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Abstract
Background  This study evaluated urinary sphingolipids as a marker of diabetic kidney disease (DKD) in adolescents and 
young adults with youth-onset type 1 and type 2 diabetes.
Methods  A comprehensive panel of urinary sphingolipids, including sphingomyelin (SM), glucosylceramide (GC), cera-
mide (Cer), and lactosylceramide (LC) species, was performed in patients with youth-onset diabetes from the SEARCH for 
Diabetes in Youth cohort. Sphingolipid levels, normalized to urine creatinine, were compared in 57 adolescents and young 
adults with type 1 diabetes, 59 with type 2 diabetes, and 44 healthy controls. The association of sphingolipids with albumin-
to-creatinine (ACR) ratio and estimated glomerular filtration rate (eGFR) was evaluated.
Results  The median age (interquartile range [IQR]) of participants was 23.1 years (20.9, 24.9) and the median dura-
tion of diabetes was 9.3 (8.5, 10.2) years. Urinary sphingolipid concentrations in patients with and without DKD 
(ACR ≥ 30 mg/g) were significantly elevated compared to healthy controls. There were no significant differences in 
sphingolipid levels between participants with type 1 and type 2 diabetes. In multivariable analysis, many sphingolipid 
species were positively correlated with ACR. Most significant associations were evident for the following species: C18 
SM, C24:1 SM, C24:1 GC, and C24:1 Cer (all p < 0.001). Sphingolipid levels were not associated with eGFR. How-
ever, several interaction terms (diabetes type*sphingolipid) were significant, indicating diabetes type may modify the 
association of sphingolipids with eGFR.
Conclusion  Urinary sphingolipids are elevated in adolescents and young adults with youth-onset diabetes and correlate with 
ACR. Urinary sphingolipids may therefore represent an early biomarker of DKD.
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Introduction

Diabetes is a leading cause of kidney disease, accounting for 
approximately 45% of cases of kidney failure in the United 
States [1]. The management of diabetic kidney disease 
(DKD) remains challenging, as sensitive and specific mark-
ers of disease progression are lacking. While albuminuria 
has traditionally been clinically used to identify patients at 
risk for disease progression, it has significant limitations. Up 
to 50% of patients with diabetes and albuminuria can regress 
to normoalbuminuria [2], and 29–41% of patients with dia-
betes may experience a decline of kidney function despite 
having normal urinary albumin excretion [3–5]. Therefore, 
a pressing need for the development of more sensitive and 
specific biomarkers of disease progression in DKD has been 
widely recognized [6].
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Sphingolipids, a class of lipids involved in intracellu-
lar signaling and cellular metabolism, have been identi-
fied as a potential mediator of DKD in both type 1 and 
type 2 diabetes mellitus. Urinary sphingolipids may 
therefore represent a novel early biomarker of kidney 
injury and disease progression in DKD. Dysregulation 
of sphingolipid metabolism occurs in diabetes, resulting 
in increased de novo synthesis of sphingolipids in kidney 
tissue [7, 8]. Subsequent accumulation of sphingolipid 
species has been shown to mediate early changes of 
DKD including glomerular hypertrophy and extracellular 
matrix productions [9, 10]. Sphingolipids have also been 
identified as mediators of particular comorbidities exclu-
sively associated with type 2 diabetes including insulin 
resistance, inflammation, and hepatic steatosis [11–13]. 
Furthermore, obesity-related fatty acid dysregulation and 
inflammation are potential causes of increased sphin-
golipid production [14]. Sphingolipids may therefore play 
a more important role in the pathophysiology of DKD in 
type 2 diabetes.

In the current study, we investigated urinary sphin-
golipid profiles in a sub-cohort of participants with 
youth-onset diabetes in the SEARCH for Diabetes in 
Youth (SEARCH) study. We aimed to 1) compare urinary 
sphingolipid profiles in youth-onset type 1 and type 2 dia-
betes, and 2) investigate the association of urinary sphin-
golipids with traditional markers of DKD. We hypoth-
esized that urinary sphingolipids would be more elevated 
and associated with albuminuria in adolescents and young 
adults with youth-onset type 2 diabetes mellitus.

Methods

Study cohort and design

This is a cross-sectional study that compares urinary 
sphingolipids in a sub-cohort of adolescents and young 
adults with youth-onset type 1 and type 2 diabetes in the 
SEARCH study. SEARCH is a multicenter observational 
cohort study of youth with diabetes mellitus, and the meth-
ods of the SEARCH study have been previously reported 
[15, 16]. Briefly, youths less than 20 years of age who 
received a new diagnosis of non-gestational diabetes were 
identified from six recruitment centers from 2000–2010. 
A subset of participants at least 10 years of age and with 
4 years diabetes duration were recruited for an outcome 
visit between 2011 and 2015. From this cohort, urine sam-
ples from 57 participants with type 1 diabetes and 59 with 
type 2 diabetes were randomly selected with serum cre-
atinine and cystatin C values available for estimation of 
glomerular filtration rate (eGFR). Clinical characteristics 
of study participants and laboratory data were provided 

by the SEARCH data coordinating center, including age, 
race, diabetes type and duration, medications, body mass 
index (BMI), hemoglobin A1C levels, lipid profiles, serum 
creatinine and cystatin C, and urinary albumin and creati-
nine. As trends in diabetes incidence vary by race, race 
was determined via self-report by the parent or partici-
pant, depending on age. eGFR was estimated using the 
average of the recently derived cystatin C and creatinine 
U25 equation, as this provides a more accurate and precise 
measurement of GFR compared to single-marker estimates 
[17]. DKD was defined as a urinary albumin-to-creatinine 
ratio (ACR) ≥ 30 mg/g. To provide a comparison group of 
healthy youth without diabetes, 43 healthy control sam-
ples were selected from a local biorepository at Cincin-
nati Children’s Hospital Medical Center (CCHMC). This 
cohort was frequency matched according to age and sex 
to the study cohort. The study was approved by the local 
Institutional Review Board.

Sphingolipid analysis

A comprehensive panel of urinary sphingolipids was per-
formed that included the following sphingolipid species: 
ceramide (Cer) species (C16, C18, C20, C24, C24:1); glu-
cosylceramide (GS) species (C16, C18, C20, C22, C24, 
C24:1, C26); lactosylceramide (LC) species (C16, C18, 
C20, C24, C24:1, C26); and sphingomyelin (SM) species 
(C16, C18, C20, C22, C24:1, C24). Individual species of 
the sphingolipid panel were selected based on previous 
studies demonstrating these species were elevated in obe-
sity and diabetes [10, 18]. Testing was performed at the 
CCHMC Clinical Mass Spectroscopy Laboratory (Direc-
tor, Kenneth Setchell, PhD), as previously reported [18]. 
Individual sphingolipid species were detected and quanti-
fied in urine specimens by liquid chromatography electro-
spray ionization tandem mass spectrometry (LC–ESI–MS/
MS) using a Waters Xevo TQ-S triple-quadrupole mass 
spectrometer interfaced with Acquity UPLC system 
(Waters, Milford, MA). Urine was extracted twice with 
the Folch procedure. Optimized parameters were deter-
mined with individual standard compounds. Sphingolipids 
were separated by an Acquity UPLC CSH C18 column and 
quantified under positive ion mode. Reference standards of 
all the sphingolipid species quantified were obtained from 
Avanti Lipids (Alabaster, Alabama) and used to construct 
calibration curves. For quantification, the precursor and 
product ion pairs for multiple reaction monitoring were 
selected by MS/MS spectra of standards or calculated 
theoretically if the standard for a given sphingolipid was 
not available. Quantification of sphingolipid species with 
various fatty acid chain lengths was performed using the 
curve of each sphingolipid species with the closest number 
of chain length.
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Statistical analysis

Descriptive statistics were summarized and comparisons 
between the groups made using chi-squared testing for cat-
egorical variables and Kruskal–Wallis testing for continuous 
variables. Comparisons were made within each individual 
sphingolipid species, as well as for aggregate levels for each 
category. Linear regression modeling was used to investigate 
the association of urinary sphingolipids levels with ACR and 
eGFR. Multivariable analysis was then performed to assess the 
independent associations while controlling for clinically rel-
evant covariates, including age, BMI, diabetes duration, serum 
triglyceride level, hypertension, HbA1c, sex, and diabetes 
type. Interactions between diabetes type and sphingolipid lev-
els were investigated to determine if the relationship between 
urinary sphingolipids and outcomes was modified by diabetes 
type. Log transformation was used as appropriate to fulfill the 
assumptions of linear regression modeling. All analyses were 
performed with SAS statistical software, version 9.4.

Results

Demographic and clinical characteristics

The study cohort included 116 adolescents and young adults 
with youth-onset diabetes: 57 with type 1 diabetes and 59 with 
type 2 diabetes. The median age (IQR) of participants was 
23.1 years (20.9, 24.9) and the median duration of diabetes 

was 9.3 (8.5, 10.2) years. Overall, 53% were females, 38.8% 
were Black, 37% were white, 21.6% were Hispanic, and 2.6% 
were Asian American/Pacific Islander. Demographic charac-
teristics of the control subjects were similar to study subjects: 
mean age 23 years (21, 25), and 49% female.

Comparison of clinical and demographic characteristics 
between participants with type 1 and type 2 diabetes are pre-
sented in Table 1. There were no differences in sex or race 
between participants with type 1 and type 2 diabetes. There were 
no differences in indices of glycemic control or diabetes duration 
between those with type 1 and type 2 diabetes, though partici-
pants with type 2 diabetes were slightly older. Those with type 2 
diabetes also had an increased prevalence of cardiovascular risk 
factors, including higher BMI, triglyceride levels, blood pres-
sure, and lower HDL cholesterol levels. eGFR and ACR were 
similar in participants with type 1 and type 2 diabetes.

Table 1   Clinical characteristics

Data expressed as median (interquartile range)
BMI body mass index; SBP systolic blood pressure; DBP diastolic blood pressure; LDL low density lipo-
protein;  HDL  high density lipoprotein; TG  triglyceride; ACR​  albumin: creatinine ratio; eGFR  estimated 
glomerular filtration rate

Variable Type 1 diabetes (n = 57) Type 2 diabetes (n = 59) P-value

Age 22.2 (19.9, 23.6) 24.2 (21.4, 25.8) 0.0007
Gender 52.6% 52.5% 0.99
Diabetes duration 9.5 (8.6, 10.2) 9.2 (8.4, 10.2) 0.34
BMI, kg/m2 25.8 (22.2, 31.8) 35.6 (29.0, 40.1)  < 0.0001
Hypertension (%) 35.1% 61.0% 0.005
SBP 112 (103, 120) 118 (110, 126) 0.012
DBP 72 (67, 78) 78 (72, 83) 0.001
HbA1c (%) 9.5 (8.3, 11.3) 9.0(6.2, 11.7) 0.16
Glucose (mg/dL) 200 (130, 283) 190 (111, 293) 0.56
LDL (mg/dL) 89 (73, 115) 93 (76, 123) 0.48
HDL (mg/dL) 55 (43, 66) 39 (33, 44)  < 0.0001
TG (mg/dL) 84 (56, 125) 118 (79, 223) 0.0006
Prescribed insulin 94.7% 50.9%  < 0.0001
ACR​ 7.2 (4.3, 40.3) 10.1 (4.3, 309.2) 0.24
Serum creatinine (mg/dL) 0.66 (0.57, 0.89) 0.64 (0.51, 0.77) 0.13
Serum cystatin C (mg/L) 0.70 (0.58, 0.87) 0.73 (0.62, 0.83) 0.71
eGFR (ml/min/1.73 m2) 107.7 (95.7, 117.6) 112.6 (98.0, 134.3) 0.21

Table 2   Sphingolipid levels according to patient sex

Levels expressed as nmol/gm creatinine and as median (interquartile 
range)’
all p values were < 0.0001 compared to males

Study subjects (diabetes)

Sphingolipid class Males (n = 55) Females (n = 61)

Sphingomyelin 108.9 (78.1, 147.8) *167.4 (138.8, 217.8)
Ceramide 4.9 (3.3, 10.1) *21.5 (11.6, 39.5)
Glucosylceramide 12.3 (9.5, 17.9) *28.9 (17.6, 40.6)
Lactosylceramide 6.4 (4.6, 15.2) *26.7 (11.4, 70.2)
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Total (Table 2) and individual levels (Fig. 1) of different 
subspecies of SM, Cer, GC, and LC were markedly higher 
in females compared to males among children with diabe-
tes. There was no significant difference among sphingolipid 
classes according to race/ethnicity. BMI was not associated 
with total levels of any sphingolipid class. Increase in age was 
associated with a weak but statistically significant decrease in 
total LC (r = -0.21, p = 0.027) and total SM levels (r = -0.29, 
p = 0.002). There was a significant correlation of HbA1c with 
total Cer (r = 0.27), GC (r = 0.24), and LC (r = 0.27) levels (all 
p < 0.01). Sphingolipid levels did not correlate with LDL and 
HDL cholesterol, or serum triglycerides.

Among control subjects, total levels of LC were higher 
in females (4.9 vs. 3.2 nmol/gm, p = 0.002), but other sphin-
golipid subspecies did not reach statistical significance.

Urinary sphingolipid profiles

All sphingolipid species were significantly higher in ado-
lescents and young adults with type 1 and type 2 diabetes 
compared to healthy controls (Fig. 2). The most significant 
differences were seen for all C16 species (C16SM, C16Cer, 
C16GC, and C16LC), C24:1Cer and C24:1LC, and C24Cer, 
C24GC, and C24LC. Results remained similar when strati-
fied by sex, though some species did not reach statistical 
significance (Supplemental Fig. 1). There were no differ-
ences in any sphingolipid species between participants with 
type 1 and type 2 diabetes. Therefore, subsequent analyses 
were performed using a single dataset combining type 1 and 
type 2 diabetes.

Fig. 1   Urinary sphingolipid levels in participants with diabetes by sex, *p < 0.001, †p < 0.01, ‡ p < 0.05

Fig. 2   Urinary sphingolipid levels in participants with type 1 and type 2 diabetes, *p < 0.001, †p < 0.01, ‡ p < 0.05 (all p-values are compared to 
control groups)
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Comparison of sphingolipid levels in adolescent and 
young adults with DKD (ACR ≥ 30), those without DKD, 
and healthy controls is shown in Fig. 3. In general, sphin-
golipids were higher in those with DKD compared to those 
without, and those without DKD had elevated levels com-
pared to healthy controls. This pattern was most prominent 
and significant for C16SM, C24:1SM, C24Cer, C24:1Cer, 
C22 GC, C24 GC, and C24:1 GC.

Association of urinary sphingolipid species with ACR 
and eGFR

In adjusted analyses, all SM species as well as many Cer and 
GC species were significantly associated with ACR (Fig. 4). 
Lactosylceramide species were not associated with ACR. 
The most significant associations were seen for C18SM, 
C24:1 SM, C24:1Cer, and C24:1 GC species (all p < 0.001), 
where there was more than a twofold increase in ACR per 
IQR increase in sphingolipid levels. To investigate if the 
association of sphingolipids with ACR varied according to 
diabetes type, interaction terms were tested for each species 
(diabetes type × sphingolipid species). All interaction terms 
were not significant.

There was no association of any sphingolipid species with 
eGFR in adjusted analyses (Supplemental Fig. 2). How-
ever, several interaction terms were significant, indicating 
the association of urinary sphingolipids with eGFR varied 
according to diabetic type (Supplemental Fig. 3). Interac-
tion terms were most significant for C24:1 Cer, C24:1 GC, 
C16 LC, C18 LC, C20 LC, and C24:1 LC. For these sphin-
golipid species, there was a significant positive association 
of species C20 LC and C24 LC with eGFR in type 1 diabe-
tes. However, in type 2 diabetes, negative associations were 
observed between eGFR and the following sphingolipid spe-
cies: C24:1 Cer, C24:1 GC, C18 LC, and C24:1 LC.

Discussion

We demonstrated that urinary sphingolipids are significantly 
elevated in adolescents and young adults with youth-onset 
diabetes compared to healthy controls. Many individual uri-
nary sphingolipid species were associated with increased 
ACR, indicating these species may represent early biomark-
ers of kidney injury. Sphingolipid profiles were similar in 
both type 1 and type 2 diabetes, indicating that diabetes per 
se, rather than obesity-related metabolic abnormalities such 
as insulin resistance, inflammation, and fatty acid dysregu-
lation, is primarily responsible for increased urinary sphin-
golipid levels.

Sphingolipid dysregulation has been implicated in the 
pathogenesis of a variety of kidney diseases, including lupus 
nephritis, Fabry’s disease, and diabetes [19]. Though the 
exact mechanism of sphingolipid-mediated kidney injury 
has yet to be elucidated, it may occur via the disruptive 
effects of sphingolipid accumulation on podocyte integrity 
or mitochondrial function [20, 21]. As dysregulated lipid 
metabolism has been implicated in the pathogenesis of 
diabetes, particular attention has been given to the role of 
sphingolipids in DKD [22]. Previous studies have demon-
strated that increased plasma sphingolipid species correlate 
with albuminuria in type 1 and type 2 diabetes [23–25]. Uri-
nary levels of ceramide were investigated by Morita et al. in 
adults with type 2 diabetes mellitus, and they found elevated 
levels in those with more advanced DKD [26]. Our study 
similarly showed that sphingolipid species were elevated in 
adolescents and young adults with DKD, and many species 
demonstrated strong correlation with albuminuria. Together, 
these finding indicate sphingolipids may represent a useful 
biomarker of DKD.

Despite increasing evidence linking altered sphingolipid 
metabolism to DKD, the clinical application of these 

Fig. 3   Urinary sphingolipid levels in participants with and without DKD, *p < 0.001, †p < 0.01, ‡ p < 0.05 (p-values compare No DKD to con-
trols, and DKD to No DKD)
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biomarkers for disease progression has not been established. 
In our cohort, urinary sphingolipids were elevated even 
among subjects without albuminuria, suggesting these may 
represent a more sensitive marker of early kidney injury. 
Increased production of sphingolipids in kidney tissue may 
cause elevation in urinary levels in the absence of more 
global injury to the glomerular basement membrane and 
subsequent albuminuria. Therefore, urinary sphingolipids 
may identify kidney injury in those patients with DKD but 
with normal albumin excretion. However, we were unable 
to assess the long-term risk of kidney disease progression 
among those adolescents with elevated urinary sphingolipid 
levels, and longitudinal studies are therefore needed to eval-
uate the prognostic value of urinary sphingolipids in DKD. 
It is possible that increased urinary sphingolipids may be a 
result of early kidney injury but not causally related. Intra-
cellular levels of all sphingolipid species may increase in 
proportion to diabetic severity, with subsequent release into 
the urine in proportion to the extent of diabetic injury from 
other processes. Future studies are needed to assess whether 
urinary sphingolipids are more predictive than urinary albu-
min in assessing the risk of progression of kidney disease.

Considering the well-established associations between 
obesity, inflammation, and sphingolipid synthesis [14, 27, 
28], the finding of similar urinary sphingolipid profiles in 
type 1 and type 2 diabetes was not in agreement with our 
hypothesis and was somewhat surprising. Hyperglycemia 
as the main cause of increased urinary sphingolipids, rather 
than metabolic dysfunction, was further supported by the fol-
lowing findings: 1) significant correlations existed between 
HbA1c and urinary Cer, GC, and LC species, and 2) no cor-
relation was seen between sphingolipid levels and BMI or 
serum triglycerides. A possible explanation is that hypergly-
cemia induces metabolic pathways that increase production 
of intermediates needed for sphingolipid production. For 
example, reduced nicotinamide adenine dinucleotide phos-
phate (NADPH) can be generated from glucose shunting to 
the pentose phosphate pathway, and this is a required cofactor 
for both fatty acid and dihydrosphingosine synthesis [9, 29]. 
Aerobic glycolysis also can generate acetyl CoA and serine, 
both of which are substrates for de novo sphingolipid synthe-
sis [30]. Thus, increased sphingolipid production in response 
to hyperglycemia may represent a common pathophysiologic 
pathway of DKD in both type 1 and type 2 diabetes.

Fig. 4   Association of urinary sphingolipid with ACR​
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An interesting finding of this study was the interaction 
between diabetes type and eGFR for several sphingolipid 
species, most notably C24:1 Cer, C24:1 GC, and several 
LC species. Specifically, these urinary sphingolipids 
tended to be associated with an increase in eGFR in type 
1 diabetes, while they were associated with a decrease 
in eGFR among those with type 2 diabetes. This might 
indicate that urinary sphingolipids are associated with 
hyperfiltration in type 1 diabetes, which is presumed to 
be the earliest manifestation of kidney injury [31]. Con-
versely, urinary sphingolipids may associate with more 
advanced kidney injury (i.e., a decline in eGFR) in type 
2 diabetes. It may also be that obesity-associated hyper-
filtration, which occurs primarily in type 2 diabetes, is a 
confounding factor that modifies the relationship between 
urinary sphingolipids and eGFR between those with type 
1 and type 2 diabetes.

To our knowledge, this is the first study to report sex-
related differences in urinary sphingolipids, with females 
consistently demonstrating higher levels across all individ-
ual species. Other studies have shown elevations of serum 
sphingolipids levels in females, and similarly hypothesized 
this may be attributed to sex-related differences in metab-
olism-related genes [32, 33]. Considering sex-related dif-
ferences in control subjects were much less apparent (only 
LC species were significantly higher), this may indicate 
that sphingolipid production in response to hyperglycemia 
is more pronounced in females. Evidence suggests women 
with diabetes may be at higher risk for progression of kid-
ney disease [34, 35], and females with youth-onset diabetes 
have increased prevalence of hyperfiltration and proteinuria 
[36–38]. Therefore, increased urinary sphingolipid produc-
tion in females with diabetes may explain these sex-related 
differences in DKD. Future studies with long-term follow-
up are needed to further investigate the interplay between 
sex, urinary sphingolipid levels, and risk for progression 
of DKD.

This study has many strengths. Participants were selected 
from a large, multicenter, representative population of ado-
lescents and young adults with diabetes [16]. Our cohort 
included only patients with both a serum creatinine and cys-
tatin C value, thereby enabling us to estimate GFR using the 
U25 estimating equations, which have been validated in both 
children and young adults [17]. However, several limitations 
deserve mention. First, the observational nature of the study 
prevents any inference regarding the causative effect of uri-
nary sphingolipids in the pathogenesis of DKD, though a 
growing body of evidence suggests the pathogenic role of 
glomerular sphingolipid accumulation in kidney disease 
[30]. Second, ACRs were obtained using a single spot urine, 
rather than repeated measurements that are recommended 
to diagnose persistent albuminuria due to the day-to-day 
variation that can occur in urine albumin excretion [39]. 

Finally, although we investigated a comprehensive panel of 
urinary sphingolipids, it is possible a downstream product 
of sphingolipids may be responsible for mediating DKD. 
For example, GM3 ganglioside, a higher order glycosphin-
golipid, antagonizes insulin resistance and is increased in the 
kidney tissue of rats with type 1 diabetes [40, 41].

In conclusion, we demonstrated that urinary sphingolip-
ids are similarly elevated in both type 1 and type 2 diabetes. 
This indicates that hyperglycemia, rather than obesity asso-
ciated-metabolic dysfunction, is responsible for increased 
urinary sphingolipid levels. Several urinary sphingolipids 
were independently associated with albuminuria and were 
increased even in those with normal urinary albumin excre-
tion. Urinary sphingolipids may therefore represent an early 
biomarker of DKD.
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