human urine [29]. These 
observations suggest that it is incapable of binding irre- 
versibly to CaOx crystals. 

THG has a monomeric molecular mass of approximately 
80 kiloDaltons (kDa), but exists in urine as polymeric 
monsters with molecular masses of several millions, which 
are easily visible to the naked eye. This curious property of 
the molecule is undoubtedly at least partly responsible for 
the frustrating ability of THG to exhibit a range of effects 
on CaOx crystallization, depending upon ambient condi- 
tions and methodology. In synthetic inorganic media, THG 
has been reported to inhibit deposition of CaOx [41,43, 91, 
92]; but in urine it is capable of promoting both CaOx [93, 
94] and calcium phosphate [95] precipitation. Despite this, 
it is a potent inhibitor of CaOx crystal aggregation in un- 
diluted, ultrafiltered urine [57, 96]. Furthermore, its effect 
on crystal aggregation apparently results from steric hin- 
drance [57], rather than binding of the protein to the crystal 
surface, which is the most commonly accepted explanation 
for an inhibitor's effect. 

Nephrocalcin (NC) enjoys the distinction of being, after 
THG, the most extensively studied urinary protein in the 
stone literature. The first report of the protein came from 
Nakagawa et al. in 1978 [99], who first described it as an 
unidentified acidic glycopeptide, and then for a time as a 
glycoprotein inhibitor of CaOx crystal growth [100-105]. 
Its present name, NC, was conferred 9 years after its initial 
discovery [76], by analogy with the bone protein osteo- 
calcin. Like THG, NC has features which do not endear it 
to scientific investigators. Its molecular weight varies 
widely, reportedly as a result of polymerization, with the 
molecular weights of the monomer, dimer, trimer, and tet- 
ramer being 14-15, 23-30,  45-48  and 60-68 kDa, re- 
spectively [76, 100, 104, 106]. Histochemical studies have 
mapped the location of NC to the epithelium of the prox- 
imal tubules and thick ascending limb of the loops of 
Henl6, in both human and murine kidneys [107]. Originally 
isolated from human urine, the protein has been isolated 
from a number of sources, including rat kidney and urine, 
the culture medium of human kidney cell lines [100, 108], 
kidney stones [76], and the urine of patients with renal 
stones [76, 103, 104] and renal cell carcinoma [109]. 

NC has been reported to occur in urine at concentrations 
ranging from 5 mg/1 [101] to 16 rag/1 [ll0], and to contain 
between two and three residues of y-carboxyglutamic acid 
(Gla) per molecule [91,100, 101,103-105], deficiencies in 
which have been cited as the reason for the protein's re- 
duced inhibitory activity in stone formers [111], and an 
explanation for the occurrence of stones [103] in those 
individuals. However, despite many years of investigation 
and claims that NC accounts for approximately 90% of the 
total inhibitory activity of urine [100-102], a figure which 
was recently modified to 16% [112], it must be re- 
membered that the protein's effects have never been as- 
sessed in urine. Furthermore, its molecular structure is still 
unknown; NC has never been sequenced. However, recent 
evidence suggests that it may possibly be a fragment of the 
light chain, bikunin, of inter-m-trypsin inhibitor (ITI) [113], 
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a protein which, as will shortly be seen, has also been 
implicated in CaOx stone formation. Therefore, although 
much evidence points to a possible involvement of NC in 
stone urolithiasis, as it is undoubtedly a potent inhibitor of 
CaOx crystal growth under inorganic conditions, it is be- 
coming increasingly apparent that this potency is shared 
with several other urinary proteins, one of which is osteo- 
pontin (OP). 

stone formation is largely circumstantial. The protein's 
inhibitory effect on CaOx crystallization in urine has never 
been examined; nor has its influence on aggregation been 
determined - in any medium. Therefore, like all the other 
macromolecules discussed in this review, unequivocal de- 
monstration of a role for OP in the pathogenesis of stones 
depends upon the generation of further information. 

Osteopontin ( Uropontin ) 

OP has long been known to be associated with bone mi- 
neralization, in which it is assumed to anchor osteoblasts to 
bone [114]. It is a member of a superfamily of proteins rich 
in aspartic acid that have been shown to exhibit stereo- 
specific binding to the surfaces of crystals [115], a property 
which probably accounts for its reported effects on CaOx 
crystal growth. A possible involvement of OP in stone 
formation became apparent when Shiraga et al. [79] iso- 
lated from human urine a protein which they had previously 
shown to exhibit maximal inhibition of CaOx crystal 
growth in an inorganic crystallization system, and which 
they called uropontin (UP). N-Terminal amino acid se- 
quence analysis [79] demonstrated complete identity of UP 
with the N-termini of both OP [116] and lactopontin. 
Moreover, total amino acid analysis, molecular weight es- 
timations, and identical nucleotide sequences of cDNAs 
encoding OP from human kidney [79] and bone [117] in- 
dicate that UP is not a distinct protein, but rather a urinary 
form of OP. Although acknowledging these facts, Hoyer 
has advocated retention of the name uropontin to reflect its 
urinary source and presumed role in the urinary tract, a 
practice with the potential to cause confusion. Worcester 
et al. [118], who isolated the protein from cultured mouse 
kidney cortical cells, preferred the name osteopontin, as did 
Kohri et al. [119], who cloned and sequenced the cDNA 
encoding the same urinary protein. These authors also de- 
monstrated, using in situ hybridization, that OP mRNA in 
the kidneys of rats in which stone formation had been in- 
duced by lithogenic drugs increased in proportion to the 
dose and duration of drug treatment [120]. Although prima 
facie, these findings could be interpreted as reflecting a 
cause and effect relationship between OP and CaOx stone 
formation, the possibility cannot be discounted that the 
effects resulted from cellular injury caused by action of the 
CaOx crystals themselves. 

OP is widespread in humans, being found on the luminal 
surfaces of specific epithelial cells in the gastrointestinal 
tract, gallbladder, pancreas, urinary and reproductive tracts, 
lung, breast, and salivary and sweat glands [ 121]. Although 
this ubiquitous distribution would tend to militate against 
its fulfilling a specific function in stone formation, the 
protein's potent effect on CaOx crystallization might, 
nonetheless, be a useful adjunct in the body's defense 
against urolithiasis - an example, perhaps, of the right 
result for the wrong reason. OP is certainly found in CaOx 
stones and in normal adult urine at a concentration of 
around 6• -8 mol/1 [122], which, assuming a molecular 
weight of 50 kDa, converts to a value of approximately 
3 mg/l. Nevertheless, current evidence connecting OP to 

Urinary prothrombin fragment 1 

A possible link between urolithiasis and urinary pro- 
thrombin fragment 1 (UPTF 1) was first suspected when this 
protein was found to be the principal proteinaceous com- 
ponent of the organic matrix of CaOx crystals freshly 
precipitated from whole human urine [29]. A glycoprotein 
with a molecular mass of approximately 31 kDa, UPTF1 
was first thought to be a previously undescribed protein, 
and was initially called crystal matrix protein. However, 
subsequent N-terminal amino sequence analysis demon- 
strated identity with human prothrombin [123], and a later 
study showed conclusively that the protein is the FI acti- 
vation peptide of prothrombin [124], thereby establishing, 
unambiguously, the existence of a link between human 
blood clotting and urolithiasis. To avoid confusion, the 
protein is no longer called crystal matrix protein, but 
UPTF1, to distinguish it from its counterpart in serum and 
to indicate its urinary origin. The chromatographic prop- 
erties of the serum form of F1 differ from those of the 
urinary form [124], which suggests that UPTF1 may be 
modified in the kidney, or manufactured there, rather than 
in the liver, where prothrombin is thought to be exclusively 
synthesized [125]. 

UPTF1 possesses all the properties that would reason- 
ably be expected of a protein fulfilling a function in stone 
formation. It is present in kidney stones [84], having been 
detected in nine of ten stones containing calcium, and in all 
composed principally of CaOx. Of most significance is that 
it was absent from two struvite calculi, indicating that its 
presence in stones is not a consequence of bleeding induced 
by the stone itself, but the result of selective and avid 
binding of the protein to the crystalline surface. The protein 
is found in specifically circumscribed regions of the human 
nephron, where it was shown, immunohistochemically, to 
be located in the thick ascending limb of the loops of Henl6 
and the distal convoluted tubules, including the maculae 
densae of a subset of nephrons [126]. Limited data also 
revealed [126] that UPTF1 is present in the kidneys of 
stones formers in greater quantities than in healthy controls, 
a finding which suggests that its levels may rise in response 
to lithogenic conditions. However, of greatest importance is 
that UPTF1 is a potent inhibitor of both CaOx crystal 
growth and aggregation in undiluted, ultrafiltered human 
urine [127], a property that can almost certainly be attrib- 
uted to its Gla domain. This region of the molecule, close to 
the N-terminus, contains ten Gla residues - a legacy from 
its parent prothrombin, whose function in blood coagula- 
tion depends absolutely on the integrity of its Gla domain. 

There is good evidence, therefore, that UPTF1 may 
fulfil some directive role in stone formation, but further 
evidence is required before it will be possible to state with 
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certainty that variations in the amount of the protein ex- 
creted in the urine, or alterations in its molecular structure, 
predispose some individuals to urolithiasis. 

view of the suspicion that NC may also be a relative of ITI: 
recent findings have suggested its identity to HI- 14 [ 113], a 
fragment of bikunin known to be present in human urine 
[134]. 

Inter-o~-trypsin inhibitor 

A possible connection between stones and ITI was first 
suggested in 1990, when S0rensen et al. [128] isolated from 
urine a glycoprotein that inhibited the growth of CaOx in an 
inorganic medium. Although they described it as "uni- 
dentified," amino acid sequencing showed that it was re- 
lated to ITI, a complex Kunitz-type plasma proteinase in- 
hibitor comprising three chains encoded by three different 
genes on three different chromosomes [129]. ITI has no 
known function - despite its presence in plasma at a 
concentration of around 500 mg/l. Three years after the 
publication of SCrensen's paper, Atmani et al. [130] iso- 
lated what appeared to be a similar protein. It had a mo- 
lecular mass of 35 kDa and also inhibited CaOx crystal 
growth under similar conditions. Analysis showed that it 
was a glycoprotein, containing 8.5% carbohydrate, and that 
it was rich in uronic acid, which suggested that it might be 
covalently bound to a GAG. They named the protein uronic 
acid-rich protein, and later that same year demonstrated by 
Edman degradation that it shared homology with ITI [131 ]. 
They also showed that the protein's activity was unaffected 
by chondroitinase, hyaluronidase, or glycanase treatment, 
but disappeared after proteinase treatment and that the 
protein derived from the urine of stone formers had a re- 
duced inhibitory effect on CaOx crystallization in com- 
parison with the protein isolated from healthy subjects 
[132]. 

Since that time, the protein has also been shown to be 
present in the urine of rats [133], in which it exhibits 
similar characteristics to its human cousin. Like the human 
protein, the one isolated from rat urine also cross-reacts 
with an antibody to ITI, which, combined with its N- 
terminal identity to ITI, suggests that it belongs to the ITI 
superfamily. These data have been independently corro- 
borated in my own laboratory, where we have isolated from 
human urine a 35-kDa protein with an N-terminal primary 
amino acid sequence identical to bikunin, the light chain of 
ITI, which is covalently bound to the two heavier chains by 
a ChS moiety [113]. It is likely that the protein isolated by 
S0rensen et al. [128], the one described by Atmani et al. 
[130-133], and the 35-kDa protein isolated in my labora- 
tory [113], are one and the same - probably bikunin. They 
all have similar molecular weights and immunoreact with 
antibodies to ITI. Most importantly, they all inhibit CaOx 
crystal deposition in an inorganic crystallization system, 
which, like the other proteins singled out for attention in 
this review, seems sufficient justification for adding ITI to 
the list of urinary proteins with the potential to influence 
the course of CaOx stone disease. Unfortunately, however, 
the protein's effects have not yet been tested in urine or in 
an animal model. 

It is therefore obvious that further studies are required in 
order to ascertain whether bikunin would retain its in- 
hibitory activity under physiological conditions. Results of 
such investigations may prove even more interesting, in 

Lessons from our juniors? 

In reviewing the more recent literature linking urinary 
macromolecules and CaOx stone formation I have been 
obliged merely to skim the surface; many more papers have 
been published than have been mentioned here. None- 
theless, their addition would have done little to clarify the 
matter. Years of research in adults have identified a con- 
fusing array of proteins and GAGs that may play some role 
in the pathogenesis of stones, yet have not to this day de- 
monstrated with absolute certainty that the initiation or 
progress of the disease is significantly influenced by any 
one of them. However, it is imperative that the work con- 
tinues, for amongst all the confusion and doubt it is 
manifestly obvious that the occurrence of stones relies as 
much on the enlargement and retention of crystals as it does 
on their initial precipitation; and these almost certainly are 
affected by urine's organic constitutents [36]. 

But where are the children in all this? Although evi- 
dence indicates that they exhibit the same urinary inorganic 
derangements as their seniors, to my knowledge, with the 
exception of the paper by Harangi et al. [21] in this issue, 
no study has ever examined in detail individual organic 
components of children's urines and attempted to relate 
them to the occurrence of stones; and yet, avoiding stone 
formation might prove to be simply a matter of child's play 
and urinary macromolecules the toys. The study of chil- 
dren's urinary macromolecules may therefore be regarded 
as a tempting, locked chest containing a rich booty: perhaps 
the time has now come for adults to see if their sons and 
daughters hold the key. 
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