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Abstract
Most biological fluids contain extracellular vesicles (EVs). EVs are surrounded by a lipid bilayer and contain biological 
macromolecules such as proteins, lipids, RNA, and DNA. They lack a functioning nucleus and are incapable of replicating. 
The physiological characteristics and molecular composition of EVs in body fluids provide valuable information about the 
status of originating cells. Consequently, they could be effectively utilized for diagnostic and prognostic applications. Urine 
contains a heterogeneous population of EVs. To date, these urinary extracellular vesicles (uEVs) have been ignored in the 
standard urinalysis. In recent years, knowledge has accumulated on how uEVs should be separated and analyzed. It has 
become clear how uEVs reflect the expression of each molecule in cells in nephron segments and how they are altered in 
disease states such as glomerular/tubular disorders, rare congenital diseases, acute kidney injury (AKI), and chronic kidney 
disease (CKD). Significant promise exists for the molecular expression signature of uEVs detected by simple techniques such 
as enzyme-linked immunosorbent assay (ELISA), making them more applicable in clinical settings. This review presents 
the current understanding regarding uEVs, emphasizing the potential for non-invasive diagnostics, especially for childhood 
kidney diseases.
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Introduction

Most biological fluids, including urine, plasma, serum, 
saliva, seminal fluid, amniotic fluid, and breast milk, contain 
extracellular vesicles (EVs) [1, 2]. EVs contain DNA, RNA, 
lipids and proteins, and are delimited by a lipid bilayer. They 
do not contain a functional nucleus and cannot replicate [3]. 
The physiological and molecular characteristics of EVs have 
the potential to provide valuable information into the cellular 
origin and pathophysiological condition. Consequently, they 
could be effectively utilized for diagnostic and prognostic 
applications [4]. Historically, their presence has been con-
firmed by electron microscopy since the 1960s [5]. Since 
then, there has been exponential growth in the research per-
formed to characterize EVs and use them across various 
medical fields.

EVs are abundant in urine [2, 4]. However, they have been 
ignored in the standard urinalysis. Recent investigations have 

developed various purification and analysis methods, dem-
onstrating that using urinary extracellular vesicles (uEVs) 
to diagnose and treat kidney diseases holds great promise. 
In 2019, Pediatric Nephrology released a landmark review 
that compiled a wealth of information on the subject [6]. 
Subsequently, significant progress has been made in the field 
of research relevant to EVs or uEVs. This review presents 
the current advances on uEVs, emphasizing the potential for 
non-invasive diagnostics, especially for childhood kidney 
diseases.

Variety of EVs in urine

EVs are a heterogeneous population that can vary in size, 
shape, composition, biogenic mechanisms, and specific 
biomarkers [3]. Urinary EV samples often contain a het-
erogeneous mixture of EVs, including exosomes, ectosomes 
(more commonly called microvesicles and microparticles), 
arrestin domain-containing protein 1-mediated microvesicles 
(ARMM), apoptotic bodies, autophagic extracellular vesicles, 
or even non-vesicular compartments such as exomeres [7].
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Although the classification of EVs is continually evolv-
ing, our current knowledge of their biogenesis has broadly 
categorized classical EVs into two main types: exosomes 
and ectosomes/microvesicles [6–8].

1.	 Exosome

a.	 Origin: Intraluminal vesicles (ILVs) are released 
into the extracellular space as exosomes when 
endosomes known as a multivesicular bodies (MVB) 
carrying ILVs fuse with the plasma membrane [8].

b.	 Size: Exosomes are small with a size range of 
40–150 nm.

c.	 Composition: Exosomes contain a diverse cargo of 
molecules, including proteins, lipids, RNAs (such as 
messenger RNAs, microRNAs, and long non-coding 
RNAs), and other signaling molecules. Classical 
exosomes do not natively contain dsDNA and do 
not associate with other particles or proteins that 
contain dsDNA [7].

d.	 Surface markers: classic tetraspanins such as CD63, 
CD81, and CD9.

2.	 Ectosome/microvesicle

a.	 Origin: Ectosomes/microvesicles arise from out-
ward protrusions of plasma membrane. They are 
generated when they are excised and shed into the 
extracellular space. Membrane protrusions such as 
filopodia, cilia, and microvilli can shed small ecto-
somes.

b.	 Size: Ectosomes range in diameter from less than 
100 nm to several micrometers and contain a vari-
ety of vesicle types, including microvesicles (typi-
cally 0.2–1 nm in diameter) and huge oncosomes 
(> 1 μm) [8].

c.	 Composition: They contain a diverse range of mol-
ecules, including membrane proteins, lipids, RNAs, 
cytosolic proteins, and other signaling molecules. 
They may enclose free cytosolic DNA.

d.	 Surface markers: annexin A1 (ANXA1), tumor sus-
ceptibility gene 101 protein (TSG101), and arrestin-
domain-containing protein 1 (ARRDC1) [7].

Essentially, exosomes and ectosomes/microvesicles differ 
in their release mechanisms. However, it is not practical to 
capture the moment of release of each vesicle by live imag-
ing to distinguish between them. Therefore, consensus on 
the classification based on a particular biogenesis pathway 
has yet to emerge. Note that although major EV cargo sort-
ing mechanisms such as the endosomal sorting complexes 
required for transport (ESCRT) machinery or classic tet-
raspanins have been linked to exosomes; similar biogenesis 
machinery might be engaged at different locations in the cell 

to create ectosomes/microvesicles. Therefore, the presence 
or absence of any particular tetraspanin in a mixture of EVs 
cannot be used to determine whether the EVs are exosomes 
or ectosomes [8].

As mentioned above, the terms “exosome” and “ecto-
some/microvesicle” have historically been burdened by mul-
tiple contradictory definitions and inaccurate expectations 
regarding their unique biogenesis [1]. The recent guideline 
by the Journal of Extracellular Vesicles recommended that 
authors utilize operational terms for different subtypes of 
EVs. These terms should be based on specific physical 
characteristics, such as size (referred to as “small EVs” 
(sEVs) and “medium/large EVs” (m/lEVs), with defined 
size ranges, for example, < 100 nm or < 200 nm for small 
EVs, and > 200 nm for medium/large EVs), or density (low, 
middle, high, with each range precisely defined) [1].

Physical and molecular characterization 
of uEVs

The discovery of EVs in urine [9] opened a new, fast-
growing scientific field [10]. Previous studies have con-
ducted detailed characterizations of the morphological or 
molecular properties of vesicles present in entire urine or 
uEVs [11–16]. It is important to note that these properties 
vary depending on their purification [10] or characterizing 
methods [14]. In order to optimize and standardize uEVs 
research, the Urine Task Force of the Rigor and Standardi-
zation Subcommittee of ISEV, consisting of nephrologists, 
urologists, cardiologists, and biologists, published a position 
paper in 2021 [10], which summarizes the recent method to 
separate and characterize uEVs and present challenges and 
gaps in current analyses.

uEVs contain vesicles of various sizes, but most are in the 
30 to 200 nm range [14, 17]. We investigated the quantity 
and size distribution of uEVs derived from children using 
nanoparticle tracking analysis (NTA). The average number 
of uEVs obtained from healthy control samples was deter-
mined to be about 20 × 109 particles/mL. The mean size ± SD 
of uEVs was 137.9 ± 2.5 nm, peaking at 117.4 ± 1.0 nm [18].

The size and shape of uEVs can undergo modifications 
in a pathological condition. In the previous study, we found 
no difference in the average size of uEVs from children 
diagnosed with chronic kidney disease (CKD) and from the 
control. Nonetheless, it was observed that the comparative 
density of peak size exhibited a notable decrease among 
patients with CKD in comparison to the control, implying a 
deviation from the typical relatively homogeneous popula-
tion of vesicles [18]. It should also be noted that the size of 
uEVs varies with dilution [14].

Proteomic analysis indicates that a significant major-
ity, notably 99.96%, of the proteins identified in urinary 
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extracellular vesicles exhibit distinct characteristics that are 
commonly associated with cells originating from the uro-
genital tract [4], and the most prevalent sources of these 
vesicles are glomerular, tubular, prostate, and bladder cells 
[4]. The protein composition of uEVs from healthy children 
contains several thousands of molecules, including several 
common markers for different EV subpopulations (exosome 
(CD63 and CD9), classical microvesicles (ANXA1), and 
ARMM (TSG101)). Pathway analysis demonstrated that 
many pathways are enriched, including lysosomes, meta-
bolic pathways, endocytosis, and proximal tubule transport 
[18]. The proteome data suggests that uEVs are released 
from several nephron segments [18].

In addition to proteins or lipids, uEVs contain RNAs. 
Among the classes of RNAs, microRNA (miRNA), con-
sisting of roughly 22 nucleotides, has attracted significant 
attention. RNAs (mRNAs and miRNAs) in uEVs have been 
comprehensively reviewed in previous influential publica-
tions [4, 19–21].

uEVs as biomarkers for kidney diseases

There is a growing body of research on the alterations of 
molecular compositions in uEVs in many renal and urologi-
cal disorders [4, 6, 22–24].

Glomerular disorders

Nephrotic syndrome is the most studied pediatric disease 
for uEVs. Santorelli et al. analyzed uEV protein profiles 
of children with steroid-sensitive, steroid-dependent, and 
steroid-resistant nephrotic syndrome. They demonstrated 
that uEV protein profiles could differentiate steroid-resistant 
patients from other idiopathic nephrotic syndrome patients 
and controls [25]. As a protein biomarker in uEVs, Zhou 
et al. reported Wilms’ tumor 1 (WT1) transcription factor, 
which is widely recognized as a marker for differentiated 
podocytes, as a potential biomarker for early progression 
and treatment-induced regression of podocyte injury in 
childhood focal segmental glomerulosclerosis (FSGS) or 
steroid-sensitive nephrotic syndrome [26]. However, the 
other study questions its importance as a biomarker in child-
hood nephrotic syndrome [27]. Recently, podocyte-derived 
large EVs (annexin V- and podoplanin-positive) have been 
reported to be increased in pediatric idiopathic nephrotic 
syndrome [28]. A unique miRNA profile in uEVs has also 
been reported. A study analyzing adult patients found that 
miR-1915 and miR-663 were downregulated in patients with 
FSGS compared to minimal change disease and controls, 
whereas the urinary levels of miR-155 were upregulated 
in patients with FSGS [29]. Huang et al. analyzed pediat-
ric patients and demonstrated that miR-193a is a potential 

biomarker for primary FSGS [30]. By comparing miRNAs 
in uEVs from children with nephrotic syndrome and con-
trols, Chen et al. found that miR-194-5p, miR-146b-5p, miR-
378a-3p, miR-23b-3p, and miR-30a-5p were increased in 
patients, and some of them were positively correlated with 
the urine protein content [31].

For IgA nephropathy, Moon et al. demonstrated four pro-
teins (aminopeptidase N, vasorin precursor, α-1-antitrypsin, 
and ceruloplasmin) as protein biomarkers to differentiate 
IgA nephropathy from thin basement membrane nephropa-
thy [32]. More recently, Feng et al. found that chemokine 
(C–C motif) ligand 2 (CCL2) mRNA was upregulated in 
uEVs from patients with IgA nephropathy [33]. Exosomal 
CCL2 exhibited a significant correlation with tubulointer-
stitial inflammation and C3 deposition, and elevated levels 
of CCL2 mRNA at the timing of kidney biopsy were linked 
with the later decline in kidney function. Min et al. analyzed 
miRNAs in adult patients and demonstrated that miR-29c, 
miR-146a, and miR-205 may potentially serve as biomarkers 
for IgA nephropathy [34].

Tubular disorders

uEVs mirror the expression levels of renal tubular transport-
ers in the kidney [35], making them applicable as a source 
of biomarkers for a wide range of renal tubular disorders. 
For instance, the uEVs derived from individuals diagnosed 
with Bartter syndrome type 1 and Gitelman syndrome 
have diminished or non-existent Na–K–2Cl cotransporter 
(NKCC2) and Na–Cl cotransporter (NCC) expression 
levels, reflecting its expression level in renal tissue [36, 
37]. In contrast, a compensatory upregulation of Na+/H+ 
exchanger 3 (NHE3), β-subunit of the epithelial Na+ channel 
(β-ENaC), and pendrin was observed in uEVs and kidney 
biopsies obtained from individuals diagnosed with Gitel-
man syndrome [36]. It is also known that such pathology-
related changes in molecular expression in the tubules can be 
detected by uEVs in cystinosis [38], primary aldosteronism 
[39, 40], Cushing syndrome with hypertension [41], pre-
eclampsia [42], and renal tubular acidosis [43].

Other rare congenital kidney diseases

ADPKD is among the most studied rare diseases concern-
ing its uEVs [44]. In uEVs from affected individuals, levels 
of polycystin-1 (PC1) and polycystin-2 (PC2) were signifi-
cantly reduced, and transmembrane protein 2 (TMEM2), 
a protein with homology to fibrocystin, was upregulated. 
The PC1/TMEM2 ratio correlated inversely with height-
adjusted total kidney volume [45]. In other reports, peri-
plakin, envoplakin, villin-1, and complement C3 and C9 [46] 
or CD133 [47] were found to be overexpressed in uEVs in 
adult ADPKD patients, suggesting their possible role in the 
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pathogenesis. Regarding miRNA, Magayr et al. found that 
miR-192-5p, miR-194-5p, miR-30a-5p, miR-30d-5p, and 
miR-30e-5p were downregulated in patients and were cor-
related with baseline eGFR and mean kidney length [48]. 
Noticeably, they confirmed altered expression of these 
microRNAs in a validation set of cystic kidney tissues at its 
early stage, suggesting that miRNA in uEVs reflect changes 
in renal tissue.

Medullary sponge kidney disease (MSK) is character-
ized by malformation of the terminal collecting ducts in the 
renal pyramids that results in nephrocalcinosis and recurrent 
kidney stones. The most significant biomarker of uEVs in 
MSK was laminin subunit α2, a major component of the 
basement membrane [49], which is thought to promote cyst 
formation. In the other analysis conducted on patients with 
MSK and patients with idiopathic calcium nephrolithiasis as 
controls, Ficolin 1 and Complement component 4-binding 
protein were found to be upregulated while Mannan-binding 
lectin serine protease 2 was downregulated in MSK [50]. 
This study revealed that the lectin pathway may have a role 
in the abnormal polarization of the cells and the cystogenesis 
in MSK.

In uEVs from patients with autosomal dominant tubu-
lointerstitial kidney disease associated with the MUC1 gene 
(ADTKD-MUC1), proteins that are functionally linked to 
vesicular transport and membrane dynamics, such as vacu-
olar protein sorting-associated protein (VTA1), were signifi-
cantly reduced [51].

As there are numerous unknowns surrounding the origins 
and progression of these rare diseases, the disease-specific 
signatures of uEVs will help us to identify unrecognized key 
biological components involved in their pathogenesis [44].

Acute kidney injury

Using animal models of acute kidney injury (AKI), activat-
ing transcription factor 3 (ATF3) [52, 53] and Fetuin A [54] 
were identified as candidate protein biomarkers in uEVs, and 
they were also confirmed in human adult AKI. Interestingly, 
RNA levels of ATF3 in uEVs are also increased in a mouse 
AKI model and human AKI [55]. Likewise, NHE3 in urine 
membrane fraction was identified as a marker for critically 
ill patients with AKI [56]. Recently, this study was validated 
and NHE3 in uEVs was found to be a useful biomarker in 
various animal AKI models and sepsis-induced AKI [57].

Chronic kidney disease

Childhood CKD has a significant impact on morbidity and 
mortality and its association with many medical complications 
that extend beyond the pediatric age group. To date, plenty 
of research investigations have been undertaken to search for 
urinary (non-uEVs) biomarker candidates for CKD [58, 59]. 

These biomarkers reflect pathophysiologic processes of tubu-
lointerstitial injury, inflammation, repair, and fibrosis [58].

There have been several reports on uEV biomarkers in 
adult CKD, without imposing restrictions on the underly-
ing diseases [60–62]. In contrast to adult CKD, the primary 
causes of childhood CKD are congenital or genetic diseases 
characterized by a quantitative and qualitative decline in the 
number of functioning nephrons. The primary etiology is 
typically attributed to congenital abnormalities of the kid-
ney or urinary tract (CAKUT) [63, 64]. CAKUT encom-
passes a diverse spectrum of congenital illnesses, such as 
kidney agenesis, hypo/dysplastic kidney, posterior urethral 
valves, and congenital obstructive uropathy. The diagno-
sis of CAKUT currently relies heavily on imaging studies 
such as ultrasound. The progression of childhood CKD has 
distinct characteristics compared to its adult counterpart, 
primarily characterized by less systemic and inflammatory 
manifestations [65]. Patients may not present alterations in 
serum creatinine levels due to compensatory hypertrophy 
of residual nephrons. They frequently do not present with 
hematuria, and creatinine and proteinuria increase relatively 
late during kidney damage [66, 67]. Childhood CKD can 
progress to kidney failure, from the early postnatal period 
to late adulthood [68]. Due to the distinct differences in the 
etiology and pathophysiology of CKD, there is a pressing 
need for targeted research in children.

We hypothesized that there may be common changes in 
uEVs when functional nephrons are reduced. In order to 
investigate the presence of differentially expressed proteins 
in uEVs derived from individuals diagnosed with bilateral 
kidney hypoplasia, a condition characterized by a congeni-
tal reduction in the number of nephrons, we conducted a 
quantitative proteomic analysis [18]. A total of 135 proteins 
exhibiting discriminatory characteristics were identified. 
One of the molecules that exhibited a decrease in uEVs in 
hypodysplasia was mucin1 (MUC1), whose expression is 
restricted to the distal tubule and collecting duct. MUC1 
fulfills diverse roles in physiological and pathological states 
[69–71]. Another example of EV signature was proximal 
tubule-specific maltase-glucoamylase (MGAM), which was 
increased in uEVs in renal hypodysplasia. The uEV expres-
sion patterns of 135 molecules reflected decreased kidney 
function by not only renal hypoplasia, but also other forms 
of CAKUT or ciliopathies [18]. These data suggested that 
the uEV signature may reflect decreased kidney function in 
childhood CKD.

Application of uEVs as a novel urine test

The application of uEVs to diagnostics of kidney and uro-
genital diseases is accelerating. Recently, the Food and Drug 
Administration (FDA) approved the initial uEV-based assay 
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(ExoDx) in urology, which utilizes an RNA signature as a 
non-invasive screening technique for prostate cancer [72, 
73]. The ExoDx Prostate assay has been shown to provide 
individualized risk assessment of clinically significant pros-
tate cancer at initial biopsy [74, 75]. In this system, urine 
samples can be collected at home, shipped to a central 
laboratory, and stored. RNAs in uEVs are extracted, and 
reverse transcriptase polymerase chain reaction (RT-qPCR) 
is performed. Despite its high cost, ExoDx may help avoid 
unnecessary biopsies.

We have been exploring the potential for utilizing the out-
comes of quantitative proteome analysis of uEVs straight-
forwardly, practically, and cost-effectively. We developed 
an ELISA that quantifies substances on the surface of uEVs 
[76]. With the aid of this straightforward ELISA, we verified 
that MUC1 expression was reduced in children with CKD 
and that it helps to identify individuals with impaired kidney 
function [18]. As ELISA can be performed in a conventional 
clinical laboratory, the protein content of uEVs can be a 
robust biomarker candidate. This is especially true when 
screening for conditions for which standard urinalysis is not 
able to detect abnormalities.

Promises and caveats of uEVs as a liquid 
biopsy of the kidney

As mentioned above, contents of uEVs can be affected by 
the physiological and pathophysiological renal conditions 
[4, 77]. However, whether uEVs faithfully reflect molecular 
changes in the kidney has been debated. In this regard, Wu 
et al. performed quantitative proteomics analyzing approxi-
mately 1000 proteins identified in uEVs and corresponding 
kidney tissue [78]. They demonstrated significant associa-
tions between the protein amounts in uEVs and those in 
whole kidneys. Noticeably, transmembrane proteins exhib-
ited higher positive correlations compared to cytoplasmic 
proteins. Moreover, changes in protein expression levels 
in the kidney tissues can be detected as alteration in the 
composition of uEVs. These data offer compelling evidence 
to support the utilization of uEVs as reliable indicators of 
kidney disease.

Another crucial aspect to be considered related to the 
potential factors that may influence the content of uEVs 
is their excretion rate. As the cells in the kidney are the 
primary source of uEVs, nephron mass should determine 
uEV excretion. Blijdorp and colleagues [79] established 
a significant association between uEV excretion rate and 
renal parameters, including total kidney volume, estimated 
glomerular filtration rate, and creatinine clearance. By 
examining urine samples obtained from individuals who 
underwent donor nephrectomy, the researchers established 
that the excretion of compensatory uEV due to hypertrophy 

primarily took place in the proximal tubule. The rat models 
(uninephrectomy and 5/6 nephrectomy) have also confirmed 
that the extent of hypertrophy corresponds to the uEV excre-
tion rate [79]. Hence, to facilitate the comparison of urine 
samples from several individuals or different time points 
within the same individual, it is imperative to consider the 
excretion rate and variability of uEVs, which are influenced 
by functional nephron mass and compensatory hypertrophy.

Furthermore, it should be noted that except for several 
articles [18, 25–28, 30, 31], most of the studies cited in this 
review analyzed uEVs from adult patients with kidney dis-
eases. These data cannot be simply applied to childhood 
diseases due to various factors such as differences in urine 
concentrating capacity or the degree of progression of the 
disease.

Conclusion

In the last few years, knowledge has accumulated on how 
uEVs should be separated and analyzed. In addition, it has 
become clear how they are related to composition in the 
renal tissues and how they are altered in disease states. uEVs 
have garnered significant attention as promising diagnostic 
and prognostic biomarkers in renal or urogenital disease. As 
an example of uEVs in clinical practice, ExoDx has report-
edly led to an approximately 30% reduction in prostate biop-
sies [74]. As kidney biopsy is the established and highly 
informative method to directly analyze damaged tissues, it 
is hard to imagine uEV analysis replacing it. Instead, uEVs 
may be utilized as a new source of kidney tissue-derived 
information to supplement urinalysis and blood tests. Many 
diseases underlying childhood CKD are hard to detect using 
conventional urinalysis, and the advantages of non-invasive 
testing techniques are especially significant for children.

Although this review focuses on their diagnostic aspect, 
uEVs have recently been discussed for their active roles in 
renal physiology [80] or pathology [24], such as AKI to 
CKD transition through intracellular communication. uEVs 
even hold great potential for therapeutic applications such 
as kidney regeneration [23, 81]. Further advances on new 
diagnostic tools or therapies using EVs are anticipated to 
improve outcomes for childhood kidney diseases.
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