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Abstract
The prevalence of non-communicable disease (NCDs) is rising globally, with a large burden recorded in sub-Saharan countries
and populations of black race/ethnicity. Accelerated vascular deterioration, otherwise known as early vascular aging (EVA), is
the underlying factor for highly prevalent NCDs such as hypertension. The etiology of EVA is multifactorial with a central
component being arterial stiffness with subsequent development of hypertension and cardiovascular complications. Although
arterial stiffness develops with increasing age, many children and adolescents are subjected to the premature development of
arterial stiffness, due to genetic or epigenetic predispositions, lifestyle and behavioral risk factors, and early life programming.
Race/ethnic differences in pediatric populations have also been reported with higher aortic stiffness in black (African American)
compared with age-matched white (European American) counterparts independent of blood pressure, body mass index, or
socioeconomic status. With known evidence of race/ethnic differences in EVA, the pathophysiological mechanisms underlying
graded differences in the programming of EVA are still sparse and rarely explored. This educational review aims to address the
early life determinants of EVA in children and adolescents with a particular focus on racial or ethnic differences.

Keywords Race . Ethnicity . Early vascular aging . Children . Adolescents . Arterial stiffness . Blood pressure . Endothelial
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Introduction

Cardiovascular disease (CVD) is not only prevalent in adults
and the elderly. Recent evidence highlighted the increasing
trends of childhood and adolescent hypertension as well as
related CVDs as future health challenges on a global scale
with major economic implications [1–3]. Global evidence in-
dicates that adult non-communicable diseases (NCDs), in-
cluding CVD and type 2 diabetes, originate from early life
or biological programming due to the interactions of environ-
mental and genetic factors during a critical period of develop-
ment, namely the first thousand days of life [4–6]. More im-
portantly, even earlier changes in the biomechanical makeup

of blood vessels may be compromised during fetal
(intrauterine) development due to maternal nutrition [7], ma-
ternal smoking [8], maternal health (i.e., eclampsia, gestation-
al diabetes) [9], access to health care (low socioeconomic
status, lack of medical insurance) [10], and prematurity/low
birthweight [11]. These early life determinants of CVD may
predispose children and adolescents to accelerated biological
aging, termed early vascular aging (EVA).

Aside from predispositions to genetic and environmental
risk factors of certain phenotypes, there are also socioeconom-
ic, sociocultural, and metabolic determinants to define an in-
dividual’s health status. Alongside these determining risk fac-
tors for NCDs and especially CVD is the complexity of ethnic
or racial differences that are regularly reported in CVD mor-
bidity and mortality, with an increased burden among espe-
cially black (African and African-American) and Hispanic
populations [12, 13] compared with white or Asian popula-
tions. Until now, genetics studies have not succeeded in
explaining genetic predispositions to CVD among various ra-
cial or ethnic groups [14, 15]. In addition, clear biological
definitions of ethnicity and race are still lacking. In an analysis
from the 1998 South Africa Demographic Health Survey, au-
thors highlighted unambiguous racial and income disparities
among black African and white (European descent) South
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Africans. Black South Africans had less access to healthcare
services and mostly fell in the lower socioeconomic classes
compared with white South Africans [16]. Yet, 20 years later,
this disproportion is still markedly unchanged in especially the
sub-Saharan Africa context. Racial inequalities should remain
a global social concern, since marked differences among race
groups have been reported in health-related studies with no
clear pathophysiological explanations. Evidence in this regard
is lacking even more in pediatric and adolescent populations.

This review will focus on the evidence of EVA in children
and adolescents, its characteristics, and multifactorial determi-
nants with specific reference to race.

Definition and diagnosis of early vascular
aging

The concept of premature vascular aging was described by
Nilsson (1996) as the result of adverse psychosocial and en-
vironmental factors hindering the health-preserving mecha-
nisms of human physiology [17]. Since then, the concept of
EVA has been well demonstrated, but with limited focus in
children, adolescents and young adults.

Definitions

With “normal” or chronological aging, biological changes
manifest andmay develop to disease states when an individual
reaches the end stages of life. Chronological age is the number
of years, months, or days lived since the day of birth and an
obvious risk factor for CVD morbidity and mortality in the
presence of established risk factors [18]. Biological aging is
different from chronological aging as it reflects a number of
factors contributing to a gradual decline in physiological and
biochemical functionality of individuals across the lifespan.
Some of these factors include genetics, lifestyle behaviors,
and disease states such as hypertension, atherosclerosis, and
diabetes mellitus. However, the aging process can be acceler-
ated at a biological level, rendering a mismatch between the
chronological and biological age. This dissociation between
chronologic and biologic aging is termed EVA. EVA is there-
fore a state of accelerated adverse changes in the biochemical
and cellular components of the vascular tree contributing to
augmented forward pulse wave reflections at younger ages
[19]. These early changes have particular detrimental effects
on target organs such as the heart, brain, and kidneys.

Diagnosis

EVA can be diagnosed by the presence of abnormally high
arterial stiffness (arteriosclerosis) for a specific age and sex
[20]. Arterial stiffness is central to the development of EVA,
whereby individuals with reduced arterial elasticity can be

identified by non-invasive measurement of pulse wave veloc-
ity (PWV) [21]. Carotid-femoral PWV or aortic PWV is per-
haps the most commonly usedmeasure of arterial stiffness and
is defined as the velocity of the arterial pulse wave travelling
between two sites (distance × 0.8) along the arterial wall (tran-
sit time) [22]. In general, mostly in adult populations, higher
(> 10 m/s) PWV indicates arterial stiffness and an increased
risk for future cardiovascular events [23].

Clinical importance of early vascular aging

With increasing age, pulse pressure widens and systolic
hypertension develops as long-term manifestations of arte-
rial stiffening [24]. PWV is a sensitive technique to mea-
sure arterial stiffness and can detect early adverse changes
in pulse wave reflections. By measuring PWV, EVA can
be assessed to identify individuals (at younger ages) with
accelerated aging or adverse medial layer morphological
changes due to inherent features as well as interactions
with environmental exposures [25]. The impact of these
vascular changes and subsequent increased arterial
(aortic) stiffness on cardiac remodeling is inevitable.
Aortic stiffening increases left ventricular load as well as
myocardial perfusion pressure, but limits the delivery of
blood to the capillary beds during diastole. Evidently, in-
creased arterial stiffness may contribute to myocardial is-
chemia [26] and cardiac failure [27]. Aside from the direct
relationship between aortic stiffness and cardiac dysfunc-
tion and hypertrophy is also the downstream effects of
arterial stiffening on the microvasculature within vital or-
gans including the brain [28, 29] and kidneys [30, 31].
Therefore, the non-invasive measurement of PWV in a
clinical setting may assist in the risk stratification of indi-
viduals (even in young asymptomatic individuals) and the
possibility for primordial prevention. Carotid-femoral
PWV by applanation tonometry has been established as a
highly sensitive biomarker in identifying individuals with
various phenotypes and can aid in therapeutic guidance
[32, 33].

Not only does PWV assess arterial stiffness, but it also
provides valuable predictive information for cardiovascular
outcomes as an intermediate end-point and an independent
predictor of cardiovascular events and all-cause mortality
[34, 35]. The predictive power of PWV for CVD was first
described in high-risk groups with chronic kidney disease
(CKD), hypertension, or diabetes [36–38]. Later, in the gen-
eral population [39], one standard deviation increase of PWV
predicted a 30% increased risk for future cardiovascular
events [34]. However, standardization of PWVmeasurements
with various devices and across different populations still re-
quires attention.
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Etiology and prevalence of early vascular
aging over the life course

In recent consortia and research, evidence led to the appreci-
ation of the way in which early life (including pre-conception
and intrauterine development) exposures to risk factors deter-
mine the origin and trajectories of disease across the life
course [16]. The life course in this context refers to the recip-
rocal influences of especially environmental exposures on the
biological determinants of health during the different stages of
life including pre-pregnancy, gestation, infancy, adolescence,
and adulthood [40].

In a statement by the Lancet Commission on hypertension,
the concept of EVA was used to develop a life course strategy
of CVD prevention and treatment, aiming to reduce cardio-
vascular risk factors, target organ damage and cardiovascular
events throughout the different stages of life including child-
hood [6]. The authors highlighted that genetic susceptibility
and epigenetic imprinting during fetal life can alter the life
course trajectories and underlined the importance thereof in
the management of raised blood pressure (BP) [6]. In an effort
to further elucidate this concept, we adapted the life course
trajectory approach (Fig. 1) to indicate that the presence of
intrauterine risk factors (early life programming) already pre-
disposes the fetus to increased future cardiovascular risk and
the early onset of cardiovascular abnormalities in early
childhood.

In Fig. 1, points A, B, and C indicate the relative risk of an
individual on the health disease continuum based on the de-
terminants and phenotype of fetal programming. The ideal life

course is illustrated with a green line, and at point A, the risk
of accelerated biological aging or EVA is much lower com-
pared with an individual at points B and C. Such individuals
(at point A) are theoretically defined as healthy or undergo
supernormal vascular aging [20], with the least adverse car-
diovascular disease manifestations throughout the life course.
The majority of individuals intercepts the health disease con-
tinuum at point B, following an average life course in which
hypertension and arterial stiffness manifests in late adulthood
and middle age, with subsequent cardiovascular morbidity
and mortality in advanced age. However, some individuals
intercept the health-disease continuum at point C with accel-
erated biological aging and vascular compromise at very
young ages, even in infancy, childhood, and adolescence.
These individuals are believed to be subjected to maternal risk
factors involved in the early life programming mismatch con-
tributing to the increased relative risk of EVA, as discussed
below.

Etiology

Evidence from BP tracking studies suggests that the develop-
ment of blood vessel structure and function could be influ-
enced by early somatic growth [41–44]. This may be the rea-
son increased arterial wall stiffness (arteriosclerosis) and
thickness (atherosclerosis) of large arteries are proposed to
be present in children and adolescents in the early phases of
elevated BP [45]. As with atherosclerosis, arterial stiffness is
believed to start in early life on the basis of fetal programming
of the medial elastin content of the arteries, as well as of other

Fig. 1 An adapted life course model in the setting of early vascular aging and the consequences of early-life programming prior to birth. SES
socioeconomic status, *Amended from Olsen et al., with permission from The Lancet [6]. Copyright ©2016, Elsevier
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vasculature and capillaries [46, 47]. Therefore, EVAmay start
in utero as a result of adverse intrauterine environmental ex-
posures for survival, which may contribute to an increased
risk of vascular deterioration in early postnatal life [19].

Genetic-environmental interactions and ethnocultural in-
fluences may increase individual susceptibility to early-life
programming of the vasculature [48–51]. For instance, fetal
undernutrition is accompanied by suboptimal vascular growth
and development with reduced elasticity, arterial compliance,
and overall high peripheral resistance in the offspring [52].
Maternal nutrition and/or underlying disease states such as
obesity and gestational diabetes can affect fetal nutrition and
contribute to potential genetic changes during fetal develop-
ment [53]. A population-based analysis indicated a 29% in-
creased overall rate of early onset of CVD in offspring, if the
mothers had diabetes during pregnancy [9]. In addition, re-
ports have indicated higher risk of gestational diabetes among
women from race groups other that non-Hispanic white race
[54, 55].

Although the etiology of racial differences in early life
programming is scant and perhaps only studied as biological
fragments to understand the complexity of early life exposures
on cardiovascular health and its future implications, evidence
suggest that black children with lower birth weight compared
with their white counterparts are at higher risk of having im-
paired vascular structure and function [56]. However, this may
also be true for other race groups, as studies indicated that not
only African-American babies (born at term) but also Indian,
Pakistani, Bangladeshi, and black Caribbean offspring have
lower birth weights than those from European ancestry [57,
58]. A study on prematurity also indicated that children born
extremely preterm (compared with controls) have an increased
future cardiovascular risk due to altered arterial hemodynam-
ics of especially the smaller resistance blood vessels [59].
Systolic hypertension, elevated glucose levels, and hypercho-
lesterolemia were also more prominent (compared with con-
trols) as measured almost 6 years later in a group of preterm
infants [60]. It appears that altered maternal lipid metabolism
(higher triglycerides and total cholesterol) contributes to ad-
verse prenatal programming of the hypothalamic-pituitary-
adrenal axis by increasing a child’s stress response as evi-
denced by greater cortisol reactivity [61]. This could be in part
the mechanism to explain the link between the early life origin
of CVD and the emotional functioning or psychological stress
of a child [62]. In addition, researches have shown a clear
association between multiple adverse childhood experiences
and increased arterial stiffness as measured by PWV [63].

Prevalence of early vascular aging

The prevalence of arterial stiffness or rather EVA remains to
be clearly defined, since evidence regarding the prevalence of
EVA is limited in both adult and pediatric populations.

Studies have indicated higher PWV values in low cardiovas-
cular risk populations (under 30 years of age) and estimated
the prevalence of EVA at 12.5% in Portugal (n = 2542; age
18–96 years) [64] and 37.3% in Austria (n = 10 973; age 20–
94 years) [65]. It is also believed that the prevalence of EVA is
proportional to the prevalence of hypertension and related co-
morbidities such as obesity and type 2 diabetes mellitus, due
to the latter being late manifestations of increased arterial
stiffness [24]. From the USA, approximately 11% of children
and adolescents have high BP [1], whereas in South Africa,
the prevalence of childhood hypertension ranges between
7.5% and 22.3%, dependent on location, region, and culture
[2]. Whether the prevalence of EVA relates to the prevalence
of hypertension remains to be determined.

Although cardiovascular morbidity and mortality are tradi-
tionally attributed to numerous modifiable risk factors includ-
ing unhealthy dietary and sedentary behaviors, low physical
activity, psychosocial stress, hypertension, tobacco use, ab-
normal lipids, glucose intolerance, and obesity [66], there
are other adverse risk factors often overlooked. Among these
are low socioeconomic class, psychosocial stress, infectious
diseases, lack of healthcare, and poor lifestyle choices as ob-
served in low to middle-income countries have cumulative
harmful effects on cardiovascular health, especially in popu-
lations with an exceptional proportion of ethnic and/or race
variation [67, 68].

Race or ethnic differences in early vascular
aging among children and adolescents

The etiology of racial differences in EVA is complex, but
there is an appreciation of biological and socioeconomic fac-
tors that are at least partly involved [69]. Although many
determinants of EVA could explain potential racial differ-
ences, there is limited evidence to unravel the origin of such
differences in the early onset of CVD. In this section, we
provide a brief overview of studies comparing components
of EVA (BP, PWV, carotid intima media thickness, and left
ventricular mass) from studies that included two or more race/
ethnic groups in children and/or adolescents.

Analyses from the Study of High Blood Pressure in
Pediatrics: Adult Hypertension Onset in Youth (SHIP-
AHOY) [70] has emphasized the importance of BP measure-
ment in children, along with the most recent sets of guidelines
for BP in pediatric populations [71, 72]. Moreover, target
organ damage has already been observed in adolescents with
BP levels below the current clinical definition for hyperten-
sion [73]. Differences in BP based on race/ethnicity are regu-
larly reported in adults, yet limited, evidence of these differ-
ences exists in childhood and adolescents. These race/ethnic
differences in BP have been described by potential differences
in intrauterine growth, based on birth weight, followed by the

1090 Pediatr Nephrol (2021) 36:1087–1108



effects of early weight gain and growth in body height and
current stature [74]. We summarized key studies that reported
on BP differences by race (Table 1). The majority of studies
comparing BP between different race groups are from the
USA. These studies have reported mostly higher BP in black
(African-American or African Caribbean) compared with
children or adolescents from white or other (Asian, South
Asian, Indian, Pakistan, Bangladesh) race groups. Many
cross-sectional and longitudinal studies from the USA [56,
74–76, 78, 79, 81, 83, 84] and South Africa [82, 85] showed
consistently higher BP (although inconsistent on whether the
highest is systolic BP or diastolic BP) in the black compared
with white population groups. The majority of these studies
only compared BP without correcting for age, adiposity, stat-
ure, or other important confounders. In addition, a study from
England [86] included large numbers of black, white, Asian,
and other race groups and reported that black (African-
Caribbean) children had similar mean systolic BP to white
Europeans, but higher mean diastolic BP after correcting for
age and sex. The same study also indicated that mean systolic
BP tended to be slightly higher among black Caribbean, but
lower among black Africans (p = 0.004); however, there was
no heterogeneity for diastolic BP. Longitudinal studies mostly
provide descriptive comparisons of the baseline BP profiles,
and although these studies reported similar trends of higher
BP in especially black children and adolescents, there are also
inconsistencies. Amulticenter study [77] performed an adjust-
ed comparison between the black and white children that were
born preterm and reported no race/ethnic differences, but after
adjusting for neighborhood socioeconomic status, racial dif-
ferences emerged over time. Similarly, studies from the USA
[84, 87] and another from Brazil [88] indicated no differences
in BP between black and white/non-black children and
adolescents.

In a recent brief review, it became clear that studies inves-
tigating racial differences of arterial stiffness were mostly
from the USA and some from Brazil and South Africa [89].
These studies reported that PWV was highest in especially
black (African American, Brazilian, and South African) com-
pared with the white groups. However, many of these studies
were (i) inconsistent in reporting adjusted means of PWV, (ii)
were mostly of cross-sectional design, or (iii) some studies
only included one racial group. Additionally (Table 2), we
provide an overview of comparative studies that measured
PWV in children from different race/ethnicity.

Since there are no universal cutoffs for PWV in children
and adolescents, comparative studies have proven useful in
determining racial/ethnic differences in arterial stiffness and
potentially EVA. Socioeconomic and psychosocial factors are
becoming essential contributors to consider when investigat-
ing early manifestations of adverse vascular alterations in
black populations. In a longitudinal study [87], Thurston et al.
investigated association between race and socioeconomic

(SES) with arterial stiffness in adolescents (age 14–16 years).
The study found that PWV was higher in the black (African
American) group as compared with the white group. A larger
proportion in the black participants were from families with
low household income, low levels of parental education, and
had lower scores on the neighborhood SES assessment.
Lower or medium family income and lower neighborhood
SES were positively associated with PWV, even after adjust-
ments for covariates. Despite a small sample size (n = 107,
divided into black and white groups) (age 9–12 years),
Lefferts et al. observed high PWV in black (African
American) children as compared with white children after
adjustments for covariates including age, sex, BMI, mean ar-
terial pressure, and SES [81]. The study also noted a lower
SES in the black children as compared their white
counterparts.

Certain disease states may serve as facilitators for acceler-
ated vascular aging in certain race/ethnic groups. In a popula-
tion (age 11–26 years) with type 1 diabetes, a higher PWV
was associated with non-Hispanic white race/ethnicity and
higher in type 1 diabetes patients as compared with the con-
trols; however, no comparative data was shown [90]. The
regression analyses were adjusted for modifiable and non-
modifiable risk factors. Furthermore, black (African
American) adolescents with type 2 diabetes presented with a
higher PWV compared with whites [91]. In the same study,
multiple regression analyses further demonstrated that age,
lipids, BP, and duration of diabetes were differently associated
with arterial stiffness in individual race/ethnicity groups. A
study in Brazil including both black and non-black children
and adolescents (age 6–18 years) showed that in puberty and
post-pubertal stages, black individuals had higher PWV as
compared with the non-black group, even after adjustments
for multiple confounders [88]. In black South African boys
(age 6–8 years), there was a consistently higher PWV when
measured across various segments of the vascular tree (Fig. 2)
as compared with the white boys [82].

The contribution of heritability on racial/ethnic differences
in arterial stiffness remains questionable. A twin study (age
11.9–30.0) reported that heritability traits did not display any
differences between blacks and whites, despite black partici-
pants presenting with a higher PWV as compared with their
white counterparts [78]. It is therefore clear that exposure to
unfavorable environmental factors play a significant role in
the prominence of higher PWV in black children and adoles-
cents as compared with their white peers.

Carotid intima media thickness (CIMT), as a surrogate for the
detection of atherosclerosis and early development of endothelial
dysfunction [92], has also been reported as a determinant of EVA
[93]. Only a few studies (mostly cross-sectional) have reported
differences in CIMT among children and adolescents of different
race/ethnicity (Table 3). The majority among these studies in-
cluded comparisons between black (American, African,
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Caribbean) and white or Hispanic populations, with little com-
parative studies that included other racial or ethnic populations.
Importantly, many of these studies reported on the unadjusted
means of CIMT and did not necessarily consider any adjustment
for BP, body composition, age, or sex. All studies from the USA
reported significantly higher CIMT in black children [81, 95, 96]
and/or adolescents [94], whereas one study reported borderline
higher CIMT in the black compared with white group [87]. A
UK study population, with multiple race/ethnic groups, reported
higher CIMT in the black (African and Caribbean) compared
with white, South Asian, Asian, and other (Indian, Pakistani, or
Bangladeshi) race/ethnic groups, after adjustments for multiple
covariates including age and sex [97]. From South Africa, one
study reported higher CIMT in black compared with white boys,
after adjustment for mean arterial pressure [82]. From the com-
munity of Bogalusa, USA, children (age 4–17 years) were cross-
sectionally surveyed between 1973 and 2002 (not in Table 3) and
were examined with CIMT as an additional measurement (not
performed at baseline). The comparative analysis showed higher
CIMT in black men (0.880 mm vs. 0.839 mm) and women
(0.790 mm vs. 0.762 mm) compared with their white counter-
parts (p < 0.00) [98].

A recent systematic review reported on studies that investigat-
ed echocardiography in children and adolescents from various
parts of the world and different race groups [99]. However, most
of those studies did not perform any racial comparisons, making
the current literature on the racial differences in these measure-
ments highly limited, especially from countries other than the
USA. Studies claim that children with left ventricular hypertro-
phy (LVH) are more likely to be of non-white race and have a
higher BMI z score [100]. In Table 4, we listed studies in children
and adolescents that compared left ventricular mass (LVM) be-
tween two or more race groups. Multiple studies from the USA
reported higher unadjusted LVM in black compared with white
children and adolescents [76, 79, 102, 108]. The higher LVM

was more evident in black girls compared with boys for baseline
and follow-up [105]. LVM adjusted for body surface area, stat-
ure, or body height to the power 2.7, yielded similar differences
with higher LVM in black thanwhite groups [79], alongwith the
higher LVM in black girls and boys compared with their white
counterparts [76, 105, 107]. Comparative studies have also re-
ported no differences in LVM between black and white children
or adolescents [106]. A longitudinal study with a very small
sample size (black: n = 25 and white: n = 36), reported higher
LVM (unadjusted and adjusted for body surface area) in white
girls and black boys and after an approximate 6-year follow-up.
LVM was higher in white boys and girls (unadjusted) and in
white boys after considering indexing for body surface area com-
pared with the black groups [101]. A retrospective study per-
formed a racial/ethnic comparison of data from three different
sites in the USA, and reported the highest LVM (indexed by
body surface area) in the Hispanic group (n = 20) compared with
the black and white groups [104]. Detail on age per race/ethnic
group as well as secondary causes of hypertension per race/
ethnic group were not reported in this analysis. One study from
an Italian group also confirmed higher LVM in black (n = 30)
compared with white (n = 60) adolescents, although this study
was performed in athletes visiting Italy from Central or West
Africa [103]. Based on the limited and inconsistent evidence, it
remains uncertain whether LVM is universally higher in certain
race/ethnic populations, especially in the context of EVA in chil-
dren and adolescents.

Pathological determinants of early vascular
aging

Similar to the multifactorial etiology of hypertension, EVA
develops in the presence of cumulative risk factors in vulner-
able populations such as children and adolescents, especially
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Fig. 2 Ethnic differences in pulse wave velocity between black and white boys (ages 6–8 years) from South Africa. Adapted from Mokwatsi et al. [82]
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those with significant differences noted by race or ethnicity. It
is becoming increasingly evident that early stages of CVD,
such as hypertension and LVH, start to manifest in childhood
and adolescence, with black children manifesting these risk
factors earlier than white children [13, 82]. Therefore, race or
ethnicity is considered risk factors of EVA and subsequent
CVD. In low and middle-income countries, obesity and other
NCDs are consequences of a combination of poverty, living
environments, the availability of fast foods, and especially the
consumption of energy-dense, but micronutrient-poor diets.
However, there is substantial evidence to suggest that early
life nutrition and intrauterine risk factors play a pivotal role in
the progression towards adult NCDs [109].

Tracking studies have shown that children and adolescents
with elevated BP have a higher risk of developing hyperten-
sion in early adulthood [45, 72, 110] and this transition to
adult hypertension was mostly determined by modifiable car-
diovascular risk factors including poor dietary habits (high
dietary salt intake, fructose, processed and fast foods), poor
sleep patterns, stress, and a lack of sufficient physical activity
[45]. Furthermore, childhood nutrition is a major driver of
child mortality and morbidity in countries with large ethnic
inequities, with a substantial burden of under-and overnutri-
tion, and a rapid growth of obesity, driven by the excessive
consumption of sugar containing drinks, ultra-processed
foods, and extensive sedentary lifestyle [16]. Underweight
trends among children and adolescents are still alarmingly
high especially in African and Southeast Asia compared with
obesity. With obesity in children and adolescents reaching a
plateau in high-income countries, the prevalence is still rising
in low-income and middle-income countries. This has impor-
tant consequences, including the short-term developments of
psychiatric, psychological, and psychosocial disorders in
childhood and the increased long-term risk of developing
NCDs later in life [111].

In light of the abovementioned modifiable and non-
modifiable risk factors contributing to EVA, EVA is typically
felt to bemanifest as the long-term development of endothelial
dysfunction, arterial stiffness, LVH, and early kidney damage.

The vasculature

Arterial stiffness is defined as reduced arterial distensibility
or compliance (in the tunica media) as a result of continuous
adaptations in the molecular and biomechanical makeup of
blood vessels [112, 113] and endothelial dysfunction.
Endothelial dysfunction is defined as the state of impaired
vasodilation due to proinflammation and prothrombic prop-
erties of the blood vessel walls [114]. Endothelial dysfunc-
tion is also associated with several CVDs in adults, includ-
ing hypertension, coronary artery disease, chronic heart fail-
ure, peripheral artery disease, diabetes mellitus, and CKD
[114]. However, several mechanisms involved in reducedT
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vasodilatory responses of the endothelium are also evident
in pediatric populations including reduced nitric oxide bio-
availability, oxidative stress, and the activation of vasoactive
peptides known to promote vasoconstriction. A study in
black and white boys (mean age of 7.29 years) reported
lower urinary nitrate-to-nitrite molar ratio, as a measure of
nitric oxide bioavailability, in black boys compared with the
white boys, suggesting a lower reabsorption rate of nitrite or
lower nitric oxide generation and underlying sub-clinical
endothelial dysfunction [115]. This result may further indi-
cate genetic differences in renal carbonic anhydrase isoforms
and anion transporters among children of black African an-
cestry. Furthermore, markers of oxidative stress (thiobarbi-
turic acid-reactive substances and 8-hydroxy-2-deoxy gua-
nosine) related to increased arterial stiffness and diastolic
BP in boys with linked maternal lifestyle and cardiovascular
risk factors, suggesting potential family-related early onset
of increased cardiovascular risk [116]. Studies in children
and adolescents reported higher arterial stiffness in black
and Hispanic populations at ages as early as 6 years [80,
82, 84, 87] compared with white, non-Hispanic, and Asian
children. Aside from studies that reported the higher BP,
PWV, and CIMT in black and Hispanic populations, there
are numerous intermediate determinants of EVA that con-
tribute to the premature development of endothelial dysfunc-
tion and subsequent arterial stiffness. Increased aortic wall
thickness and impaired vasomotor function was described as
functions of increased arterial stiffness [117], as observed in
preterm infants with systemic hypertension [118]. In addi-
tion, low birth weight and other complications such as
bronchopulmonary dysplasia also contribute to the early on-
set of arterial stiffening [118].

Other determinants of endothelial dysfunction and arterial
stiffness include metabolic factors (impaired glucose and lipid
metabolism and insulin resistance), oxidative stress [119–121]
and inflammation, as well as the increased deposition of ma-
trix substances, all of which contribute to altered hemodynam-
ics and subsequent hypertension [122–124]. In addition, in-
creased carotid artery intima-media thickness and early ath-
erosclerosis, capillary rarefaction and dysfunctional vascular
regulation along with microvascular and macrovascular injury
have been reported in children [125, 126], but ethnic-specific
comparison studies are still limited. Metabolomics analyses
also confirmed race/ethnic disparities, where PWV associated
adversely with β-alanine, 1-methylhistidine, and L-proline in
black South African children, which may suggest potential
early compromise in cardioprotective metabolic pathways in
children of African ancestry [127].

The heart and the kidneys

The vascular compromise in EVA has a direct impact on the
heart and other target organs. Perhaps one of the most

dynamic measures of increased cardiovascular risk is LVM.
Increased LVM, also defined as LVH, is a prominent inde-
pendent predictor of cardiovascular morbidity and mortality in
adults [128, 129] and a sensitive marker of risk in children
[130]. With exposure to various environmental factors (pollu-
tion, violence, poverty, availability to drugs, access to alcohol
and cigarettes), aging, and lifestyle behaviors (exercise and
dietary intake of healthy and unhealthy food), the wall of the
left ventricle has the ability to remodel in response. LVMmay
be one of the earliest markers of hypertension mediated target
organ damage or manifestations of EVA. From the Bogalusa
Heart Study in Louisiana, adolescence was described as a
critical age period for the development of LVH in later life
due to the impact of BP trajectories in childhood on adult
LVH and geometric patterns [131]. This study included a
population of 65%white and 35% black children, adolescents,
and adults (ages 4–51 years) and reported higher BP and LVM
in the black participants, highlighting the reality of ethnic
specific risks in the setting of EVA.

Underweight or overweight/obesity during childhood is an
additional risk factor for the development of LVH as these
markers of suboptimal nutrition are associated with accelerat-
ed CV deterioration and early vascular compromise. This has
been confirmed by reports indicating LVH and left ventricular
diastolic dysfunction in 9–19-year olds with obesity, prior to
the development of sustained hypertension [132]. LVH is also
a sensitive marker of target organ damage in children with
high BP and CKD [130]. In children with CKD, LVH de-
velops early and becomes more prevalent as renal function
decreases; however, this may be dependent on BP as a study
reported that a reduction in BP might predict a decline in LVH
in children with CKD [133].

The degree of renal function is important—children with
end-stage renal disease (ESRD) on dialysis had worse mea-
sures of arterial stiffness than those with a functional kidney
transplant and healthy age-sex-matched controls [134, 135].
Litwin et al. even suggested partial reversal in CKD-
associated arterial wall remodeling as patients displayed atten-
uation of arterial pathology after kidney transplantation than
patients on dialysis irrespective of exposure to similar dialysis
vintage [134]. In another study, PWV was not significantly
different between children with mild CKD and healthy chil-
dren, while in children with mild-to-moderate CKD, PWV
was independently associated with increasing age, mean arte-
rial pressure and black ethnicity [136].

Chronic kidney disease can also promote tissue growth and
adversely impact left ventricular function via non-
hemodynamic pathways such as chronic inflammation, vita-
min D deficiency, and higher levels of parathyroid hormone
[137, 138]. Vitamin D and its interactions with the renin-
angiotensin-aldosterone system (RAAS) have been implicated
in arterial stiffness. Vitamin D supplementation was shown to
alleviate local arterial stiffness and improved flow-mediated
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dilatation in children with CKD [106]. Fibroblast growth
hormone-23 (FGF23), a hormone that is released from bone
and works on the kidney has been positively associated with
LVH in children aged 1–21 years [139, 140]. FGF23 increases
activity of the RAAS by decreasing active vitamin D [141].
On the other hand, FGF23 may promote sodium retention and
subsequently volume expansion independent of RAAS [142].
In the Framingham Heart Study (including the Offspring co-
hort and the Omni cohort), FGF23 was positively associated
with African-American and Asian ethnicity [143]. However,
in the CARDIA study, FGF23was associated with an increase
in BP over time and an increased incident of hypertension,
with no racial/ethnic differences in hypertension [144].

Ethnic differences regarding the activity of RAAS are also
well established with populations of African ancestry present-
ing with a suppressed RAAS across all ages [145–147]. The
suppressed RAAS phenotype is not unique to individuals of
African descent, but it is also common in Asians and elderly
populations of other ethnicities [148, 149]. The low RAAS
activity is due to, among others, retention of sodium and wa-
ter, which increases the load against which the heart must
work [146, 150]. In black boys with a mean age of 16 years,
an increase in aldosterone was associated with decreased so-
dium excretion and increased BP and LVM [107]. Another
study showed a stronger association between aldosterone and
BP with aging from adolescence (mean age 10.6 years) to
adulthood in black participants [147]. Early kidney damage
and dysregulation in the RAAS may also stem from fetal
conditions. Young adults born preterm present with smaller
kidneys and higher angiotensin I, BP, and albumin-to-
creatinine ratio compared with full-term controls [151], pre-
disposing preterm babies to early vascular alterations and
CVD development at young ages. A recent study developed
a nomogram to predict aldosterone in children, which may
improve assessment of RAAS dysfunction and treatment of
pediatric hypertension to delay EVA [152]. Further studies in
children and young adults from different ethnicities are need-
ed to confirm if race-specific normal ranges are essential.

An increase is arterial stiffness was also observed in cases
of children with acute post-streptococcal glomerulonephritis
that progressed into CKD. Post-infectious glomerulonephritis
(PIGN) is usually a result of group A streptococcal infections,
and it is characterized by acute kidney injury, increased BP,
glomerular hematuria, mild proteinuria, and edema [153]. Yu
et al. demonstrated an association between arterial stiffness
and PIGN in children [153]. Themechanisms are not yet clear,
but may be due to the renal inflammatory response in PIGN
[154, 155], and also suggest that glomerular changes may
reflect vascular changes outside the kidney in response to
infection. Rural and overcrowded communities are particular-
ly vulnerable to epidemic clusters and outbreaks of PIGN
[153]. PIGN used to be the most prevalent kidney disease in
b l ack Sou th Af r i c an ch i l d r en ; howeve r , f oca l

glomerulosclerosis and rapidly progressive glomerulonephri-
tis (mostly due to streptococcal infection) later became the
first and second causes of renal failure requiring kidney trans-
plantation [156].

Of importance, other factors contributing to the burden of
kidney diseases in black South African children emanate from
the quadruple burden of disease, which may not be unique to
the South African context. Tuberculosis has been linked to
focal glomerulosclerosis and Takayasu arteritis (inflammatory
vasculitis of the aorta and its main branches), while HIV and
its associated opportunistic infections, as well toxicity from
antiretroviral drugs, have been implicated in kidney injury in
children living with HIV [156–158]. Aboriginal children from
Australia and New Zealand diagnosed with severe PIGN
showed an increased risk to progress to advanced stages of
renal damage and even ESRD as compared with the non-
Aboriginal population [159–161]. It is not yet established if
the ethnic-specific manifestations of acute kidney disease may
accelerate vascular aging in children and young adults of cer-
tain race groups.

Future directions of early vascular aging
and race/ethnicity in children and adolescents

While genetic studies have failed to distinguish ethnic or race-
specific determinants of CVD risk [162], race/ethnicity re-
mains one of the risk factors regularly reported in multiethnic
population studies in relation to hypertension and cardiovas-
cular disease states. Whether race/ethnicity by itself is a risk
factor for EVA, or whether it is the convergence of multiple
risk factors on the backdrop of race/ethnicity, remains to be
confirmed.

In countries such as the USA, race/ethnic variations in
health have been regularly reported, with differences in socio-
economic status as a major contributor to racial disparities in
health [163]. However, in the recent 2018World Bank report,
South Africa was identified as the most unequal country in the
world, with black South Africans reported to have the highest
level of poverty, with less access to proper education, are most
unemployed, have more female headed households, and have
large families and many children per household [164]. With
multiple discrepancies in environmental and sociocultural de-
terminants that may adversely influence biological aging, re-
search should be directed to larger, prospective, and standard-
ized protocols to address racial differences in EVA, especially
in low to middle-income countries with large ethnic diversity.

Finally, alongside the clinical treatment of the conse-
quences of biological aging, focus should be shifted to the
development of primordial prevention and educational pro-
grams to promote health from the beginning of life (starting
with pregnant mothers, parents, pre-primary school children
and teachers). The overall health and economic burden of
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treating NCDs can be improved—especially in countries with
large educational and sociocultural disparities and racial
variation.

Conclusion

Although this is not an exhaustive review, the main features of
EVA point to important racial differences in risk factors when
evaluating the early life determinants of accelerated biological
aging. The manifestations of EVA are of particular global and
economic interest and should be targeted for primary preven-
tion to curb the current escalating burden of cardiovascular
disease, especially in children and adolescents at increased
risk by race.

Key summary points

& Early life programming is an essential determinant of
EVA in children and adolescents

& Children of black or Hispanic race are especially vulnera-
ble to develop EVA due to predisposed risk in hemody-
namic and end organ damage

& Ethnicity by itself can be considered a risk factor for EVA,
but may be dependent on converging risk factors in early
life

Multiple-choice questions

1. Early vascular aging can be defined as:

a) Premature CVD manifestation
b) Age-related biological deterioration
c) Age-related increases in cardiac function
d) Vascular degeneration
e) Premature deterioration of the vasculature

2. Which one of the following is the gold standard measure
of EVA?

a) Carotid intima thickness
b) Blood pressure
c) Pulse wave velocity
d) Nitric oxide
e) Oxidative stress

3. The following are key characteristics of EVA except:

a) Increased pulse wave velocity
b) Oxidative stress
c) Increased elasticity of the arterial walls
d) Microvascular rarefaction

e) Increased vasoconstriction

4. Ethnic differences in intrauterine programming of early
vascular aging may be linked to

a) Oxidative stress
b) Endothelial dysfunction
c) Epigenetic modifications
d) A and B only
e) All of the above

5. EVA and its associated cardiovascular risk can be miti-
gated by ______.

a) Intensifying treatment of hypertension, diabetes and renal
diseases in resource poor settings

b) Timeous diagnosis and treatment of infectious diseases
c) Improving maternal and child health and nutrition
d) Both A and B
e) Options A, B, C
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