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Abstract
Background  The Renal Activity Index for Lupus (RAIL) consists of urine protein assessment of neutrophil gelatinase–asso-
ciated lipocalin, kidney injury molecule-1, monocyte chemotactic protein 1, adiponectin, hemopexin, and ceruloplasmin, 
which non-invasively identifies lupus nephritis (LN). We aimed to delineate RAIL scores with inactive versus active LN and 
changes over time with response to LN induction therapy.
Methods  There were 128 pediatric patients with systemic lupus erythematosus (SLE) and age-matched healthy controls 
recruited in a prospective case control study, with kidney biopsy confirmation of LN. Laboratory and clinical information 
was recorded and urine collected at diagnosis and end of induction and during maintenance therapy. Response to therapy 
was assessed by repeat kidney biopsy or laboratory parameters. Urine was assayed for RAIL biomarkers and the RAIL score 
calculated.
Results  Pediatric RAIL (pRAIL) scores from 128 children and young adults with SLE (with/without LN: 70/38) includ-
ing 25 during LN induction therapy, differentiated clinically active LN from inactive LN or without LN, and controls (all 
p < 0.0017). pRAIL scores significantly decreased with complete LN remission by 1.07 ± 1.7 (p = 0.03). 
Conclusions  The RAIL biomarkers differentiate LN patients based on activity of kidney disease, with decreases of ≥ 1 in 
pRAIL scores indicating complete response to induction therapy. Significantly lower RAIL scores in healthy controls and 
in SLE patients without known LN raise the possibility of subclinical kidney disease.
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Introduction

Kidney involvement with systemic lupus erythematosus 
(SLE), or lupus nephritis (LN), continues to account for siz-
able morbidity, mortality, and kidney failure [1]. An estimated 
20% of SLE cases begin in childhood onset (cSLE), and LN 
occurs in 32–37% of them, more frequently than in adult 
onset SLE [2–4]. Current clinical and laboratory measures 
failed to diagnose LN or capture LN activity reliably [1, 5, 
6]; thus, invasive kidney biopsies are required for diagnosis, 
treatment, and prognosis [7–10]. A recent study suggests that 
about 30% of LN patients who are clinically classified as com-
plete responders have residual kidney inflammation on repeat 
kidney biopsy upon completion of induction therapy [7, 8].

To provide accurate non-invasive means of monitoring LN 
disease activity and response to LN therapy, we discovered and 
validated a urine biomarker panel consisting of 6 urine proteins: 
neutrophil gelatinase–associated lipocalin (NGAL), monocyte 
chemoattractant protein-1 (MCP-1), kidney injury molecule-1 
(KIM-1), ceruloplasmin, adiponectin, and hemopexin. Renal 
Activity Index for Lupus (RAIL) scores, with or without stand-
ardization of urine creatinine levels, are calculated from the 
urine concentrations of urine proteins based on patient age. 
There is a pediatric RAIL (pRAIL) algorithm and one for 
adults (aRAIL). A standardized pRAIL score of 0.39 or higher 
correctly identifies 92% of histologically proven, active LN in 
patients aged < 24 years [11, 12]. Likewise, the standardized 
adult RAIL score of − 0.97 or higher correctly identifies older 
patients with active LN with 86% accuracy [13]. We have also 
shown that the accuracy of pRAIL scores to identify active LN 
does not require urine creatinine adjustment, and that scores ≥ 2 
are consistent with a NIH Activity Index (NIH-AI) value of 
10 or higher, while pRAIL scores of 0 or less are consistent 
with NIH-AI values of 2 or less [14]. RAIL scores decrease 
(or improve) with immunosuppressive therapy in those with 
treatment response [11, 12].

We hypothesized that the improvement in RAIL score 
will detect those who respond to induction therapy versus 
those who do not. We evaluated RAIL scores based on the 
clinical activity of LN and compared RAIL scores to those 
in healthy controls. In this study, we aimed to delineate 
changes in RAIL scores during induction therapy of LN.

Material and methods

Patients

We performed a prospective case control study. With 
approval of local institutional review boards of the partici-
pating academic centers at Cincinnati Children’s Hospital 

(CCHMC), Children’s Hospital of Philadelphia, Washing-
ton University School of Medicine, and Baylor College 
of Medicine, clinical data and urine samples of patients 
with cSLE were included in this study. Study participants 
were pediatric patients diagnosed with SLE by the 1997 or 
the 2019 American College of Rheumatology (ACR) clas-
sification criteria [15, 16], irrespective of degree of SLE 
activity, presence/absence of LN. We excluded those with 
a diagnosis of other kidney diseases, or other autoimmune 
or inflammatory conditions besides SLE. Age-matched 
healthy controls were recruited and studied at CCHMC 
(IRB 2017–0585).

SLE patients were classified as having LN based on 
the result of a kidney biopsy [17]. Patients with LN con-
tributed two or more visits within a 1-year period, while 
cross-sectional assessment occurred for all patients. Sub-
group analysis included LN patients undergoing induction 
therapy, who had to be enrolled at time of LN diagnosis and 
followed for 6–9 months, with urine collected at the time 
of biopsy and at 6-month intervals until the end of induc-
tion therapy. We used REDCap (Research Electronic Data 
Capture, Vanderbilt University, Nashville, TN, USA) [18], 
a secure, web-based application designed to support data 
capture for research.

Demographic, clinical, and laboratory data 
of patients

Besides demographics, information needed to score the SLE 
Disease Activity Index (SLEDAI) and the renal domain 
score of the SLEDAI (renal SLEDAI) was extracted [19]. 
This included results of urinalysis and measured urine pro-
tein to creatinine ratio (UPCR, in mg/mg) in spot urine at 
each visit [20]. The estimated glomerular filtration rates 
(eGFR) were calculated by modified Schwartz equation in 
the younger subjects and by CKD-EPI for patients above 18 
[21, 22]. For patients with LN, we also recorded the results 
of kidney biopsies. Kidney histology was interpreted using 
the International Society of Nephrology/Renal Pathology 
Society (ISN/RPS) classification system, which included 
histologic activity and chronicity as measured by NIH-AI 
and NIH-CI [23–26].

Biomarker measurements and RAIL scores

Urine collected was spun at 2200 × g for 10 min and stored 
at − 80 °C for no longer than 5 years. Human NGAL and 
human urine creatinine were measured on a Roche Cobas c 
311 clinical chemistry analyzer using a commercially avail-
able assay (BioPorto, Denmark, Catalog KIT ST001RA for 
NGAL; Roche Diagnostics, Indianapolis, IN, Reference 
03,263,991 190 for Creatinine). NGAL had a lower limit of 
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detection of 9.8 ng/mL while creatinine had a lower limit 
of detection of 1.1 mg/dL. The remaining biomarkers were 
measured via ELISA, all done in duplicate. Human urinary 
KIM-1 (R&D Systems, Minneapolis, MN, DKM100) had 
a mean minimal detectable dose of 0.009 ng/mL. Human 
MCP-1 (R&D Systems, Minneapolis, MN, DCP00), diluted 
1:1, had a mean minimal detectable dose of 1.7 pg/mL. 
Human adiponectin (R&D Systems, Minneapolis, MN, 
DRP300), diluted 1:5, had a mean minimal detectable dose 
of 0.246 ng/mL. Human ceruloplasmin (Assaypro LLC, St. 
Charles, MO, EC4201-1), diluted 1:50, had a mean minimal 
detectable dose of 0.085 ng/mL. Human hemopexin (Assay-
pro LLC, St. Charles, MO, EH2001-1), diluted 1:20, had a 
mean minimal detectable dose of 4.2 ng/mL. KIM-1 and 
MCP-1 used a four-parameter logistic curve to fit the stand-
ard curve. Adiponectin, ceruloplasmin, and hemopexin used 
a log/log curve to fit the standard curve. Analyte concentra-
tions that were above or below the limits of detection were 
imputed by 50% of the level of lower limit of detection and 
50% over the upper limit of detection, respectively.

Definitions of active LN and course of LN

There is no consensus how to define active LN based on the 
NIH-AI scores; scores from 2 to 6 have been proposed previ-
ously [27–30]. For this analysis, we defined active LN as a 
NIH-AI score of ≥ 4 within 3 months of a study visit. Patients 
who had an NIH-AI score of < 4 were classified as inac-
tive nephritis, regardless of ISN/RPS class. All LN patients 
required a kidney biopsy with urine collection at disease onset 
to be included in the study induction arm. In the setting of una-
vailable kidney biopsy within 3 months of a study visit, active 
LN was defined as a UPCR of ≥ 0.5 mg/mg and/or hematu-
ria ≥ 5 RBC/HPF and/or eGFR < 90 mL/min/1.73 m2 [31]. 
Accordingly, inactive LN was defined as NIH-AI score < 4 
and UPCR < 0.5 plus no hematuria (0–4 RBC/HPF) when 
NIH-AI scores were or were not available within 3 months of 
a study visit. Complete response to induction therapy, or com-
plete kidney remission, was defined as NIH-AI as < 4 on repeat 
kidney biopsy. If repeat biopsy was not available, then com-
plete response was defined as UPCR < 0.5 plus GFR > 90 mL/
min/1.73 m2 plus inactive urine sediment (no hematuria) [31]. 
Partial response to induction therapy, or partial kidney remis-
sion, was defined as UPCR improvement by ≥ 50% plus at least 
stable eGFR compared to LN diagnosis. Those patients with 
LN who failed to achieve a partial or complete response to 
induction therapy were considered non-responders.

Statistical analysis

In patient-level variables, descriptive analyses are reported 
and compared by Student’s t-test (mean ± SD) or ANOVA 
test (mean ± SD). The Wilcoxon test (median, IQR) or 

Kruskal–Wallis test (median, IQR) was performed to 
compare group differences for continuous variables for 
patients with LN (active or inactive LN), SLE patients 
without known LN (no-LN), and age-matched healthy con-
trols. Matching controls were recruited to address potential 
sources of bias. Study size was determined by prior stud-
ies using biomarkers. Fisher’s exact or chi-square tests, as 
appropriate, were performed for testing of group differ-
ences of categorical variables. Correlation was established 
via Pearson’s correlation coefficient, with r of 0.1–0.39 
representing weak correlation, 0.4–0.69 representing mod-
erate correlation, 0.7–0.89 representing strong correlation, 
and greater than 0.9 representing very strong correlation 
[32]. Baseline (at the time of enrollment) demographics 
and SLE characteristics were compared for each clinical 
group (LN, no-LN, and control). Visit-level variables were 
compared by patient’s age and urinary biomarkers by clini-
cal groups by general estimating equation (GEE) to account 
for repeated measures within patients. Paired t-test was per-
formed in evaluating patient changes of pRAIL scores from 
the start to the end of induction therapy for LN patients 
classified as LN responders (complete and partial) during 
induction therapy, but not for non-responders. Two-sided 
p-values < 0.05 were considered statistically significant.

Prior to use in the RAIL algorithm, biomarker concen-
trations were natural-log transformed. The pRAIL algo-
rithm was used only for pediatric and young adult cSLE 
patients up to age 23 years at enrollment, as previously 
published [13, 14]. The pRAIL we evaluated produced 
standardized and non-standardized scores [13, 14]. The 
standardized RAIL score refers to the score that utilized 
creatinine standardized urinary biomarkers, while the non-
standardized score used absolute values of the urinary bio-
markers. All statistics were performed using SAS (version 
9.4, Cary, NC, USA).

Results

A total of 128 pediatric or young adult patients (< 24 years 
of age; LN: 70; no-LN: 38, controls: 20) were included for 
the analyses of changes of pRAIL scores. The study duration 
was from June 2019 to December 2021. Among 70 lupus 
nephritis patients, 32 patients were undergoing induction 
therapy for LN, of which 25 met our criteria for active LN, 
while the remaining 7 did not due to NIH-AI scores < 4.

Patient disposition and baseline characteristics 
of the pediatric and young adult patients

Table 1 shows the baseline characteristics of the pediatric 
and young adult patients included in pRAIL analyses. The 
median age at diagnosis of cSLE was 14 years, and most 
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were female. Disease activity was significantly higher in 
the pediatric LN group as compared to the pediatric no-LN 
group (median total SLEDAI score; 10 vs 2, p < 0.0001). 
Most pediatric and young adult LN patients had prolif-
erative LN with a median NIH-AI score of 7 (IQR: 2, 
12) and NIH-CI score of 1 (IQR: 0, 3) on kidney biopsy, 
respectively.

Urine biomarker concentrations and RAIL score 
by LN status

The pRAIL scores significantly differed by LN status 
(active LN, inactive LN, no-LN) and by healthy controls. 
Table 2 summarizes individual urine biomarker concentra-
tions contributing to the pRAIL score, with statistically 
significant differences with active versus inactive LN, 

Table 1   Baseline demographics and lupus characteristics of pediatric population

† By Wilcoxon rank-sum test or Kruskal–Wallis tests for continuous variables, and by chi-square test used for categorical variables. ‡NIH-AI and 
NIH-CI scores were available for only 41 of the 70 patients with LN

n (% of N)
OR median (IQR)

(A)
LN (N = 70)

(B)
no-LN (N = 38)

(C)
Controls (N = 20)

p-value†

(A) vs. (B) (A) vs. (B) vs. (C)

Age at visit (years) 16.0 (13.0, 19.0) 16.9 (15.6, 19.11) 10 (7.5, 13.5) 0.30  < .0001
Sex -Female 59 (85.5%) 32 (88.9%) 8 (34%) 0.63  < .0001
Ethnicity—% Hispanic 19 (27.1%) 1 (2.6%) 1 (5%) 0.0004  < .0001
Race —% White 18 (25.7%) 19 (50%) 10 (50%) 0.01 0.0007
SLEDAI total score 10 (2, 22) 2 (0, 6) –  < .0001 –
Renal SLEDAI 4 (0, 12) 0 (0, 0)
Prednisone (mg/day) 26/15.5 (10, 40) 16/20 (10, 25.5) – 0.97 –
Disease duration 0.1 (0, 3.12) 1.68 (0.5, 3.13) –  < 0.05 –
ISN/RPS class, n (% of 70)
  Class I/II 9 (12.9%)
  Class III 18 (25.7%)
  Class IV 24 (34.3%)
  Pure class V 5 (7.1%)
  Class III/IV + V 8 (11.4%)
  Unknown 6 (8.6%)
  NIH-AI score (n = 41) ‡ 7 (2, 12)
  NIH-CI score (n = 41) ‡ 1 (0, 3)

Table 2   Urine biomarker and pRAIL scores by LN status and in healthy controls

# ANOVA test or t-test used for continuous variables. p-values were adjusted for the pairwise multiple comparisons. Pediatric RAIL (with or without 
creatinine standardization) =  − 4.29 − 0.34 ×  − NGAL − 0.06 × ceruloplasmin + 0.89 × MCP-1 + 0.18 × adiponectin − 0.65 × hemopexin + 0.62 × KIM-1

Variables (mean ± SD) (A) 
Active LN
(N = 149 visits)

(B) 
Inactive LN
(N = 228 visits)

(C) 
Non-LN
(N = 113 visits)

(D) 
Healthy
(N = 20 visits)

p-value#

(A) vs. (B) (A) vs. (C) (B) vs. (C) (C) vs. (D)

Age at visit (years) 16.77 ± 3.18 16.51 ± 3.51 17.33 ± 3.59 10.9 ± 4.3 0.4508 0.3760 0.1314  < .0001
NGAL (ng/mL) 3.34 ± 0.87 2.99 ± 0.9 3.26 ± 1.08 2.39 ± 0.34 0.0009 0.5517 0.0296 0.0014
Ceruloplasmin (ng/mL) 6.14 ± 2.4 3.57 ± 2.39 3.45 ± 1.03 3.07 ± 0.97  < .0001  < .0001 0.6207 0.2554
MCP-1 (pg/mL) 6.62 ± 1.44 5.37 ± 1.36 5.42 ± 1.66 4.03 ± 1.76  < .0001  < .0001 0.7867 0.0016
Adiponectin (ng/mL) 4.76 ± 2.24 2.69 ± 1.99 3.92 ± 1.8 2.27 ± 1  < .0001 0.0013  < .0001 0.0002
Hemopexin (ng/mL) 7.33 ± 1.29 5.9 ± 1.32 6.01 ± 0.93 5.38 ± 0.89  < .0001  < .0001 0.4213 0.0121
KIM-1 (pg/mL) 6.87 ± 1.22 6.05 ± 1.32 5.61 ± 1.54 4.28 ± 1.67  < .0001  < .0001 0.0064 0.0012
Creatinine (mg/mL) 4.56 ± 1.02 4.54 ± 1.15 4.53 ± 0.89^ 3.5 ± 0.88 0.9076 0.9076 0.9076  < .0001
pRAIL score 0.46 ± 1.46  − 0.34 ± 1.56  − 0.51 ± 1.9  − 2.14 ± 2.32  < .0001  < .0001 0.4034 0.0017

Standardized pRAIL score  − 2.46 ± 1.41  − 3.25 ± 1.29  − 3.35 ± 1.51  − 4.38 ± 1.89  < .0001  < .0001 0.5205 0.0164
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Fig. 1   UPCR in mg/mg (orange, 
r = 0.33) and pRAIL scores 
(blue, r = 0.40) for all patients 
with active disease (NIH-AI) 
diagnosed by biopsy

Table 3   Characteristics and biomarkers of complete and partial responders in pediatric patients during induction therapy‡

† Values are mean ± SD; †standardization by urine creatinine. #Paired t-test; complete responder: UPCR < 0.5 and eGFR > 90 mL/min/1.73  m2 
plus no hematuria; partial responder UPCR improved by 50% with at least stable eGFR. eGFR provided by cystatin C or calculated by modified 
Schwartz equation. ‡Visit 1: diagnosis of LN at the time of kidney biopsy; visit 2: at end of induction therapy around months 6–9

Partial responder (N = 7) Complete responder (N = 15)

Baseline End of induction therapy p-value# Baseline End of induction therapy p-value#

Age at visit (years) 16.7 ± 1.53 17.15 ± 1.54 – 14.21 ± 2.6 14.74 ± 2.65 –
UPCR (mg/mg) 3.32 ± 2.15 1.66 ± 1.85 0.27 4.14 ± 4.79 0.76 ± 1.66  < 0.01
eGFR (mL/min/1.73 m2) 104.17 ± 59.73 115.17 ± 49.23 0.47 95.18 ± 39.73 107.42 ± 17.58 0.26
pRAIL score 0.80 ± 0.88 0.87 ± 1.13 0.91 0.77 ± 1.71  − 0.3 ± 1.32 0.03
Standardized pRAIL score  − 1.91 ± 0.77  − 2.5 ± 0.9 0.15  − 2.16 ± 1.33  − 3.31 ± 1.15 0.008

Fig. 2   The change in absolute 
RAIL score by responder status. 
Complete responders had 
decrease in pRAIL scores, par-
tial responders had no change, 
and non-responders had an 
increase in pRAIL scores
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active LN versus no-LN, and SLE (active LN, inactive LN, 
no-LN) versus controls. Only urine levels of NGAL, adi-
ponectin, and KIM-1 were statistically significantly higher 
in the no-LN group compared to healthy controls (all 
p < 0.03). The pRAIL scores differed between the active 
LN group and other groups but not between the inactive 
LN group versus the non-LN group, irrespective of whether 
pRAIL scores were standardized by urine creatinine or not.

There was only a weak correlation between pRAIL 
scores and UPCR, with an r value of 0.14. Considering the 
subset of active LN patients with available NIH-AI scores, 
pRAIL scores were moderately (r = 0.4; p = 0.0054) and 
UPCR weakly (r = 0.33; p = 0.02) correlated with NIH-AI 
scores as shown in Fig. 1.

Changes in RAIL scores with induction therapy

There were 32 analyzable pediatric or young adult LN 
patients who enrolled at the time of a kidney biopsy, among 
them 7 patients whose LN was classified as “inactive” (NIH-
AI score < 4) and therefore excluded, and 25 patients who 
had active LN at the start of induction therapy. Immuno-
suppressive therapy for active LN included intravenous 
cyclophosphamide (n = 14) and oral mycophenolate mofetil 
(n = 11). There were 22 responders to induction therapy, 
of whom 15 patients met criteria for complete response, 7 
patients were partial responders, and 3 were non-responders 
to induction therapy. Distribution of age at baseline, gender, 
race, ethnicity, and ISN/RPS classes were all similar across 
groups. Proliferative nephritis was evenly distributed across 
response status. Of the 17 patients with class III or IV LN, 
2 patients (66.67%) were non-responders, 5 patients (71%) 
were partial responders, and 10 patients (66.67%) were 
complete responders. Finally, baseline pRAIL scores were 
similar between partial and complete responders (Table 3).

Among the three non-responders, standardized and non-
standardized pRAIL scores numerically increased during 
induction therapy (see Fig. 2). Conversely, mean ± SD of 
pRAIL scores showed a statistically significant decrease in 
complete responders by 1.07 ± 1.7 (p = 0.03). For partial 
responders, there was no change of the pRAIL score during 
induction therapy (0.07 ± 1.56, p = 0.91).

Ten patients underwent a repeat kidney biopsy upon com-
pletion of induction therapy, including nine with complete 
renal response and 1 non-responder. The mean ± SD of NIH-
AI scores decreased from 9.89 ± 3.92 to 1.1 ± 1.45 among 

complete responders during induction therapy (p = 0.0007). 
Overall, mean ± SD absolute pRAIL scores of complete 
responders verified by repeat kidney biopsy decreased by 
1.08 ± 1.13, and standardized pRAIL scores by 0.43 ± 0.31, 
respectively. The average UPCR pre-therapy was 4.56 ± 4.74 
and the average UPCR post-biopsy was 1.29 ± 2.04. As 
shown in Fig. 3, the pRAIL score demonstrates better cor-
relation with NIH-AI both pre- and post-treatment (r = 0.46 
and 0.37, respectively), while UPCR had no correlation 
with NIH-AI at either time point, with r values of 0 and 0.1, 
respectively.

The pRAIL score, both absolute and standardized, can 
distinguish active, inactive, and absent lupus nephritis in 
the pediatric population. We now show that the change in 
pRAIL score detects improvement in disease activity dur-
ing induction therapy, and that this pRAIL difference score 
corresponds with change in the NIH-AI on biopsy that may 
not be detected by current biochemical measures, including 
UPCR measurements.

Discussion

In this study, we aimed to assess the ability of the pRAIL 
score to detect response to induction therapy. We confirmed 
that both absolute and standardized pRAIL scores differ-
entiate patients with active LN from those with inactive 
LN, or SLE patients without kidney involvement. Healthy 
controls have significantly lower RAIL scores than SLE 
patients, even those without known kidney disease. Com-
plete response of active LN to induction therapy is associ-
ated with a mean decrease of the standardized pRAIL score 
of at least 0.5, irrespectively of the degree of the baseline 
histological activity. Finally, the pRAIL score is superior to 
proteinuria in correlating with activity as found on biopsy.

We had previously shown that both absolute and standard-
ized pRAIL scores were similarly well suited to discriminate 
moderate to highly active LN (NIH-AI > 10) from LN with 
lesser degrees of inflammation as seen on kidney biopsy 
[11, 14]. Using current standard clinical measures of LN, 
pRAIL scores clearly differentiate active from inactive LN 
[11, 14]. This study builds on this body of evidence as we 
delineate changes in pRAIL scores, reflective of partial and 
complete response to induction therapy. Given that decreases 
in standardized rather than absolute pRAIL scores were con-
sistent, irrespective of baseline kidney inflammation (NIH-
AI score), standardized pRAIL scores might be better suited 
to assess response to LN therapy. We suspect that because 
of the small group of partial LN responders (n = 7), we were 
unable to show statistically significant decreases in standard-
ized pRAIL scores in this subgroup.

Another reason for the small changes in pRAIL scores 
in partial LN responders may be the choice of the response 

Fig. 3   A NIH-AI score available during induction therapy by the 
pRAIL score. The blue line shows pre-treatment values (r = 0.46) and 
the orange line shows post-treatment values (r = 0.37). B Available 
NIH-AI by UPCR in mg/mg during induction therapy. The blue line 
shows pre-treatment values (r = 0) and the orange line shows post-
treatment values (r = 0.1)

◂
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definition selected for this study, which was based on a 
prior consensus formation exercise in children with LN 
[33]. Nonetheless, there are no generally accepted, stand-
ard definitions for complete or partial response to induction 
therapy in either pediatric or adult LN [5, 34]. Choices of the 
response definitions influence the frequency of LN response 
in adult LN patients as used in clinical care and research 
[5, 34–39], and the same holds true for pediatric LN [5]. In 
this context, RAIL scores will provide additional support 
for the biologic relevance of the observed response of LN 
to a given treatment intervention. Importantly, corrected for 
treatment response, we have shown consistently in the past 
that changes in RAIL scores are not influenced by the type 
of concurrent therapies, including the use of proteinuria-
sparing agents [12–14, 40].

Patients who achieve partial LN response have better out-
comes than non-responders, but have worse outcomes than 
complete LN responders [38]. If confirmed in larger studies, 
changes in pRAIL score might be useful to escalate immu-
nosuppressive therapy early in LN patients without robust 
decreases of pRAIL scores as would be expected in partial 
or non-responders to induction therapy.

The degree of histological activity on kidney biopsy at the 
time of LN diagnosis or on repeat biopsy is an established 
prognostic factor for the longer-term outcomes of LN [25, 
26, 29, 39, 41]. Given that RAIL scores reflect the level of 
inflammation, measuring RAIL biomarkers may provide a 
non-invasive measure to intervene and provide additional 
therapies, with the goal to improve kidney outcomes in 
LN. Proteinuria, particularly following treatment of active 
inflammation, may reflect chronic damage to the kidney 
as a result of their presentation that may respond to non-
immunosuppressant therapy [42, 43]. Combining the RAIL 
score with urine protein measurement may provide insight 
into the health of the kidney following induction therapy. 
Conversely, there is a subset of patients who may have reso-
lution of proteinuria but have active disease on repeat biopsy 
and the addition of the RAIL score into practice may assist 
with decisions to continue immunosuppressive therapies [7].

In this study, levels of urine biomarkers and RAIL scores 
were lower in age-matched healthy controls compared to 
SLE patients, irrespective of kidney involvement. Lower lev-
els of kidney biomarkers and RAIL scores could be consid-
ered a reflection of common, subclinical kidney inflamma-
tion in SLE patients, even those without abnormal urinalysis.

There are several limitations to this study. First, we only 
had access to patients with available repeat kidney biopsy 
at the end of induction therapy, requiring reliance on other 
definitions of active/inactive LN. This was an observational 
study, so we relied on data from real clinical encounters; 
thus, study results may be biased due to missing data and 
informational bias. There were a small number of non-
responders, limiting the analyses that could be performed in 

the induction group. However, the observations in this study 
were consistent with those of our prior validation studies of 
the RAIL [11, 13, 14]. Additionally, all the urine biomarkers 
were performed on ELISAs, which are single-plex assays. 
These are time-consuming and more expensive and use more 
sample than a multiplex assay [44, 45]. We have previously 
shown that multiplex assay using Luminex is feasible for 
four of the six biomarkers (NGAL, KIM-1, MCP-1, adi-
ponectin) with excellent correlation [46] and work is ongo-
ing to create a multiplex assay for all 6 urinary biomarkers 
for use in the clinical realm.

In conclusion, we provide evidence for the value of a 
composite urinary biomarker score and RAIL to support the 
severity of LN and its response to induction therapy.
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