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Abstract
Background Continuous kidney replacement therapy (CKRT) is often used for acute kidney injury (AKI) or fluid overload 
(FO) in children ≤ 10 kg. Intensive care unit (ICU) mortality in children ≤ 10 kg reported by the prospective pediatric CRRT 
(ppCRRT, 2001–2003) registry was 57%. We aimed to evaluate characteristics associated with ICU mortality using a con-
temporary registry.
Methods The Worldwide Exploration of Renal Replacement Outcomes Collaborative in Kidney Disease (WE-ROCK) 
registry is a retrospective, multinational, observational study of children and young adults aged 0–25 years receiving CKRT 
(2015–2021) for AKI or FO. This analysis included patients ≤ 10 kg at hospital admission. Primary and secondary outcomes: 
ICU mortality and major adverse kidney events at 90 days (MAKE-90) defined as death, persistent kidney dysfunction, or 
dialysis within 90 days, respectively.
Results A total of 210 patients were included (median age 0.53 years (IQR, 0.1, 0.9)). ICU mortality was 46.5%. MAKE-
90 occurred in 150/207 (72%). CKRT was initiated at a median 3 days (IQR 1, 9) after ICU admission and lasted a median 
6 days (IQR 3, 16). On multivariable analysis, pediatric logistic organ dysfunction score (PELOD-2) at CKRT initiation was 
associated with increased odds of ICU mortality (aOR 2.64, 95% CI 1.68–4.16), and increased odds of MAKE-90 (aOR 2.2, 
95% CI 1.31–3.69). Absence of comorbidity was associated with lower MAKE-90 (aOR 0.29, 95%CI 0.13–0.65).
Conclusions We report on a contemporary cohort of children ≤ 10 kg treated with CKRT for acute kidney injury and/or fluid 
overload. ICU mortality is decreased compared to ppCRRT. The extended risk of death and morbidity at 90 days highlights 
the importance of close follow-up.
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Introduction

Acute kidney injury (AKI) and pathologic fluid overload 
(FO) are common in critically ill children ≤ 10 kg and are 
associated with adverse outcomes [1–3].  Some children 
with severe AKI may require kidney replacement therapy, 
delivered through peritoneal dialysis or extracorporeal ther-
apy, most commonly continuous kidney replacement therapy 
(CKRT) [1]. Historically, CKRT utilization in infants and 
small children (weighing ≤ 10 kg) with AKI has been lower 
than that in older children, as the use of machines designed 
for older children and adults makes CKRT delivery techni-
cally challenging [4]. While newer devices have been devel-
oped (Carpediem™) or adapted (Aquadex™) for neonates 
and infants, the majority of children ≤ 10 kg continue to 
receive CKRT utilizing devices approved for larger children 
or adults [5, 6].

There are limited multicenter reports on the use of CKRT 
in infants and small children [4, 7]. The largest multicenter 
study, the Prospective Pediatric Continuous Renal Replace-
ment Therapy (ppCRRT) Registry, performed almost 
20 years ago, reported 57% intensive care unit (ICU) mortal-
ity among infants and small children ≤ 10 kg [4]. Since 2005, 
there have been changes in the care of these patients, includ-
ing increased awareness and recognition of AKI and FO, and 
availability of newer CKRT filters and devices. However, the 
impact of those changes in a multicenter population have not 
been reported. In order to continue to improve outcomes in 
critically ill infants and young children treated with CKRT, 
a better understanding of the epidemiology and outcomes in 
a contemporary, multicenter cohort is greatly needed.

The Worldwide Exploration of Renal Replacement Out-
comes Collaborative in Kidney Disease (WE-ROCK) is a 
multinational investigator group that was formed to study the 
epidemiology, practices, and clinical and patient-centered 
outcomes of children receiving CKRT for AKI and FO [8]. 
In this planned secondary analysis of the WE-ROCK reg-
istry, we specifically evaluated infants and small children 
weighing ≤ 10 kg who received CKRT. We aimed to describe 
(1) demographic and clinical characteristics; (2) practice 
variations (CKRT dosing, blood flow, anticoagulation); and 
(3) outcomes (ICU mortality, major adverse kidney events 
at 90 days (MAKE-90)) in this cohort. We hypothesized 

that there would be (1) lower ICU mortality in the contem-
porary cohort, (2) wide variation in CKRT practice, and (3) 
a significant burden of morbidity and mortality beyond ICU 
discharge.

Methods

Study population

Details of the WE-ROCK study methods and demographics 
of the overall cohort have been reported previously [8, 9]. 
Briefly the WE-ROCK study included children and young 
adults (0–25 years old) receiving CKRT for AKI or FO in 
an ICU from January 2015 to December 2021. This current 
analysis includes a subgroup of patients with an admission 
weight ≤ 10 kg. Exclusions include: CKRT for a non-AKI 
or non-FO indication, dialysis-dependent kidney failure, a 
severe congenital anomaly of the kidney and urinary tract 
likely to progress to kidney failure, concomitant use of 
extracorporeal membrane oxygenation (ECMO), and those 
treated with the Carpediem™ device, due to the presence 
of an existing registry focusing on the device [8]. Children 
receiving ECMO were excluded because of the significant 
morbidity and mortality seen in this cohort, and the desire 
to understand the effect of CKRT alone on outcomes. The 
study was performed in line with the principles of the Dec-
laration of Helsinki. The Institutional Review Board at Cin-
cinnati Children’s Hospital Medical Center (CCHMC) and 
each participating site approved this study, with a waiver of 
informed consent in view of its retrospective nature. Data 
sharing agreements were instituted between each site and the 
data coordinating site (CCHMC).

Demographic and CKRT technique data

Demographic data including sex, age, and time from ICU 
admission to CKRT initiation were collected for all patients. 
Data at CKRT initiation included kidney function, pres-
ence of sepsis [10] within 24 h of ICU admission, Pediatric 
Logistic Organ Dysfunction 2 (PELOD-2) [11] score in the 
24 h prior to CKRT initiation, fluid balance, and loop diu-
retic challenge. Details of CKRT prescription, including 
device, modality, filter, prescribed dose, and anticoagula-
tion, were collected daily for the first 7 days the patient 
received CKRT, or until procedure termination if less than 
7 days. CKRT dose was calculated as the prescribed efflu-
ent dose. While CKRT dose is the amount of blood cleared 
of solute over a unit of time, effluent flow is regarded as an 
acceptable surrogate of solute clearance for prescribing the 
dose [12]. CKRT dose was a key exposure variable. Fluid 
balance was defined using intake and output as has been 
previously described [13].
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Outcomes of interest

The primary outcome was ICU mortality. Secondary out-
comes included MAKE-90, CKRT duration, and ICU length 
of stay. MAKE-90, defined as a composite of death, dial-
ysis-dependence, or persistent kidney dysfunction (> 25% 
decline in kidney function from baseline) [14], has been rec-
ommended by the National Institute of Diabetes and Diges-
tive and Kidney Diseases (NIDDK) workgroup on clinical 
trials in AKI. We used this, as it allows for assessment of a 
greater percentage of patients with a clinically meaningful 
poor outcome and overcomes the limitation of competing 
risks (for example, mortality and persistent kidney dysfunc-
tion) [15]. We chose to assess MAKE at 90 days because 
this is the time when chronic kidney disease is diagnosed 
after AKI [16].

Statistical analysis

Continuous variables are reported as median with inter-
quartile range (IQR) and were compared using Wilcoxon 
rank sum tests. Categorical variables are reported as pro-
portion with percent and were compared using Chi-square 
tests. To examine the association between ICU mortality 
and CKRT dose, a univariate logistic regression model was 
used to model the probability of ICU mortality as a func-
tion of CKRT dose at initiation. CKRT dose at initiation 
was flexibly modeled using restricted cubic spline terms 
with four knots (5th, 35th, 65th, and 95th percentiles) to 
allow for potential non-linear associations [17]. A cubic 
spline plot (i.e., model-based predicted values) was gener-
ated to visualize the association between CKRT dose and 
ICU mortality. Predicted probabilities of ICU mortality as 
a function of CKRT dose were obtained via an inverse logit 
transformation of the log odds.

Multivariable logistic regression models were used to 
estimate adjusted odds ratio (aOR) and 95% confidence 
intervals (CI) to identify the risk factors associated with 
ICU mortality and MAKE-90. A priori relevant covariates 
were selected for each outcome based on the existing litera-
ture and clinical practice. For continuous covariates, linear 
associations with outcomes were assumed and odds ratios 
are presented as a comparison of the 75th versus 25th per-
centile (i.e., odds ratios per IQR increase). In all analyses, 
a p-value < 0.05 was considered statistically significant. All 
statistical analyses were performed using R (V4.3.1, https:// 
www.r- proje ct. org/). The rms package (version 6.7.1) was 
used to perform regression analyses.

Results

Patient characteristics

A total of 210 infants and small children from 32 centers in 
7 countries were included in this analysis. Selected patient 
characteristics are displayed in Table 1. The weight range 
was 1.9–10 kg, median of 6.47 kg (IQR 3.73–8.69), and 75 
(32%) weighed ≤ 5 kg. The age range was 1 day–4.4 years, 
median 0.53 years (IQR 0.1–0.9), with 47 (22%) younger 
than 1 month. The most common reason for admission was 
shock/infection/trauma (31%), followed by respiratory fail-
ure (22%); 80 (38%) had sepsis at ICU admission. Comor-
bidities were seen in 81%, with cardiac (27%), and gastroin-
testinal (26%) being most common, although only 18% had 
no comorbidity.

CKRT initiation

CKRT was initiated a median of 3 days (IQR 1, 9) after ICU 
admission and lasted a median of 6 days (IQR 3, 16). In the 
24 h prior to CKRT initiation, the median PELOD-2 score 
was 7 (IQR 5,10) and VIS was 7 (IQR 0, 20). The median 
FO at CKRT initiation was 16.4% (IQR 6.3, 32.8) with 91 
(43%) children having > 20% FO (Table 1).

CKRT technique

The most common CKRT modality was continuous veno-
venous hemodiafiltration (CVVHDF) in 146 (69%) patients, 
and polysulfone filters were most commonly used (80%) 
(Table 1). Anticoagulation strategies included citrate in 
110 (52%), heparin in 64 (31%), no anticoagulation in 21 
(10%) and other in 15 (7%, epoprostenol and bivalirudin). 
The most common catheter placement location was internal 
jugular vein (n = 156, 76%) with size ranging from 6 to 10 
Fr. Median blood flow per body weight was 8 mL/kg/min 
(IQR 5.9, 11.3).

CKRT dosing

CKRT dose was calculated as the prescribed effluent 
dose. The median prescribed CKRT dose at initiation was 
2104 mL/1.73  m2/h (IQR 1564, 3027) or 63.8 mL/kg/h (IQR 
49.2, 88.1), with 85% having a CKRT dose prescription 
of > 40 mL/kg/h. The median hourly dose increased over the 
first 7 days of treatment. There was wide variation between 
centers, with the median dose at initiation ranging from 27.8 

https://www.r-project.org/
https://www.r-project.org/
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Table 1  Patient characteristics and association with ICU outcome

Variable Overall
N = 210

ICU outcome p-value2

Survival to ICU discharge
N =  1131

Death prior to ICU discharge
N =  971

Patient characteristics
  Female 90 (43%) 49 (43%) 41 (42%)  > 0.9
  Admission weight (kg) 6.47 (3.7, 8.7) 7.26 (4.5, 8.7) 5.90 (3.3, 8.7) 0.022
  Weight categories (kg) 0.009
     < 5
    5–10

75 (36%)
135 (64%)

31 (27%)
82 (73%)

44 (46%)
53 (54%)

  Age, years 0.53 (0.1, 0.9) 0.57 (0.2, 0.9) 0.43 (0.08, 0.9) 0.15
  Age 0.3
     < 1 month
    1 month–1 year
     > 1 year

47 (22%)
120 (57%)
43 (21%)

21 (19%)
69 (61%)
23 (20%)

26 (27%)
51 (52%)
20 (21%)

  Admission category 0.017
    Shock/infection/major trauma
    Respiratory failure
    Post-surgical/minor trauma
    Post-cardiac surgery
    Other cardiac disease
    Other

65 (31%)
47 (22%)
18 (8%)
15 (7%)
22 (11%)
43 (21%)

35 (31%)
16 (14%)
13 (12%)
10 (9%)
9 (8%)
30 (26%)

30 (31%)
31 (32%)
5 (5%)
5 (5%)
13 (13%)
13 (13%)

  Sepsis at ICU admission 80 (38%) 42 (37%) 38 (39%)  > 0.9
  Comorbidities*
    None
    Respiratory
    Cardiac
    Neurologic/neuromuscular
    Kidney/urologic
    Hematologic
    Oncologic
    Immunologic
    Gastrointestinal
    Endocrinologic

39 (18%)
34 (16%)
57 (27%)
22 (10%)
15 (7%)
21 (10%)
24 (11%)
29 (14%)
55 (26%)
4 (2%)

25 (22%)
18 (16%)
31 (27%)
13 (12%)
9 (8%)
11 (9.7%)
10 (9%)
9 (8%)
31 (27%)
1 (1%)

14 (14%)
16 (16%)
26 (28%)
9 (9%)
6 (6%)
10 (10%)
14 (14%)
20 (20%)
24 (24%)
3 (3%)

0.2
 > 0.9
 > 0.9
0.7
0.8
 > 0.9
0.3
0.016
0.7
0.5

  PRISM-III score at ICU admission 14 (10, 19) 14 (10, 18) 15 (10, 20) 0.3
  Characteristics at CKRT initiation
  Vasoactive-inotrope score 7 (0, 20) 3 (0, 12) 13.5 (3, 27)  < 0.001
  PELOD-2 score 7 (5, 10) 6 (4, 8) 8 (6, 11)  < 0.001
  Percent fluid balance (ICU admit to CKRT initia-

tion)
16.4 (6.3, 32.9) 16.6 (4.9, 30) 16.2 (7.2, 34.8) 0.2

  Serum creatinine (mg/dL) 0.9 (0.6, 1.69) 1 (0.6, 2.1) 0.9 (0.5, 1.2) 0.018
  Urine output in the 24 h prior to initiation (mL/

kg/hour)
0.6 (0.1, 1.6) 0.8 (0.2, 1.8) 0.5 (0.1, 1.4) 0.2

  Time from ICU admission to CKRT initiation 
(days)

3 (1, 9) 3 (1, 7) 4 (1, 13.7) 0.3

  CKRT prescription at initiation
  CKRT modality 0.8
    SCUF
    CVVH
    CVVHDF
    CVVHD
    mCVVH

3 (1.4%)
30 (14%)
145 (69%)
25 (12%)
7 (3%)

1 (0.9%)
15 (13%)
79 (70%)
15 (13%)
3 (3%)

2 (2.0%)
15 (15%)
66 (67%)
10 (10%)
4 (4%)

  Use of polysulfone filter 168 (80%) 91 (81%) 77 (79%) 0.9
  Anticoagulation 0.7
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to 187.8 mL/kg/h (861–4244 mL/1.73  m2/h) (Supplementary 
Fig. 1). There was also a wide range of initial prescribed 
dose within centers that enrolled at least 5 patients in the 
study (Supplementary Fig. 2).

Mortality prior to ICU discharge

Overall, 97 (46.1%) died prior to ICU discharge. Of those, 41 
patients died during their CKRT course (Fig. 1). A descrip-
tion of patient characteristics by ICU mortality is presented 
in Table 1. Those who died in the ICU had lower weights 
(5.9 kg vs. 7.3 kg, p = 0.022), with those weighing ≤ 5 kg 
having higher mortality (59% compared to 40% mortality 
in those > 5 kg, p < 0.009). There was no significant dif-
ference in mortality by age categories, with those younger 
than 1 month age (55%), 1 month to 1 year (43%) and older 

than 1 year (47%) (Table 2). Patients who died had higher 
PELOD-2 scores (8 vs. 6, p < 0.001) and VIS (13.5 vs. 3, 
p < 0.001) in the 24 h prior to CKRT initiation. Those with 
respiratory failure as the primary reason for admission, and 
those with immunologic co-morbidities (including patients 
with hematopoietic stem cell transplants), were more likely 
to die in the ICU (Table 1).

There were no differences between CKRT modality, filter 
type, or mode of anticoagulation by ICU mortality status. 
CKRT dose at initiation was similar between survivors and 
non-survivors. By day 3 of therapy, it was higher in those 
who did not survive with a median of 84.3 mL/kg/h (IQR 
54, 114.8) compared to 63.6 mL/kg/h (IQR 43.3, 90.8) in 
those who survived, p = 0.017. Considering the possibility 
that higher clearances in those who did not survive could 
reflect regional citrate use and accumulation, we evaluated 

Table 1  (continued)

Variable Overall
N = 210

ICU outcome p-value2

Survival to ICU discharge
N =  1131

Death prior to ICU discharge
N =  971

    None
    Citrate
    Heparin
    Other

21 (10%)
110 (52%)
64 (31%)
15 (7%)

11 (9.7%)
63 (56%)
32 (28%)
7 (6%)

10 (10%)
47 (48%)
32 (34%)
8 (8%)

  Prescribed CKRT dose (mL/per 1.73  m2/h) 2104 (1564, 3027) 2038 (1543, 2809) 2195 (1761, 3092) 0.2
  Prescribed CKRT dose (mL/kg/h) 64 (49, 88) 59 (49, 85) 71 (49, 102) 0.13
  Blood flow rate scaled to body weight (ml/min 

per kg)
8 (5.9, 11.3) 7.6 (5.4, 10.2) 8.9 (6.7, 12.5) 0.011

1 Statistics presented: n (%); median (IQR)
2 Statistical tests performed: chi-square test of independence; Wilcoxon rank-sum test
ICU, intensive care unit; CKRT, continuous kidney replacement therapy; PRISM-III, Pediatric Risk of Mortality-III; PELOD-2, Pediatric Organ 
Logistic Dysfunction-2 score; GFR, glomerular filtration rate; SCUF, slow continuous ultrafiltration; CVVH, continuous venovenous hemofiltra-
tion; CVVHD, continuous venovenous hemodialysis; CVVHDF, continuous venovenous hemodiafiltration; mCVVH, modified CVVH done using 
Aquadex device
Percentages may not add up to 100 due to rounding
*Many patients had more than 1 comorbidity

Fig. 1  Timeline up to 90 days from CKRT initiation. CKRT was initi-
ated at a median (IQR) 3 (1–9) days after ICU admission. Open dia-
monds represent those who died during their CKRT course (n = 41). 

Closed triangles represent those who died after coming off CKRT (8 
patients died after their CKRT course beyond the 90 day mark). (Cre-
ated with BioRender.com)
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anticoagulation type and found no significant difference 
between proportion of patients receiving citrate compared 
to other anticoagulants.

The predicted probability of ICU mortality decreased 
slowly until a CKRT dose of 47 mL/kg/h and increased 
with further increases in dose (p = 0.349) (Fig. 2). In the 
evaluation of CKRT dose at initiation by tertiles (< 53 mL/
kg/h, 53–80 mL/kg/h, and > 80 mL/kg/h), the smallest and 
youngest infants received the highest dose. Median weight 
and age for those with a prescription > 80 mL/kg/h were 
5.2 kg (IQR 3, 7.7) and 0.3 years (IQR 0.06, 0.6) compared 
to 8 kg (IQR 4.4, 9.6) and 0.6 years (0.1, 1), respectively, for 
those < 53 mL/kg/h. Those receiving a dose > 80 mL/kg had 
the highest rate of KRT dependence at hospital discharge 
and longest duration of mechanical ventilation (Supplemen-
tary Table 1), but there was no difference in ICU or hospital 
mortality.

In multivariable logistic regression analysis which 
included weight, percent fluid overload, PELOD-2 score, 
and CKRT dose at initiation, dose was not associated with 

Fig. 2  Predicted probability of ICU mortality as a function of CKRT dose at initiation (ml/kg) from the logistic regression model. CKRT dose 
was modeled with restricted cubic splines (4 knots). The dotted line is CKRT dose of 47 ml/kg/h. Shaded areas are 95% CIs

Table 2  Key outcomes of infants receiving continuous kidney  
replacement therapy

ICU, intensive care unit; CKRT, continuous kidney replacement ther-
apy; MAKE-90, major adverse kidney events at 90 days. *Includes the 
sum of those alive with and without dialysis dependence. ^p < 0.05

Survival to ICU discharge (n = 210) 113 (54%)
Survival to ICU discharge based on weight^

   < 5 kg
  5–10 kg

31 (41.3%)
82 (60.7%)

Survival to ICU discharge based on age
   < 1 month
  1 month–1 year
   > 1 year

21 (44.6%)
69 (57.5%)
23 (53.4%)

CKRT duration (days) (survivors only) 6.00 (3.00, 16.00)
ICU length of stay (days) (survivors only) 32 (20, 56)
Presence of MAKE 90
(n = 207)

150 (72%)

Components of MAKE 90 (n = 150*)
   Death
   Dialysis dependence
   Persistent kidney dysfunction

100
16
50*
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increased odds of death prior to ICU discharge (aOR 1.07, 
95% CI 0.88–1.29). Only higher PELOD-2 score (aOR 2.64, 
95% CI 1.68–4.16) at CKRT initiation remained statistically 
significantly associated with increased odds of death prior 
to ICU discharge (Table 3).

MAKE‑90

MAKE-90 data were available in 207 patients of whom 150 
(72.4%) fulfilled criteria, with death in 100 (67%), and per-
sistent kidney dysfunction (> 25% decline from baseline kid-
ney function or dialysis dependence) in 50 (33%) (Table 2). 
The cohort of 50 patients with persistent kidney dysfunc-
tion included 16 who were dialysis dependent at 90 days. 
In multivariable logistic regression analysis which included 
weight, percent fluid overload, CKRT dose at initiation, 
CKRT duration, and PELOD-2 Score at CKRT initiation, 
and the presence or absence of any comorbidity, PELOD-2 
was associated with increased odds of MAKE-90 (aOR 2.20, 
95% CI 1.31–3.69). Absence of any comorbid condition had 
a protective effect, with lower odds of MAKE-90 (aOR 0.29, 
95%CI 0.13–0.65) (Table 4).

Discussion

In this secondary analysis of the multicenter international 
WE-ROCK registry, we describe the clinical characteristics, 
CKRT treatment, and outcomes in a large cohort of children 
weighing ≤ 10 kg requiring CKRT. This study shows that 
infants and small children with AKI and FO who weigh ≤ 10 
kg at CKRT initiation have higher mortality prior to ICU 
discharge compared to children weighing > 10 kg (46% in 
children ≤ 10 kg vs. 36% for the entire WE-ROCK cohort). 
We also report that there remains a significant burden of 
morbidity and mortality at 90 days, with nearly half the sur-
vivors having persistent kidney dysfunction. Additionally 
we show that there are important and large variations in 
prescribed dialysis dosing, both within and between centers.

While CKRT has become the modality of choice in criti-
cally ill older children with severe AKI and FO, there is a 
paucity of data on infants and small children treated with 
CKRT ≤ 10 kg. Most studies of CKRT in this population are 
single-center and small [18, 19]. In a retrospective cohort of 
85 infants < 10 kg from 5 United States centers from 1993 
to 2001, Symons et al. reported ICU mortality of 62% ICU 

Table 3  Multivariable 
regression model for ICU 
mortality

ICU, intensive care unit; CKRT, continuous kidney replacement therapy; PELOD-2, Pediatric Organ Logis-
tic Dysfunction-2 score
*Statistically significant
Adjusted odds ratio (aOR) and 95% confidence intervals (CI) obtained by logistic regression. aORs for 
continuous predictors scaled to reflect the interquartile range odds ratio (i.e., reference = 25th percentile, 
contrast = 75th percentile)

Variable Reference Contrast aOR (95% CI)

Weight (kg) 3.7 8.7 0.63 (0.35–1.11)
Percent fluid overload 6.3 32.9 1.07 (0.89–1.29)
PELOD-2 score at CKRT initiation* 5.0 10.0 2.63 (1.68–4.14)
CKRT dose at initiation (mL/kg/h) 49.2 88.1 1.06 (0.88–1.29)

Table 4  Multivariable 
regression models for major 
adverse kidney events at 90 days 
(MAKE-90)

CKRT, continuous kidney replacement therapy; PELOD-2, Pediatric Organ Logistic Dysfunction-2 score
*Statistically significant
Adjusted odds ratio (aOR) and 95% confidence intervals (CI) obtained by logistic regression. aORs for 
continuous predictors scaled to reflect the interquartile range odds ratio (i.e., reference = 25th percentile, 
contrast = 75th percentile)

Variable Reference Contrast aOR (95% CI)

Weight (kg) 3.7 8.7 0.60 (0.31–1.17)
No comorbidity* No Yes 0.29 (0.13–0.65)
PELOD-2 score at CKRT initiation* 5.0 10.0 2.20 (1.31–3.69)
Percent fluid overload 6.3 32.9 1.07 (0.84–1.37)
CKRT dose at initiation (mL/kg/h) 49.2 88.1 0.94 (0.78–1.12)
CKRT duration (days) 3.0 16.0 1.33 (0.998–1.78)
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[7]. Among a similar but prospective cohort in the ppCRRT 
registry, which enrolled patients from 2001 to 2005, Aske-
nazi et al. reported 56% mortality in 84 patients [4]. In a 
more contemporary retrospective cohort of 51 infants 
weighing ≤ 10 kg, 47% died in the hospital [6]. Many of 
these studies included infants with severe congenital kidney 
disease and those who received CKRT for a non-AKI/FO 
indication (i.e., ingestion or inborn errors of metabolism), 
groups which have usually had better outcomes compared 
to those with AKI and/or FO [4, 6, 7]. In the current study, 
we focused on a less heterogenous population, and limited 
enrollment to only those treated with CKRT for AKI and/or 
FO, and excluding concurrent ECMO use that has a substan-
tial negative effect on survival. After excluding those with 
inborn errors of metabolism, the mortality in the ppCRRT 
cohort was 62% compared to 46% in our study [4]. While 
there are significant differences between these studies, we 
may be seeing some improvement in the outcomes of infants 
receiving CKRT over time, which are likely related to over-
all improvements in ICU care, along with better recognition 
of AKI and FO [9, 20, 21].

As recognition and ICU survival of critically ill children 
of all ages with AKI have improved, there has been a shift 
to include the outcomes of persistent kidney dysfunction 
captured in MAKE-90. However there are limited follow-up 
data on neonates and infants treated with CKRT, particularly 
focusing on MAKE-90 or other long-term outcomes. Most 
studies include all children < 18 years, and have been from 
either small single center studies or large claims-based data 
[22, 23]. Using province-wide health administrative data-
bases of children aged 0–18 years hospitalized in Ontario, 
Canada, Robinson et al. reported that those who survived 
an episode of pediatric AKI requiring dialysis were at sig-
nificantly increased risk of a composite outcome of kidney 
failure or death versus an age-matched control population 
that did not have AKI requiring dialysis [23]. At a median 
follow-up of 9.6 months, death occurred in 6.7% and kid-
ney failure in 2.6%, along with hypertension, chronic kidney 
disease, and repeat episodes of AKI. More recently, Gul-
cek et al. reported on 109 patients weighing < 15 kg who 
received various modalities of acute KRT including CKRT, 
HD, and PD [24]. ICU mortality was seen in 64 (58.7%). 
At a mean follow-up of 2.9 ± 2.1 years, 34 patients (includ-
ing 3 who received CKRT) were evaluated, and 22 patients 
(64.7%) were reported to have ≥ 1 kidney risk factor includ-
ing elevated blood pressure/hypertension, abnormal eGFR, 
and/or proteinuria. We show high rates of MAKE-90 in chil-
dren ≤ 10 kg, with 50% of survivors having abnormal kidney 
function at 90 days, including many still requiring dialysis. 
The high rates of persistent kidney dysfunction highlight the 
need for close follow-up in this at-risk population, as has 
been previously recommended [25–27].

In the current study, we also looked at sub-populations 
and patient characteristics associated with adverse outcomes. 
While the severity of illness at CKRT initiation was associ-
ated with worse MAKE-90, the absence of any comorbidity 
was associated with lower odds of developing MAKE-90. 
Over 80% of those in our cohort had at least 1 comorbidity. 
This reflects the increasing medical complexity of infants 
and small children admitted to ICUs, where the proportion 
of children with chronic comorbidities has increased sig-
nificantly in the last decade [20]. These children experience 
higher mortality and longer ICU stays than children without 
chronic medical conditions [20].

To continue improving outcomes in infants and small 
children treated with CKRT, a critical step is under-
standing the characteristics and heterogeneity in CKRT 
prescription and delivery. One of the most interest-
ing findings we report is the variation in CKRT dosing. 
Pediatric CKRT prescriptions have been extrapolated 
from adults [28, 29], with a dose of 2000 mL/1.73  m2/h 
approximating adult weight-based doses (25–30 mL/kg/h 
for a 70 kg patient) [30]. However, there are wide vari-
ations reported in clinical practice, ranging from < 1000 
to > 4000 mL/1.73  m2/h, which equated to 20–150 mL/
kg/h [31]. We report similar variation not only between 
centers, but also within the same center. The dose variance 
in this population takes on particular importance when one 
considers that weight-based dosing and BSA-based dos-
ing diverge at lower weights. This nonlinear relationship 
between weight and BSA results in a disproportionately 
higher dose in neonates and infants. The current study 
shows that most patients are prescribed a dose > 40 mL/
kg/h, which would be considered a high dose in adults. 
While high-dose CKRT has been studied extensively in 
adults without consistent evidence of benefit, little is 
known about its impact on outcomes in small children. 
The potential consequences of such high doses are loss 
of proteins, amino acids, phosphorus, and other micro-
nutrients [32]. However, we acknowledge that details of 
individual CKRT treatments, notably delivered dose, rea-
sons for dose increase, and the change in clinical status 
and severity of illness scores over the duration of therapy 
was not collected. This limits our ability to assess differ-
ences in prescribed and delivered dose, or the reasons in 
changes in CKRT dose over time. While we did not see a 
significant relationship between dose and outcomes, this 
highlights the opportunity for the development of stand-
ardized protocols for dosing in this population and the 
systematic study of dosing in this population.

The primary strength of this study is it represents a large 
contemporary report of infants weighing ≤ 10 kg receiving 
CKRT, including data from 32 centers across 7 countries. 
Nonetheless, we acknowledge several important limitations. 
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Registry data are subject to center and patient selection 
bias. Given the study design and its retrospective nature, 
we only collected information on those who started CKRT 
for AKI and FO. The study also lacks information on those 
with severe AKI/FO who may not have received CKRT 
due to their size, or severity of illness, or lack of appro-
priate resources, or may have received peritoneal dialysis 
or kidney support with Carpediem™. While CKRT use is 
becoming increasingly common in pediatric patients with 
critical illness, peritoneal dialysis remains the most common 
modality of KRT in infants and small children worldwide 
[33]. All sites included in WE-ROCK are tertiary or qua-
ternary care centers in North America, Western Europe, the 
United Kingdom, and Australia; therefore, the findings may 
only be applicable to centers with similar practice models 
and resources. Sites were permitted to participate in WE-
ROCK by including 10 or more consecutive patients. While 
this was done to promote inclusion and participation from 
sites that do not have significant research resources due 
to lack of funding for WE-ROCK, we recognize this may 
have resulted in site selection bias as only sites with some 
research resources were able to participate.

We highlight that survival in infants and small children 
who weigh ≤ 10 kg at CKRT initiation is improving. Further-
more, we describe that many survivors have kidney sequelae 
at 90 days. There is significant practice variation in CKRT 
dosing with marked differences between and within cent-
ers. When dosing was adjusted for weight, 85% of neonates 
received a dose higher than the “high dose” CKRT described 
in adult studies. This study highlights the need for evidence-
based guidelines for CKRT prescription in infants and small 
children, as well as a standardized approach to follow-up 
for those that survive to discharge to ensure monitoring for 
medium- and long-term kidney-related complications.
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