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Abstract
Studies of human nephron number have been conducted for well over a century and have uncovered a large variability in nephron
number. However, the mechanisms influencing nephron endowment and loss, along with the etiology for the wide range among
individuals are largely unknown. Advances in imaging technology have allowed investigators to revisit the principles of renal
structure and physiology and their roles in the progression of kidney disease. Here, we will review the latest data on the influences
impacting nephron number, innovations made over the last 6 years to understand and integrate renal structure and function, and
new developments in the tools used to count nephrons in vivo.
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“The human kidney manufactures the kind of urine that
it does, and it maintains the blood in the composition
which that fluid has because this kidney has a certain
functional architecture; and it owes that architecture not
to design or foresight or to any plan, but to the fact that
the earth is an unstable sphere with a fragile crust, to
the geologic revolutions that for six hundred million
years have raised and lowered continents and seas, to
the predaceous enemies, and heat and cold, and storms
and droughts; to the unending succession of vicissitudes
that have driven the mutant vertebrates from seas into
fresh water, into desiccated swamps, out upon the dry
land, from one habitation to another, perpetually in
search of the free and independent life, perpetually fail-
ing, for one reason or another, to find it.” - Homer W.
Smith [1].

The structure and function of the human kidney are inter-
dependent, each adapting to endogenous and environmental
stresses to maintain homeostasis over a lifetime. Advances in
imaging technology allow us to revisit the principles of renal
structure and physiology and their roles in the progression of
kidney disease. In 2014, a review described the perinatal fac-
tors that influence nephron endowment and emerging tech-
niques to count nephrons [2]. Since then, these technologies
have rapidly advanced. Here, we will review the innovations
made over the last 6 years to understand variability in human
nephron number and new developments in the tools used to
count nephrons in vivo.

Variability in nephron number

An individual’s nephron endowment has a significant impact
on their future lifetime risk for kidney disease. Autopsy stud-
ies in humans have consistently revealed a large range in
nephron number [3–5] from 210,000 to 2,700,000. Table 1
provides a summary of historic and contemporary studies
using several techniques to evaluate nephron number.
Figure 1 shows glomerular number across the life course of
humans, using available data from the studies in Table 1.

Nephron endowment is fixed in humans at full-term birth
[6]. Nephron endowment is influenced by perinatal, genetic,
and environmental factors [2, 7]. Although variability in hu-
man nephron number has been observed for well over a cen-
tury, the reasons for the wide range in number between
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individuals are largely unknown. In a recent review [8],
Chevalier argues that the variability in nephron number and
the prevalence of CKD may be due to adaptation to natural
selective pressure [9]. In response to intrauterine stress, the
fetus adapts to reduced energy supplies by poor somatic
growth, favoring early survival. In the kidney, the trade-off
is reduced nephron number, leading to a higher risk for chron-
ic kidney disease (CKD) at a post-reproductive age [10].

The duration of nephrogenesis may influence nephron en-
dowment. This has been studied at autopsy [11–13]. Ryan and
colleagues [14] investigated fetal human kidney samples from
71 infants aged 20–41weeks. The investigators restricted their
cohort to healthy fetuses, excluding those with intrauterine
growth restriction and chorioamnionitis [15], conditions that
disrupt or decrease the duration of nephrogenesis. Consistent
with earlier literature [6, 12], the nephrogenic zone was pres-
ent in all fetuses before 35 weeks of gestation. Interestingly,
three subjects had nephrogenic zones at 35, 36, and 37 weeks.
Mature glomeruli were also counted in glomerular
generations—the number of layers of glomeruli from the cap-
sule to the medulla. Number of generations ranged from 7 to
10 per kidney, consistent with previous studies [12]. Small
differences in number of glomerular generations may be clin-
ically relevant. The duration of nephrogenesis, which varies
between individuals, may also affect nephron number.

Nephrogenesis primarily occurs in utero in humans.
Maternal protein restriction [16–18], iron deficiency [19],
and vitamin A deficiency [20] have all been implicated in
altered fetal nephrogenesis. A recent report maternal fasting
for 16 h per day demonstrated the importance of fetal pro-
gramming in nephrogenesis [21]. Rat dams were restricted
from food and water for 16 h; the majority occurred overnight
during the animal’s active period. The animals received food
and water ad libitum for the remainder of the day. The kidneys
of the offspring of the fasting maternal rats had more connec-
tive tissue, fewer medullary rays, and one third fewer glomer-
uli. The timing and connection between fasting and reduced
nephron number require further investigation [21].

Although human nephrogenesis is usually complete prior
to birth, modern neonatal intensive care units have significant-
ly reduced the mortality of the extremely preterm population
but consequently subjected these neonates to ex utero organ-
ogenesis. The effects of preterm birth on kidney development
and risk for future CKD have not been sufficiently studied. It
is clear from limited human autopsy studies that
glomerulogenesis can occur in a postnatal environment [12,
22]. Yet the large normal variation in human nephron endow-
ment, cumulative perinatal ex utero exposures, and later co-
morbidities such as obesity, diabetes, along with hypertension,
all play a role in the development of CKD in the preterm
population. Large epidemiologic studies [23, 24] and smaller
single center studies [25–28] have demonstrated the associa-
tion between preterm birth and CKD, but no studies to dateT
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have examined nephron number past the perinatal period. The
relationships between preterm birth, acute kidney injury, and
the risk for CKD have been recently reviewed [29].

Acute kidney injury represents a condition in which neph-
rons can be lost, but AKI may also influence ongoing nephron
development, important in preterm neonates [12]. Several no-
table reports have originated from a large, retrospective, multi-
institutional study, the Assessment of Worldwide Acute
Kidney injury Epidemiology in Neonates (AWAKEN) [30].
The AWAKEN dataset has confirmed many of the smaller,
single center studies, which demonstrate that neonatal acute
kidney injury (AKI) is common and is associated with poor
short-term outcomes [31]. The AWAKEN study showed that
AKI was particularly common in the most preterm cohort
(48% in gestational ages of 22–28 weeks) and was associated
with intraventricular hemorrhage [32] and bronchopulmonary
dysplasia [33]. However, some limitations of the AWAKEN
study include its retrospective nature, widely variable data
collection of creatinine measurements, and a lack of follow-
up. In preclinical work, Menendez-Castro and colleagues [34]
hypothesized that nephron loss during nephrogenesis would
lead to more severe renal consequences than loss after
nephrogenesis. They described early morphologic changes,
such as larger glomerular area and cell number, in animal
models of uninephrectomy. Neonatal nephron loss during
nephrogenesis led to more severe histologic damage in the
glomeruli and tubules in aged animals. This study provides
evidence that preterm infants with a lower nephron endow-
ment may be at higher risk for kidney damage.

Other animal models have been studied to understand the
short-term effects of preterm birth and associated life-
sustaining therapies on the kidney. The preterm baboonmodel
[35] is particularly suited for kidney research due to its long

gestational period, completion of nephrogenesis prior to birth,
and a body size that allows for clinically relevant therapies.
Callaway et al. [36] recently evaluated the influence of hyper-
glycemia on nephrogenesis in preterm baboons. Preterm ba-
boons were exposed to hyperglycemia or maintained
normoglycemic for the first 5 days after birth, and kidneys
were evaluated at 2–4 weeks. The width of the nephrogenic
zone of the hyperglycemic baboons exhibited a reduced
nephrogenic zone, more mature glomeruli, and evidence of
increased oxidative stress compared with normoglycemic ba-
boons. Research needs to be focused on the effect of therapies
on nephron development in the preterm neonate to preserve
the short window of nephrogenesis.

Nephron loss

The number of functional glomeruli decreases with age. This
was first described by Arataki in 1926 [37], who observed a
66% reduction in nephron number by 500 days of age when
compared with the average adult rat. Nyengaard et al. [3]
observed a similar reduction in glomerular number in humans
over 60 years of age. For 19 of the 37 Danish subjects who
were > 60 years of age, the median glomerular number was
554,000 (IQR 428,000–608,000) compared with 680,000
(IQR 610,800–827,800) for subjects < 60 years of age.
Kanzaki and colleagues [38] have reported a similar glomer-
ular number (666,140 ± 159,775) in a cohort of normotensive
Japanese males. Using individual published data, Fig. 1 shows
glomerular number which is lower in older individuals and
may decline with age; a finding was more significant in fe-
males (Fig. 1b). Further work is necessary to determine the

Fig. 1 Nephron number in healthy humans (a) and stratified by sex (b)
and race (c). Using individual data available from the cross-sectional
autopsy studies in Table 1, glomerular number is variable at birth and
throughout life but appears to decline over time (a). For panel a, data were
included from the following studies: Moore [78], Hayman [79], Moritz
[80], Nyengaard [3], Keller [4], Dunnill [81], and Lenihan [86] were
included. When stratified by sex (b), the reduced glomerular number
may be more prominent in aging females as compared with males. Data

from the studies conducted by Moore [78], Hayman [79], Moritz [79],
Nyengaard [3], Keller [4], and Lenihan [86] were included. A limited
subset of data was available in the above studies to stratify by race, but
the trend of lower glomerular number in aging appears to apply across
races. Data were included from Moore [78] and Lenihan [86]. As the
techniques to detect glomerular number in vivo improve, the influence
of aging, sex, and ethnicity on glomerular number will be answered
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role of sex in the relationship between glomerular number,
sex, race (Fig. 1c), and aging.

The mechanisms of glomerular loss are poorly understood.
Ischemic injury likely leads to glomerulosclerosis, tubular atro-
phy, and probably reabsorption of the nephron [39].While neph-
ron loss with aging has been well-documented, the focus on
glomerulosclerosis may underestimate the magnitude of this
overall glomerular loss. Denic et al. [40] estimated glomerular
number using cortical volume acquired by CT scans, and glo-
merular density was estimated by renal biopsy (described below)
in 1638 living kidney donor candidates of various ages. The
average number of nonsclerotic glomeruli was significantly re-
duced in the older age group (70–75 years) compared with the
youngest age group (18–29 years). The average number of glob-
ally sclerotic glomeruli was significantly increased in the older
group compared with the younger group. These differences were
proportional to a lower glomerular filtration rate (GFR) in the
older group [40]. They concluded that almost 50% of nephrons
are lost between young adulthood and old age [40]. The re-
searchers in this group have cleverly used the transplant donor
evaluation to estimate glomerular number in the largest cohort of
healthy humans, and they will have the ability to answer impor-
tant questions as this cohort is followed.

Nephron loss likely induces a cascade of structural and
functional changes in the remaining nephrons. Most notably,
decreased nephron number is associated with significant tubu-
lar hypertrophy and an increase in the volume of remaining
glomeruli [41, 42]. While nephron number is inversely corre-
lated with glomerular size, average glomerular size is also
correlated with body size and can be larger in certain racial
groups [43]. These anatomic changes reflect functional chang-
es. As nephrons are lost, single-nephron GFR increases, a
process termed glomerular hyperfiltration. Kanzaki et al.
[38] concluded that an increase in glomerular size or glomer-
ular hypertrophy may be a significant factor in maintaining
GFR in those with low nephron number. Advancements in
imaging may prompt further evaluation of glomerular hyper-
trophy. Cationic ferritin-enhanced-MRI (CFE-MRI, described
below) was used to evaluate glomerular number and size in
the oligosyndyctalism (Os/+) mouse [44], a model of
oligomeganephronia with glomerular hypertrophy as early as
9 days after birth [45]. Unexpectedly, there was no difference
in measured glomerular volumes between the Os/+ mice and
controls in vivo. However, glomerular volumes measured
ex vivo of the Os/+ kidneys were significantly larger than in
controls. Although glomerular size may be an early marker of
low nephron number, glomerular size and distensibility need
to be further evaluated.

Obesity may be an independent risk factor for kidney disease
[46]. In a cohort of living kidney donors, several indices of obe-
sity correlated with increased glomerular volume on biopsy.
These indices included visceral fat, waist circumference, subcu-
taneous fat, and pararenal and perihilar fat [47]. Bodymass index

(BMI) had the highest correlation with glomerular volume. Yim
and colleagues [48] reported an association between early over-
nutrition and decreased glomerular number in male rats. At
12 months of age, rats that received overnutrition for the first
21 days of life had approximately one third fewer glomeruli
compared with controls. These rats did not remain obese, sug-
gesting that the effects of obesity on young kidneys may persist
despite the normalization of BMI [48].

Several autopsy studies have described a relationship between
low nephron number and hypertension [38]. In a cohort of hyper-
tensive patientswithmild tomoderate glomerulosclerosis, glomer-
ular hypertrophy was a primary component of hypertensive ne-
phropathy [49]. However, glomerular number was not lower in
hypertensive patients in general. This contradicts Keller et al. [4],
who reported that German subjects with hypertension had an av-
erage of 700,000 glomeruli (530,000–950,000) compared with
normotensive age-matched controls (1,400,000 (800,000-
2,000,000)). The Kanzaki study [38] examined the kidney func-
tion of Japanese subjects separated into three age-matched elderly
groups—normotensive subjects, hypertensive subjects, and sub-
jects with CKD. The hypertensive subjects in the Japanese study
had fewer nephrons than the normotensive group with significant-
ly higher single-nephron GFR. Using several studies where indi-
vidual data was available, Fig. 2 shows the relationship between
glomerular number as compared with their age in both hyperten-
sive patients and those with renal disease. The inability to repeat-
edly assess nephron number in the same patient or even in the
same animal has made it impossible to determine the relationship
of hypertension and nephron number. Does hypertension develop
in those with low nephron number or does hypertension cause
progressive glomerular loss? This question requires longitudinal
in vivo tracking of individual glomeruli within the whole kidney.

The impact of race and ethnicity on nephron number is
difficult to assess in autopsy studies (Fig. 2c). African
Americans exhibit higher rates of CKD and hypertension, but
themechanisms are still under investigation.While studies have
also demonstrated increased glomerular volume in African
Americans compared with Caucasian subjects, it is unclear
whether this finding is associated with glomerulosclerosis or
decreased nephron number [49]. One evident factor is the pres-
ence of genetic variants of APOL1 that may increase the risk for
kidney disease in African Americans [50]. In a study of African
American subjects without evidence of kidney disease at autop-
sy, there was a trend toward a higher glomerular number in
early adulthood in males with two APOL1 high-risk alleles.
Notably, the same high-risk genetic profile was associated with
a lower glomerular number and larger glomerular volume over
time. These changes were enhanced by increased BMI but did
not appear to be associated with coexisting hypertension. This
suggests that a high-risk APOL1 genotype could predispose
patients to earlier or more rapid nephron loss [50]. Further work
is necessary to determine if nephron “loss” is occurring on an
individual level and what mechanisms may be involved.
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Measuring form and function in the kidney:
lessons and limitations

The first explorations of nephron function in isolated, per-
fused organs provided a fundamental understanding of kidney
filtration, removed from systemic circulation. Studies involv-
ing micropuncture of individual nephrons [51] have further
revealed factors that affect filtration in the single nephron.
Optical microscopy has been used in specific animal models
in vivo to view vascular and tubular flow and filtration in real
time [52]. More recently, X-ray computed tomography (CT)
has been used after injection of an intravascular contrast agent
to provide high-resolution imaging of the renal vasculature
and glomeruli ex vivo [53]. Optical clearing is another recent-
ly developed method that has made it possible to image every
nephron in the intact kidney with superior optical microscopic
tissue penetration depths compared with previously available

methods [54, 55]. This can be used to image and detect neph-
ron loss in the entire kidney of small animals ex vivo.

In the clinic, there are few diagnostic tools for early detec-
tion of kidney disease. Functional metrics of kidney health
have been the standard method for the detection of CKD for
decades. Metrics such as GFR often remain within a normal
range as the kidney adapts to the progression of kidney dis-
ease. Currently accepted structural metrics of the kidney in-
clude total kidney volume and microstructural data acquired
through a single, randomly acquired biopsy; neither of these
are robust surrogates for nephron number [56, 57].

CKD is associated with having too few nephrons to main-
tain homeostasis. Low nephron number at birth and conditions
that lead to nephron loss have been associated with hyperten-
sion, and evidence of CKD is detectable even in childhood
[23, 58]. Despite the acceptance that nephron number is an
important metric of kidney health, there are no direct, nonin-
vasive methods to measure nephron number in humans. The
majority of information about nephron number has been de-
rived from two methodologies to measure glomerular number
and size—the physical dissector-fractionator combination—
and maceration where the kidney is digested to separate the
glomeruli from the tubules [59–61]. The need for clinical
translation motivates investigators to search for clinically ap-
plicable surrogates for nephron number.

New ways to count nephrons

Several groups have begun to establish nondestructive, whole-
kidney assessments of nephron number and have made signif-
icant progress over the last 5 years. One such technique uses
the product of glomerular density and cortical volume to esti-
mate nephron number [40, 62]. Glomerular density is deter-
mined by kidney biopsy using the Weibel Gomez stereologi-
cal formula, accounting for sclerotic and nonsclerotic glomer-
uli and cortex volume that is determined by CTor MRI scans.
Investigators obtained biopsy and imaging data on a large
number of patients. Several studies of the clinical risk factors
and associated outcomes following transplant [63] have been
conducted, and a great deal of knowledge has been derived
using this method [64].

Cationic ferritin-enhanced MRI (CFE-MRI, Fig. 3) has
been proposed to provide a direct measurement of nephron
number [44, 65–68], and early studies indicated that CFE-
MRI could also detect nephrons in vivo [69–71]. Recently,
CFE-MRI was applied in vivo in rats and mice to detect and
measure individual nephrons throughout the entire kidney [44,
65]. Importantly, CFE-MRI [44] was also used to longitudi-
nally track nephrons, potentially facilitating a wide range of
new investigations in disease models. To date, cationic ferritin
appears to be nontoxic for use in vivo inMRI-detectable doses

Fig. 2 Nephron number in humans with hypertension (a) and renal
disease (b). Few studies provided individual data on subjects with
hypertension (a) and those studies that did report had a narrow age
range beginning near 40 years. From this data, there appears to be
significantly fewer glomeruli in the older subjects with hypertension.
Data from hypertensive subjects were included from studies conducted
by Keller [4] and Lenihan [86]. In subjects with renal disease (mainly
Bright’s disease with chronic glomerulonephritis and cardiac disease),
there is no correlation with nephron number and age. Data from
subjects with CKD were included from studies conducted by Hayman
[79] and Moritz [80]
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[72, 73], suggesting a broader role for CFE-MRI in preclini-
cal, clinical, and translational studies.

It is critical to detect pathology before progression to fibro-
sis or end-stage renal disease. There have been several dem-
onstrations of pathology detected using CFE-MRI. These in-
clude early focal and segmental glomerular sclerosis (FSGS)
in rats [69], glomerular hypertrophy and nephron loss in mice

[67], and altered nephron development in a rabbit model of
acute kidney injury [68]. Similar pathologies have been de-
tected by CFE-MRI in human donor kidneys [66].

These first reports of direct measurement of glomerular
number (Nglom) and apparent glomerular volume (aVglom)
in vivo have highlighted several technical challenges. These
include challenges that can affect precision and accuracy in

Fig. 3 CFE-MRI in ex vivo human, rat, and mouse kidneys. Human
kidneys deemed unsuitable for transplant were injected with CF and
scanned ex vivo both sagittal (a–c) and axial views are provided (d–f)
[66]. Each black dot is an individual glomerulus (column 1) and the

glomeruli are highlighted using this red overlay (column 2). The
glomeruli can be rendered in 3D (column 3). CFE-MRI has been applied
for use in rats (panels g–i) [87] and mice (panels j–l) [67]
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the measurement of Nglom and aVglom and can vary based on
the chosen disease models.

Image resolution, sensitivity, and acquisition time

In CFE-MRI, image resolution is established by the MRI
hardware and software. It is typical to prescribe an image
resolution that allows the distinction of individual glomer-
uli in the image. The required resolution in CFE-MRI is
lower in kidneys that have larger glomeruli or lower glo-
merular density. The sensitivity of MRI is determined by
the image resolution, magnetic field strength, radiofre-
quency (RF) coil sensitivity, and properties of the contrast
agent, among other factors. For in vivo imaging, motion
must be minimized and the RF coil must be built to ensure
sufficient signal to noise ratio over the entire imaging
volume.

In most in vivo experiments, it is important to minimize
image acquisition time. Physiologic changes can occur
over short time intervals. Acquisition time is determined
by the imaging pulse sequence, the prescribed image reso-
lution, and the required signal-to-noise ratio. Most studies
using CFE-MRI have employed a 3D gradient-recalled
echo pulse sequence. Full 3D images of mouse kidneys
in vivo were acquired within ~ 2 h at a resolution of 55 ×
55 × 100 μm. 3D images of rat kidneys were acquired
within ~ 1.5 h at a resolution of 74 × 74 × 190 μm [65].
There are numerous ways to decrease image acquisition
time, such as sparse acquisition of the MRI data and the
use of faster pulse sequences, and modified contrast agents
[71]. These strategies will likely be explored as the tech-
nique is further refined, but are critical to the general ap-
plication of CFE-MRI to preclinical and clinical imaging,
in vivo.

Quantitative image processing

Detection of individual CF-labeled glomeruli in 3D MR im-
ages has required the development of novel image processing
strategies [74–76]. These strategies have focused on reducing
the influence of noise in large datasets and the ability of soft-
ware to identify true CF-labeled glomeruli against image
background and measure glomerular number. While challeng-
ing, the detection of each CF-labeled glomerulus has been
achieved and validated in many studies. Accurately, measur-
ing glomerular volume is more challenging, to be addressed
through emerging tools for image processing. Nonetheless,
existing approaches can be used to detect relative differences
between healthy and diseased cohorts, and they appear to
accurately reflect the intrarenal distribution of glomerular
volumes.

Outlook over the next 10 years

Over the past decade, a framework has been developed to
enable a wide range of preclinical and clinical investigations
of the kidney at the level of the single nephron. One exciting
possibility is beginning to understand the relationship between
nephron number and renal physiology, and their roles in dis-
ease progression. This new technology also provides the op-
portunity to understand the determinants of nephron endow-
ment. Over the next decade, these tools will continue to be
refined and applied to a number of new animal models and,
potentially, in humans.

Key summary points

1. Nephron number is highly variable in humans even as
early as just after birth.

2. There are unique factors that influence nephron endow-
ment and loss, and those born preterm may be at high risk
for chronic kidney disease due to altered nephrogenesis
and nephron loss.

3. Several new radiologic tools are being developed to count
and measure the size of glomeruli with the aim of trans-
lation of this new technology to patients to diagnose and
treat those with chronic kidney disease in an earlier phase.

Questions

1) Which of the following statements regarding human
nephrogenesis is true?

a) Postnatal nephrogenesis is common and can occur for
several weeks after full-term gestation.

b) Nephrogenesis can be initiated after injury.
c) There is a wide range of nephron number within and

among various healthy populations.
d) The population-wide variability in nephron number is

only influenced by aging factors.

2) Nephron number inversely correlates with aging in which
populations?

a) Males
b) Females
c) Hypertensive
d) Renal disease
e) b and c
f) a and d

3) Which of the following nephron number counting tech-
niques has been used to estimate or whole count whole
kidney nephron number in living patients?
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a) Acid maceration method
b) Fractionator–disector technique
c) Cationic ferritin-enhanced MRI
d) Glomerular density by biopsy and cortical volume
e) None of the above

4) Infants born at 24 weeks are at risk for decreased nephron
number due to:

a) Exposure to nephrotoxic medications
b) Hyperglycemia
c) Oxygen alterations
d) All of the above

5) The parents of a 1-year-old child born with 2 copies of the
high-risk APOL1 genes ask about preserving his neph-
rons and decreasing their son’s long-term risk of chronic
kidney disease. Each of the following would be sound
recommendations EXCEPT:

a) Avoid nephrotoxic medications
b) Begin vitamin A supplementation
c) Encourage appropriate postnatal weight gain and

avoidance of obesity
d) Treat hypertension
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