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Abstract
Hypovitaminosis D has been reported to be common in chronic kidney disease (CKD) as well as in proteinuric disorders. 
We reviewed available evidence to assess clinically relevant effects of low vitamin D status and native vitamin D (NVD) 
therapy, in pediatric renal diseases. Online medical databases were searched for articles related to vitamin D status, associa-
tions of hypovitaminosis D and effects of NVD therapy in kidney disease. Hypovitaminosis D was associated with worse 
skeletal, cardiovascular, inflammatory, and renal survival outcomes in CKD. Low serum 25 hydroxy-vitamin D (25[OH]D) 
levels correlated positively with glomerular filtration rate and negatively with serum parathyroid (PTH) levels. However, 
to date, evidence of benefit of NVD supplementation is restricted mainly to improvements in serum PTH, and biochemical 
25[OH]D targets form the basis of clinical practice recommendations for NVD therapy. In nephrotic syndrome (NS) relapse, 
studies indicate loss of 25[OH]D along with vitamin D binding protein in urine, and serum total 25[OH]D levels are low. 
Preliminary evidence indicates that free 25[OH]D may be a better guide to the biologically active fraction. NVD therapy 
in NS does not show consistent results in improving skeletal outcomes and hypercalciuria has been reported when total 
25[OH]D levels were considered as indication for therapy. NVD formulations should be regularised, and therapy monitored 
adequately to avoid adverse effects.

Keywords  Vitamin D · Parathyroid hormone (PTH) · Chronic kidney disease (CKD) · Proteinuria · Hypercalcemia · 
Hypercalciuria

Introduction

Vitamin D plays a vital role in maintaining bone health. 
In addition, effects on inflammation, infection, allergy, car-
diovascular function, and cancer have been reported [1–3]. 
Hypovitaminosis D is common in kidney disorders, and a 
large number of studies have reported on its osseous and 
extra-osseous effects in these conditions [4, 5]. This review 
focusses on examining the clinical relevance of low vitamin 
D status, as well as outcomes of native vitamin D (NVD) 
supplementation in children with kidney disease.

Online medical databases, Medline, Pubmed, and Google 
scholar were searched for articles related to vitamin D status, 

associations of hypovitaminosis D, and effects of vitamin D 
therapy in kidney diseases. The available data is summarized 
and inferences drawn from this data are presented as conclu-
sions after each section.

Vitamin D physiology

Vitamin D is sourced from sun exposure and from diet. The 
term “native vitamin D”, refers to ergocalciferol (D2) which 
is chiefly available from plant sources; and cholecalciferol 
(D3), available from animal dietary sources, and produced 
from 7-dehydrocholesterol in the skin.

A specific vitamin D binding globulin (DBP) and to a 
smaller extent, albumin, transport the vitamin D2 and D3 to 
the liver. These compounds are hydroxylated in the liver to 
25 hydroxy D2 and 25 hydroxy D3 (25[OH]D or calcidiol) 
and subsequently in the kidneys by 1α hydroxylase enzyme, 
to the active forms: 1,25 dihydroxy D2 and 1,25 dihydroxy 
D3, (1,25[OH]2D or calcitriol) which activate vitamin D 
receptors (VDR). The enzyme 1α hydroxylase is also found 
in non-renal tissues, therefore conversion of calcidiol to 
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calcitriol can occur at a smaller magnitude, extra-renally. 
It is hypothesized that the calcitriol produced in the kid-
neys has exocrine functions, whereas extra-renal production 
is responsible for autocrine and paracrine effects, and not 
released into the circulation [6, 7].

Circulating serum total 25[OH]D (the sum of 25[OH]
D2 and 25[OH]D3) is considered to be the best biological 
marker of an individual’s vitamin D stores. This is the most 
abundant of all vitamin D metabolites in the serum, levels 
correlate with the amount of NVD substrate available, and 
are stable for 3–4 weeks in the absence of proteinuria [8, 
9]. In contrast 1,25[OH]2D has a short half-life, is rapidly 
influenced by calcium and parathyroid hormone (PTH) lev-
els, has thousand-fold lower circulating levels and there are 
greater challenges of assaying. The latter has limited use in 
certain conditions such as chronic kidney disease (CKD), 
hereditary phosphate losing disorders, vitamin D–resistant 
rickets, etc. [8, 10].

The largest component of measured serum 25[OH]D (85 
to 90%) is bound to DBP, while 10 to 15% is more loosely 
bound to albumin, and a small fraction: 0.03 to 0.04%, cir-
culates in the free state [8, 11].

The DBP gene is the most polymorphic gene known, and 
DBP levels and vitamin D binding capacity may be influ-
enced by genotype and be different between races. Evidence 
suggests that like thyroid hormones, sex steroids and cortisol, 
vitamin D follows the “free hormone hypothesis”. This pro-
poses that “only the non-bound or free fraction of hormones 
that otherwise circulate in blood bound to their carrier pro-
teins is able to enter cells and exert their biologic effects” [8, 
10, 11]. This hypothesis is supported by several reports: a 
patient with homozygous DBP mutation, had nearly unde-
tectable levels of total 25[OH]D but free 25[OH]D, calcium, 
phosphate and PTH levels were normal. Similarly, DBP 
knockout mice did not reveal any evidence of vitamin D 
deficiency despite very low levels of total 25[OH]D [11].

However, it is of note that in the proximal renal tubular 
cell, DBP–25[OH]D complex can be directly reabsorbed 
from the glomerular filtrate through megalin and cubilin 
pathways [8, 11].

NVD assays

Measurements of total 25[OH]D use various methods, 
including immunoassays (most common), protein-binding 
assays, high-performance liquid chromatography–ultraviolet 
(HPLC–UV), or liquid chromatography–tandem mass spec-
trometry (LC–MS/MS) [8]. Until recently, assay variation 
contributed to the confusion surrounding efforts to define 
hypovitaminosis D. The vitamin D standardization program 
(VDSP) in 2010 developed a reference measurement sys-
tem for harmonized reporting through standardization of 
the above assays. The gold standard reference measurement 

procedure utilizes separate serum measurements for D2 
and D3 using isotope dilution LC–MS/MS, as it has least 
interference. Immunoassays, on the other hand, suffer from 
matrix and other metabolite interferences [12]. VDSP imple-
mentation has seen drastic improvements in performance 
of assays of several manufacturers; with acceptable speci-
fications defined by limits for total coefficient of variation 
(CV%) ≤ 10% and mean bias ≤ 5% [13].

Free 25[OH]D levels can be estimated with a formula 
that entails measurements of total 25[OH]D, DBP and albu-
min levels, but this suffers from inaccuracies mainly due to 
complexities and uncertainties of DBP measurement. An 
enzyme-linked immunosorbent assay (ELISA) kit com-
mercialized by Diasource is available to directly measure 
free 25[OH]D. While direct measurement is definitely the 
better approach in terms of performance [14, 15], the lack 
of a reference method, interferences from lipids, bilirubin, 
hemoglobin, and the underestimation of D2 concentrations 
remain some limitations [16]. Nonetheless, studies have 
shown directly measured free 25[OH]D assay to have con-
siderable significance in populations with altered DBP and 
albumin levels [17, 18]; however, to date, it is only available 
as a research tool.

Several other biomarkers and vitamin D metabolites are 
being tested for clinical validity; all except serum 25[OH]D 
warrant standardization [19].

Section A: Vitamin D in CKD

CKD is associated with bone, cardiovascular, and inflam-
matory abnormalities, which influence long-term survival 
[4]. The deficiency of 1α hydroxylase enzyme causes 
reduction in conversion of 25[OH]D to the activated form: 
1,25[OH]2D contributes to the development of CKD min-
eral bone disease (MBD) [20, 21]. In addition, total serum 
25[OH]D levels, are commonly reported to be low [22–26].

Causes are postulated to be poor appetite, malnutrition, 
reduced sun exposure and food restrictions, which are com-
mon in CKD. Deficiency, with 25[OH]D levels < 20 ng/ml, 
was reported in 28% of 506 children with estimated glomer-
ular filtration rate (GFR) 30 to 90 ml/min/1.73 m2 at enrol-
ment in the CKiD study [27], while levels < 16 ng/ml were 
found in 2/3 of 500 European children with CKD stages 3–5 
[28] and in 27% of 29 children with kidney transplant [29]. 
25[OH]D levels are reported to be lower as kidney function 
declines and are more marked in children with glomerular 
and proteinuric diseases [23, 28, 30, 31].

NVD and bone parameters in CKD

In early CKD, low 25[OH]D levels have been associated 
with secondary hyperparathyroidism (HPTH) even in the 
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presence of normal 1,25[OH]2D [24, 32]. Other studies indi-
cate that 25[OH]D levels correlate positively with estimated 
GFR, 1,25[OH]2D, and NVD supplementation, while nega-
tive correlations are reported with serum PTH, CKD stage, 
and FGF23 levels [23, 28, 30, 33, 34]. Vitamin D deficient 
children have been reported to have reduced height [26], as 
well as lower bone mineral density (BMD) scores in CKD 
stages 2–5D [35].

Effect of NVD supplementation

Clinical outcomes of NVD therapy, such as effect on growth, 
fracture risk, or bone biopsy, have not been studied in chil-
dren with CKD. Instead, surrogate biochemical outcomes 
are used, such as serum 25[OH]D and PTH levels, where 
changes after intervention may be observed in the short 
term. A prospective cohort study including 537 CKD chil-
dren, demonstrated that fracture risk was independently 
associated with higher PTH levels [36]. Thus, one of the 
aims of management of CKD MBD is to control second-
ary HPTH, although optimum PTH levels at different CKD 
stages are debatable [37, 38].

Interventional studies in adult CKD have reported sta-
tistically significant increase in 25[OH]D levels and reduc-
tion of PTH levels after NVD supplementation; however, 
the clinical impact with regard to improvement in second-
ary HPTH appears to be low [39, 40]. The meta-analysis by 
Bover et al. included 974 non-dialysis CKD patients (9 ran-
domised controlled trials (RCTs) and 5 observational stud-
ies). In the intervention arm, the pooled increase in 25[OH]
D level was 20.6 ng/mL while decrease in PTH levels was 
only 10.5 pg/mL [40].

The effect of NVD supplementation on HPTH is reported 
to be related to NVD dose and to stage of CKD. Ennis et al. 
in a cross-sectional analysis of 14,289 patients, showed that 
in CKD 3–5, increasing levels of 25[OH]D up to 42–48 ng/
ml with supplementation resulted in progressively lower 
PTH levels [41]. The beneficial effect of NVD was seen 
more in early CKD, and less in stages 4–5/5D where acti-
vated vitamin D compounds were needed to control PTH 
levels even after 25[OH]D levels were optimised [42–47].

Pediatric studies are all relatively small, but several 
also report significant rise in 25[OH]D levels and fall 
in PTH levels after NVD supplementation [32, 48, 49]. 
Shroff et al., in the only pediatric RCT of 40 children [50], 
reported that fewer patients treated with NVD developed 
HPTH, with significantly longer time to development of 
HPTH. Target 25[OH]D levels were achieved less in higher 
stages of CKD.

Significant adverse effects of NVD therapy have not been 
reported with therapeutic doses in the pediatric CKD litera-
ture. This is in contrast to treatment with activated vitamin 

D compounds (alphacalcidiol, calcitriol, paricalcitol, doxer-
calciferol) where complications such as hypercalcemia are 
more common [51, 52].

NVD and non‑osseus effects in CKD

Several adult studies have associated vitamin D deficiency 
with poor cardiovascular outcomes and with increased mark-
ers of inflammation in CKD [53]. Pediatric reports are rel-
atively few. Small studies have shown that in children with 
CKD, levels of 25[OH]D correlate negatively with surrogate 
indicators of cardiovascular morbidity like aortic pulse wave 
velocity (PWV) and aortic augmentation index (AI) [54, 55]. 
Left ventricular mass index correlates negatively with 25[OH]
D levels and positively with PTH levels, blood pressure (BP) 
and AI [22, 56]. Altemose et al. [57], reporting on 580 children 
from the CKiD cohort, documented 1.9 times higher odds for 
being anemic in hypovitaminosis D, even after adjusting for 
several covariates including GFR and use of erythropoetin or 
hematinics. Levels of 25[OH]D correlated positively with anti-
inflammatory and negatively with pro-inflammatory biomark-
ers in children on chronic hemodialysis [58].

Shroff et al. [59] reviewed 167 children from the ESCAPE 
cohort and showed that patients with 25[OH]D < 20 ng/ml 
had higher diastolic BP. The 5-year actuarial kidney sur-
vival was 50% with 25[OH]D levels < 20 ng/ml and 75% 
with levels above 20 ng/ml at baseline. Kidney survival 
increased 8.2% per 4 ng/ml increase in 25[OH]D levels 
(p = 0.03), independently of other confounders. Adult studies 
also indicate that higher 25[OH]D levels are associated with 
improved survival in CKD. In a meta-analysis of 10 studies 
and 6853 patients [60], relative risk of mortality for every 
10 ng/mL rise in 25[OH]D was 0.86 (95% CI 0.82–0.91).

Effect of NVD supplementation

In vitro and animal studies have shown that NVD supple-
mentation improves cardiovascular endpoints and reduces 
inflammatory biomarkers in CKD [53, 61]. In children, one 
small RCT [62] reported a significant decrease in erythro-
poietin dose in the group treated with NVD compared to 
control. There are no other studies in children that examine 
whether intervention with NVD or improvement in 25[OH]
D levels improves any non-osseus parameters of CKD. A 
systemic review found NVD supplementation to be inef-
fective in lowering BP in otherwise healthy children [63].

In adult CKD, meta-analyses of available RCTs to date, 
show no consistent improvement in cardiovascular out-
comes, anemia, immune function, health-related quality of 
life scores, hospitalisations or all-cause mortality, with NVD 
therapy [64–66].
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Conclusions (A): NVD in CKD

a)	 Utilization of NVD to maintain vitamin D sufficiency 
status is useful in early CKD, to prevent or treat second-
ary HPTH, and it is initially preferred over activated 
vitamin D compounds. Higher doses of NVD may be 
required in advanced CKD stages to achieve 25[OH]D 
target levels.

b)	 In advanced CKD, NVD is often insufficient to control 
HPTH. In such cases, once target 25[OH]D levels are 
reached, activated forms of vitamin D (alphacalcidiol/
calcitriol) may be required for control of HPTH and 
CKD MBD.

c)	 NVD supplementation may be considered to maintain 
adequate 25[OH]D levels, as the latter has been asso-
ciated with improved non-osseus outcomes as well as 
overall survival. However, direct interventional studies 
to support such use are not yet available.

Section B: Vitamin D in nephrotic syndrome 
and other proteinuric kidney diseases

As discussed previously, the majority of serum 25[OH]D 
(> 99%) circulates bound to proteins. DBP has a molecu-
lar weight similar to albumin, and both are lost in urine in 
proteinuric diseases. In gross proteinuria, urinary losses of 
DBP bound to 25[OH]D may overwhelm proximal tubular 
reabsorption capacity via megalin/cubilin pathways [9–11].

Free 25[OH]D is defined as circulating 25[OH]D which 
is bound to neither DBP nor albumin. Several studies indi-
cate that in health, free and total 25[OH]D levels correlate 
closely, suggesting that there is no need for assessing free 
25[OH]D levels separately. However, this correlation was 
lost in several disease states including nephrotic proteinuria 
[9, 10, 18]. There are no studies to date that indicate the level 
of proteinuria at which this dissociation may occur.

NVD in nephrotic syndrome

In pediatric nephrotic syndrome (NS), reports have docu-
mented urinary DBP loss, with low levels of serum DBP and 
total 25[OH]D during and after NS relapse [67–69]. How-
ever, unlike in CKD, this had no association with abnormali-
ties of corrected calcium, phosphate, alkaline phosphatase 
(ALP) or PTH [69–71]. The total 25[OH]D levels returned 
to levels similar to healthy controls after ≥ 3 months of 
attaining remission in steroid sensitive nephrotic syndrome 
(SSNS) [70, 72].

In contrast, free 25[OH]D levels, were found to be simi-
lar to healthy controls both in NS remission and relapse 
[18], and this may explain why corrected calcium, phos-
phate, ALP and PTH levels do not change significantly 

in SSNS, despite markedly low total 25[OH]D. Only 
total and not free 25[OH]D correlated significantly and 
negatively with urinary protein:creatinine ratios (Spear-
man’s rank correlation coefficient, rs =  − 0.42, p < 0.001 
and 0.04, p = 0.6), while total 25[OH]D had a stronger 
correlation with serum albumin levels than free 25[OH]D 
(rs = 0.64, p < 0.001 and 0.21, p = 0.13) [18].

Effect of NVD supplementation

Children with NS are usually treated with steroids, and 
glucocorticoid-induced osteoporosis (GIO) is a consider-
able concern, especially if the patient is frequently relaps-
ing or steroid dependent. The question is whether treat-
ment with NVD will improve bone health in such patients.

In patients with SSNS on steroid therapy, two small 
RCTs over 2–3 months [73, 74], and a longitudinal study 
over 1.5 years [75] reported better BMD or bone mineral 
content (BMC) in groups treated with NVD and calcium; 
however, 25[OH]D levels were not measured in these 
studies. A subsequent RCT [71] showed no change in 
BMD or BMC over 6 months, despite marked improve-
ments in serum total 25[OH]D status in the supplemented 
group.

An RCT by Rooney et al. [76] failed to show benefit of 
calcium and NVD supplementation on lumbar BMD in 
GIO of rheumatological diseases.

In NS, hypercalciuria was detected in 50% of patients 
who received NVD supplementation of 60,000 IU weekly 
for 4 weeks. All patients in the intervention arm were in 
relapse and had low total serum 25[OH]D (median 7.0, 
interquartile range 3–16.7) ng/ml at recruitment. These 
levels rose to a median of 54.45 (interquartile range 
46.45–87.75) ng/ml after supplementation, when the 
patients were in remission [71]. The question arises of 
whether total 25[OH]D is a valid target for supplementa-
tion, given the evidence of DBP–25[OH]D complex loss 
in urine and low serum DBP levels in NS [67–69]. Free 
25[OH]D levels were not checked in this study.

Studies in DBP knockout mice show that despite the 
absent DBP and very low levels of serum total 25[OH]
D, these mice do not develop evidence of vitamin D defi-
ciency unless they are fed an NVD-deficient diet. Extrapo-
lating from this, it appears that DBP binding serves as a 
reservoir for vitamin D compounds [11]. Thus, in gross 
proteinuric conditions, where DBP levels are expected 
to be low, although calcium and NVD supplementation 
may not specifically treat GIO, achieving daily dietary 
reference intakes (DRI) for these compounds should be 
considered, to maintain bone health, as suggested in the 
forthcoming IPNA clinical practice recommendations, as 
well as other recent guidelines [77, 78].



949Pediatric Nephrology (2023) 38:945–955	

1 3

NVD in other proteinuric diseases

Several studies of children and adult CKD have indicated 
lower total 25[OH]D levels in patients with proteinuria, with 
levels correlating positively with serum albumin and nega-
tively with degree of protein loss [25, 27, 28, 30, 79]. A large 
population-based adult study revealed increasing prevalence 
of albuminuria with decreasing 25[OH]D levels [80].

These studies are cross-sectional in nature, therefore 
causality of the association cannot be proven, and the low 
total 25[OH]D may simply be an effect of increased urinary 
losses of protein-bound 25[OH]D. Serum or urinary DBP, 
free or bioavailable serum 25[OH]D levels have not been 
studied in these conditions. Pending further evidence, it may 
be logical to consider the use of NVD therapy above DRI, 
in such situations, if there is associated evidence of hypovi-
taminosis D such as low corrected calcium, phosphate and 
high ALP and PTH.

Experimental data suggests that NVD and VDR activators 
reduce proteinuria, possibly by suppressing the renin–angio-
tensin–aldosterone system [81]. In glomerular diseases like 
IgA and diabetic nephropathy, adult studies have indicated 
improvement in levels of proteinuria with VDR activator 
therapy [82–84]. However, no such evidence is available in 
children or with NVD supplementation. There are also no 
studies examining other non-osseus effects of NVD therapy 
in proteinuric disorders. Although it is attractive to consider 
that infection-related NS relapses may be reduced with NVD 
therapy, Banerjee et al. [71] failed to find any effect of NVD 
supplementation on relapse frequency; however, their study 
was not adequately powered to examine this effect.

Conclusions (B): NVD in NS and other proteinuric 
diseases

a)	 In proteinuric conditions, serum total 25[OH]D levels 
may not reflect the biologically active fraction, and pre-

liminary evidence suggests that free 25[OH]D may be a 
better guide. However, easy-to-use validated assays and 
further supporting evidence are required before this can 
become a clinically useful tool.

b)	 In NS, although calcium and NVD supplementation does 
not specifically treat GIO, maintaining DRI for calcium 
and NVD is suggested to optimise bone health. Total 
serum 25[OH]D may be targeted in SSNS, ideally when 
in remission for over 3 months.

c)	 In children, as yet there is no evidence that NVD supple-
mentation reduces proteinuria or has any other positive 
influence on non-osseous outcomes in proteinuric diseases.

Section C: NVD therapy in kidney disease

Therapeutic targets

Ideally, the levels of 25[OH]D targeted should be sufficient 
to maintain both osseus and non-osseus functions of vita-
min D. However, data for such optimum levels is lacking, 
particularly for non-osseus outcomes, and guidelines are 
available to address biochemical bone parameters only. In 
otherwise healthy children, the level at which bone accrual 
may be optimum, with effective absorption of calcium from 
the gut and maintenance of normal ALP and PTH levels, is 
suggested to be > 20 ng/ml in a recent global consensus [77]. 
This target is generally accepted for children with kidney 
disease and normal kidney function. It is recognised that 
in CKD, higher levels (> 30 ng/ml) are required to prevent 
secondary HPTH [37, 41, 85] (Table1).

NVD supplements

NVD supplements are available in the form of ergocalciferol 
(D2) and cholecalciferol (D3). Studies in adults suggest that 
D3 is superior to D2 in raising both total and free 25[OH]

Table 1   Vitamin D status: Consensus guidelines

Vitamin D status Munns et al. [77]: Global Consensus Recom-
mendations on Prevention and Management 
of Nutritional Rickets

KDOQI Clinical Practice 
Guidelines for Pediatric CKD 
[85]

Shroff et al. [37]: European Clinical Practice 
Recommendations in Pediatric CKD stages 
2–5

Sufficiency  > 20 ng/ml
 > 50 nmol/l

 > 30 ng/ml
 > 75 nmol/l

 > 30 ng/mL
 > 75 nmol/l

Insufficiency 12–20 ng/ml
30–50 nmol/l

16–30 ng/ml
40–75 nmol/l

20–30 ng/mL
50–75 nmol/l

Deficiency  < 12 ng/ml
 < 30 nmol/l

5–15 ng/ml
12.5–37.5 nmol/l

5–20 ng/mL
12–50 nmol/l

Severe deficiency –  < 5 ng/ml
 < 12.5 nmol/l

 < 5 ng/mL
 < 12 nmol/l

Toxicity  > 100 ng/ml
 > 250 nmol/l

 > 100 ng/ml
 > 250 nmol/l
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D levels and in lowering serum PTH [86, 87]. An RCT in 
adults on HD, comparing high-dose monthly vitamin D2 
versus D3, also reported that the latter resulted in higher 
25[OH]D levels [88]. We could not find any studies com-
paring D2 to D3 supplementation in children with kidney 
disease. Pediatric studies to date have not demonstrated any 
difference between D2 and D3 supplements, whether given 
daily, weekly, or as single bolus doses [89–91]. Pediatric 
guidelines suggest that either D2 or D3 in daily dose regi-
mens can be used; however, since D3 has a longer half-life, 
it is preferred if using intermittent dosing schedules [37, 77]. 
Calcefediol, an extended-release derivative of 25[OH]D3 has 
recently been approved; however, there are no pediatric data 
available as yet.

NVD doses and monitoring

The specific dose required in an individual patient to raise 
25[OH]D levels from a certain baseline to target levels is 
not known. Evidence-based pediatric guidelines that are 
not specific for kidney disease, recommend minimum daily 
intakes of 400 IU in infancy and 400–600 IU in older chil-
dren. For treatment of rickets or low 25[OH]D status, the 
recommended daily doses are up to 2000 IU for infants 
or 3000 IU for older children; for 12 weeks. For reasons 
of improved compliance, intermittent doses of 50,000 to 
60,000 IU weekly may be given to children over 1 year of 
age, with total cumulative dose remaining the same [77, 78]. 
These guidelines are usually followed also for non-CKD 
renal diseases. Since complications occur more frequently 

with mega-dose Stoss regimens, such treatment is best 
avoided [37].

Interventional studies in children with kidney disease 
have used D2 or D3, in widely variable doses and frequen-
cies, varying from megadoses of 300,000 to 600,000 IU [49, 
92] to 60,000 IU weekly for 4 weeks [71] to 2000 IU/day 
[93]. However, although median 25[OH]D levels increased 
significantly, the above-mentioned target levels were not 
achieved in all children with these doses.

It is recognized that higher doses may be required in CKD. 
Shroff et al. administered D2 supplements to children with 
CKD, in a modified DOQI protocol [50, 85], which varied 
according to age and baseline levels (Table 2), and reported 
that after intensive therapy, target levels of > 30 ng/ml were 
achieved in 80%, which fell to 60% on maintenance therapy.

Achievement of target levels was less in higher stages of 
CKD, where even higher doses may be required. In patients 
with low vitamin D status, Kari et al. administered 2000 IU 
NVD daily for 3 months, and only 9% of patients achieved 
levels > 30 ng/ml [93]; whereas doses of 3000 to 4000 IU 
daily were able to achieve target levels in > 70% patients in 
two recent RCTs [31, 94].

The doses of NVD used in studies or recommended in 
guidelines are not generally scaled to body weight or surface 
area. However, nephrocalcinosis occurred more frequently in 
smaller children after excessive intake in a recent case series 
[95]. Pharmakokinetic simulation modelling has suggested 
that weight-based dosing may improve attainment of target 
levels and avoid toxicity due to overdose [96].

Table 2   Guidelines for NVD replacement in pediatric CKD

Phase Age 25[OH]D at baseline Supplement (IU/day) Monitoring frequency

Shroff et al. [37] Intensive  < 1 year  < 30 ng/ml
 < 75 nmol/l

600 1–3 monthly

 > 1 year 20–30 ng/ml
50–75 nmol/l

2000

5–20 ng/ml
12–50 nmol/l

4000

 < 5 ng/ml
 < 12 nmol/l

8000

Maintenance  < 1 year  > 30 ng/ml
 > 75 nmol/l

400 6–12 monthly

 > 1 year  > 30 ng/ml
 > 75 nmol/l

1000–2000

KDOQI [85] Loading  16–30 ng/ml
40–75 nmol/l

2000 for 12 weeks 1 month after start/
change and 3 monthly 
thereafter5–15 ng/ml

12.5–37.5 nmol/l
4000 for 12 weeks

 < 5 ng/ml
 < 12.5 nmol/l

8000 for 4 weeks, then 
4000 for 8 weeks

Maintenance  > 30 ng/ml
 > 75 nmol/l

200 to 1000 yearly
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Screening for hypovitaminosis D is suggested in at-risk 
patients, every 6–12 months. Continued monitoring of levels 
at regular intervals while on treatment (Table 2) is required 
to guide further therapy, along with monitoring for toxic-
ity (hypercalcemia, hyperphosphatemia or hypercalciuria) 
[37]. Adverse effects are more likely during high dose inten-
sive replacement/loading regimens, and monitoring is more 
important during this time.

Toxicity of NVD

Pediatric studies using therapeutic doses of NVD reported 
increase in FGF23 in CKD [31, 97] while calcium, phos-
phate, and ALP levels were largely unchanged.

However, hypercalciuria was reported in > 50% of 
patients receiving NVD in NS, when supplementation was 
guided by total and not free 25[OH]D levels [71].

A meta-analysis of adverse effects of long-term 
(≥ 24 weeks) NVD supplementation in adult studies revealed 
increased risks of hypercalcemia and hypercalciuria [98].

Hypervitaminosis usually occurs due to ingestion of 
excess vitamin D supplements [94, 98]. Vitamin D toxicity is 
manifested as hypercalcemia, hypercalciuria and suppressed 
PTH levels. This may cause further complications like pan-
creatitis, nephrocalcinosis, nephro-urolithiasis, and kidney 
function impairment. There may be no early symptoms, 
and biochemical monitoring only can pick up early toxicity. 
Symptoms, when they occur, maybe be non-specific, like 
anorexia, vomiting, constipation, polyuria, polydipsia, and 
dehydration. Rare life-threatening conditions like arrhyth-
mias or encephalopathy have also been reported [99, 100].

In the general population, 25[OH]HD levels > 50 ng/ml 
are associated with increased mortality, while symptomatic 
toxicity is associated with 25[OH]D levels above 100 ng/
ml [37]. Guidelines suggest that vitamin D supplements 
are stopped before 25[OH]D levels of 50 ng/ml to prevent 
toxicity [37, 77].

The availability and formulations of vitamin D prepara-
tions are very variable even within countries and regions, 
and can often be bought as over-the-counter medications. 
The supplements are available in the form of very concen-
trated drops, syrups, powders, and capsules, as single prod-
ucts or in combination with calcium and other micronutri-
ents. Popular media have generated a perceived need for 
NVD supplementation for a myriad of conditions and for 
general well-being. However, globally, there are now several 
reports of concentration errors during manufacturing, errors 
in labelling, and of inappropriate or wrongly administered 
doses [95, 101–105]. Public education, review and standard-
isation of formulations are required to safeguard against such 
mishaps. Caregivers administering these medications should 
be adequately counselled and treatment monitored to avoid 

toxicity. Availability without prescription should not be 
allowed for the more concentrated or high dose formulations.

Conclusions (C): NVD therapy in kidney disease

1.	 Patients who have high risk of hypovitaminosis D, 
including patients with hypocalcemia, HPTH, CKD, 
proteinuria, osteoporosis or clinical rickets, should be 
screened for vitamin D status.

2.	 In such patients, vitamin D sufficiency targets, i.e. total 
25[OH]D levels of > 20 ng/ml in non-CKD and > 30 ng/
ml in CKD, but < 50 ng/ml (in absence of gross protein-
uria) should be achieved with NVD therapy (Table 1). 
Treatment is started as per available guidelines, but subse-
quently titrated according to levels of 25[OH]D achieved, 
as well as serum and urinary calcium and PTH status.

3.	 Supplements containing D2 or D3 may be used; the lat-
ter is preferred when using weekly intermittent therapy. 
Megadose Stoss therapy is to be avoided.

4.	 Regulations for standardization and labelling of formu-
lations, parental guidance and monitoring are required, 
and concentrated or high dose preparations should only 
be available by prescription.

Summary

Although there is much discussion as well as published 
guidelines regarding NVD therapy in CKD, the issues sur-
rounding proteinuric renal diseases are more nebulous.

In children with CKD, observational studies associate 
low 25[OH]D status with poorer osseous and non-osseous 
outcomes. However, evidence of benefit of NVD therapy is 
restricted only to biochemical improvements in 25[OH]D 
and PTH levels. Recent evidence-based guidelines aim to 
optimize NVD therapy to attain vitamin D sufficiency status.

In NS and other hypoalbuminemic/proteinuric conditions, 
serum total 25[OH]D levels may not reflect the biologically 
active fraction. Very few studies have correlated outcomes 
to free 25[OH]D levels. Until commercial assays and further 
studies examining free 25[OH]D are available, total 25[OH]
D levels may be used to guide therapy when the proteinu-
ria has remitted for ≥ 3 months; or NVD supplementation 
(above DRI) may be indicated in the presence of effects 
of true hypovitaminosis D, such as low corrected calcium, 
phosphate and high ALP and PTH levels.

Further research is required to assess the benefits of NVD 
therapy on clinical outcomes. The limitations of available 
assays in certain clinical situations needs to be recognized. 
NVD formulations should be regularised, and therapy moni-
tored and supervised adequately to avoid toxicities which 
can cause acute systemic illness as well as long-lasting kid-
ney impairment.
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