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Abstract
Complications of chronic kidney disease-associated mineral and bone disorders (CKD-MBD) are frequently observed in pedi-
atric kidney transplant recipients and are associated with high morbidity, including growth failure, leg deformities, bone pain,
fractures, osteonecrosis, and vascular calcification. Post-transplant CKD-MBD is mainly due to preexisting renal osteodystrophy
and cardiovascular changes at the time of transplantation, glucocorticoid treatment, and reduced graft function. In addition,
persistent elevated levels of parathyroid hormone (PTH) and fibroblast growth factor 23 may cause hypophosphatemia, resulting
in impaired bone mineralization. Patient monitoring should include assessment of growth, leg deformities, and serum levels of
calcium, phosphate, magnesium, alkaline phosphatase, 25-hydroxyvitamin D, and PTH. Therapy should primarily focus on
regular physical activity, preservation of transplant function, and steroid-sparing immunosuppressive protocols. In addition,
adequate monitoring and treatment of vitamin D and mineral metabolism including vitamin D supplementation, oral phosphate,
and/or magnesium supplementation, in case of persistent hypophosphatemia/hypomagnesemia, and treatment with active vita-
min D in cases of persistent secondary hyperparathyroidism. The latter should be done using the minimum PTH-suppressive
dosages aiming at the recommended CKD stage-dependent PTH target range. Finally, treatment with recombinant human growth
hormone should be considered in patients lacking catch-up growth within the first year after transplantation.
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Introduction

Mineral and bone disorders (MBD) are a major cause of
morbidity in pediatric kidney transplant recipients and in-
clude growth failure, bone pain, fractures, and ectopic
(vascular) calcification [1–4]. Complications in chronic
kidney disease-associated MBD (CKD-MBD) are fre-
quently observed after kidney transplantation (KTx), even
with completely restored kidney function and are given in
Table 1. Children suffering from end-stage CKD (ESKD)
may already present with considerable complications in
CKD-MBD at the time of KTx. Thus, the degree of

preexisting renal osteodystrophy and cardiovascular
changes are a major contributing factor to CKD-MBD
after KTx. This is especially of importance in patients
suffering from metabolic bone disease due to primary dis-
eases such as nephropathic cystinosis [5]. Several other
risk factors have also been identified, including immuno-
suppression (steroids, calcineurin inhibitors), alterations
in the parathyroid hormone (PTH)—vitamin D—
fibroblast growth factor 23 (FGF23) axis, changes in min-
eral metabolism (hypophosphatemia, hypomagnesemia),
acidosis, unhealthy diet, reduced physical activity, muscle
deficits, and impaired graft function [3, 4]. Kidney trans-
plantation may correct some of the underlying risk factors
for CKD-MBD, e.g., secondary hyperparathyroidism
(SHPT), but may also introduce new ones, e.g.,
glucocorticoid-induced growth suppression. Thus, opti-
mum management of these risk factors is crucial for chil-
dren facing a lifetime with CKD. This review summarizes
recent advances in the understanding of the pathophysiol-
ogy, prevention, and treatment of CKD-MBD post KTx in
children.
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Pathophysiology

Preexisting mineral metabolism alterations

Children undergoing renal transplantation may already pres-
ent with severe mineral metabolism alterations. In early CKD,
high circulating FGF23 is the earliest detectable abnormality
of mineral metabolism [6, 7]. FGF23 plasma concentrations
start to rise as early as CKD stage 2, most likely due to an
elevated phosphate load, in order to keep serum phosphate
levels within the normal range by decreasing renal phosphate
reabsorption and inhibiting renal synthesis of active vitamin D
(calcitriol), which in turn reduces phosphate reabsorption
from the gut. In addition, low levels of Klotho—the co-
receptor for FGF23—may partially induce FGF23 resistance,
resulting in a compensatory increase in FGF23 serum levels to
maintain phosphate homeostasis. However, as renal function
further declines, calcitriol deficiency results in hypocalcemia
which, together with an increasing phosphate load, stimulates
the synthesis of PTH by the parathyroid gland [6]. Increased
PTH stimulates phosphaturia, renal 1α hydroxylase, and cal-
cium resorption from the bone [8]. Elevated PTH levels are
present in about 50% of pediatric CKD patients with an esti-
mated glomerular filtration rate (eGFR) < 50 mL/min/1.73 m2

[7]. This allows the body to counterbalance the calcitriol
deficiency-induced hypocalcemia and to keep serum phos-
phate levels within the normal range, despite advanced
CKD, until the system decompensates and severe complica-
tions of CKD-MBD occur, i.e., renal osteodystrophy includ-
ing bone pain, fractures, rickets, leg deformity, and growth
failure, as well as ectopic (vascular) calcification and left ven-
tricular hypertrophy [2, 6, 8]. Severe SHPT is associated with
high bone turnover, ectopic calcification, anemia, left ventric-
ular hypertrophy, and increased mortality in CKD patients
[9–15]. Unfortunately, dialysis cannot reverse changes in
CKD-MBD in children with ESKD and complications such
as renal osteodystrophy and cardiovascular changes will

progress in the majority of patients [16]. Indeed, high bone
turnover, impaired bone mineralization, short stature, coro-
nary artery calcifications, and left ventricular hypertrophy
are noted in approximately 57%, 48%, 39%, 92%, and 48%
of pediatric patients undergoing long-term dialysis, respec-
tively [9, 10, 13, 17].

Changes in mineral metabolism after transplantation

The hypothetical course of circulating phosphate, PTH, and
FGF23 in a patient undergoing KTx is illustrated in Fig. 1
[18]. This graph was originally based on data obtained in adult
renal allograft recipients, but has also been recently confirmed
in children [19]. Before KTx, the circulating levels of all three
parameters increase in parallel with decreasing renal function.
At the time of KTx, patients may present with excessively
high levels of FGF23 and PTH. After KTx (recovery period),
FGF23 and PTH may remain elevated for several months
despite restored renal function. Both elevated PTH and
FGF23 may contribute to the development of post-
transplantation hypophosphatemia which has been noted in
up to 10% of pediatric patients [19]. After the recovery period,
all parameters may return to the normal range, although PTH
can remain high in the case of tertiary hyperparathyroidism. In
the long-term, graft function may be impaired resulting in
reduced GFR and all three parameters may begin to increase
again in the same order as in the pre-transplant period, i.e.,
starting with FGF23, followed by elevated PTH. Thus, pa-
tients with impaired graft function are prone to progressive
CKD-MBD.

Although PTH levels usually decline in the majority of
patients undergoing KTx, persistent SHPT after 12 months
has been observed in 10–60% of patients [20, 21]. This was
especially noted in cases of severe SHPTor tertiary hyperpara-
thyroidism prior to KTx. Pre-transplant elevation of FGF23 is
the strongest predictor of post-transplant elevation of FGF23
in children, and FGF23 levels independently predict
hypophosphatemia and low 1,25-dihydroxyvitamin D levels
[19]. Both may result in decreased osteoblast activity and
progressive bone demineralization [3, 19]. In addition, low
levels of 25-hydroxyvitamin D (25(OH)D) were noted in
50% of pediatric KTx patients and are associated with short
stature and hypertension [22].

Hypomagnesemia

Hypomagnesemia has been shown to occur in approximately
40% of children after renal transplantation and is most likely
due tomagnesiumwasting, secondary to the use of calcineurin
inhibitors (CNI) [23, 24]. Magnesium deficiency may contrib-
ute to the development of osteoporosis as it is an integral
component of the hydroxyapatite structure in the bone. It
may also impair the magnesium-dependent hydrogen-

Table 1 Common complications of CKD-MBD in pediatric transplant
recipients

• Skeletal deformities, e.g., genu valgus and genu varum

•Bone pain

•Fractures

•Osteonecrosis

•Osteoporosis

•Impaired bone mineralization

•Short stature

•Ectopic (vascular) calcification

•Arterial stiffness

•Increased carotid intima media thickness

•Left ventricular hypertrophy and dysfunction
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potassium ATPase pump in bone cells, resulting in decreased
pH of the extracellular matrix and, consequently, enhanced
bone demineralization. In addition, magnesium deficiency is
shown to impair PTH secretion and contribute to PTH resis-
tance in target tissues in CKD patients [25]. In adult renal
transplant recipients, hypomagnesemia is significantly associ-
ated with persistent SHPT 5 years after transplantation [26].
Hypomagnesemia has been associated with the development
of new-onset diabetes after KTx and with decreased bone
mineral content and low bonemineral density inmalnourished
children [27, 28]. Similarly, magnesium supplementation im-
proved bone mineral content in healthy girls with a low die-
tary magnesium intake (< 220 mg/day) compared with con-
trols [29].

Metabolic acidosis

Metabolic acidosis (serum bicarbonate < 22mEq/L) is present
in about 30% of pediatric transplant recipients and usually
occurs when GFR is below 50% of norm, although nutritional
intake (protein and acid load), catabolism, and alterations in
electrolyte balance contribute to its development [30].
Subsequent metabolic and endocrine aberrations are triggered
by metabolic acidosis and aggravate uremic growth failure. In
fact, metabolic acidosis is significantly associated with de-
creased height gain and increased protein breakdown in chil-
dren with CKD prior to and after KTx [31, 32]. Studies on
metabolic acidosis in uremic animals have revealed a complex
pattern of interrelated pathophysiological reactions [33].
Metabolic acidosis increases glucocorticoid production and
protein degradation while concomitantly suppressing

spontaneous pituitary growth hormone (GH) secretion and
decreasing expression of the growth hormone (GH) receptor
and insulin-like growth factor-I (IGF-I) receptor and decreas-
ing IGF-I serum concentrations; these effects highlight the
necessity for adequate control of metabolic acidosis in chil-
dren with CKD [34, 35].

Immunosuppression

Glucocorticoids have a major impact on bone health. They are
known to decrease bone formation, increase bone resorption,
decrease calcium absorption, increase calcium wasting, de-
crease vitamin D, and increase PTH. In addition, they are
known to impair gonadal function, and IGF-I synthesis
[36–39]. A recent study in rodents showed that glucocorticoid
treatment may impair bone growth via upregulation of FGF23
and FGF receptor 3 expression [40]. In line with this, pediatric
KTx patients showed lower FGF23 serum levels after steroid
withdrawal compared with controls kept on chronic treatment
[40]. All of the aforementioned effects may contribute to im-
paired linear growth, osteonecrosis, fractures, and persistent
deficits in cortical thickness, which are frequently noted in
pediatric KTx patients on long-term glucocorticoid treatment
[41].

Calcineurin inhibitors, such as cyclosporine A and tacroli-
mus, are known to inhibit synthesis of the vitamin D receptor
and osteoprotegerin and to cause high-turnover osteoporosis
[42]. In addition, they were shown to be associated with hy-
pomagnesemia and increased PTH levels in adult KTx pa-
tients. However, their impact on bone health in pediatric renal
transplant recipients remains to be clarified.

Fig. 1 Graphical overview of the hypothetical course of serum
phosphate, parathyroid hormone (PTH), and fibroblast growth factor 23
(FGF23) levels in patients with CKD undergoing kidney transplantation
(KTx). Before KTx, the circulating levels of all three parameters increase
in parallel with the renal function decline. At the time of KTx, patients
may have excessively high levels of FGF23 and PTH. After KTx
(recovery period), FGF23 and PTH levels can remain high for months,
despite restored renal function; this effect may contribute to the

development of post-transplantation hypophosphatemia. After the
recovery period, all parameters may return to the normal range,
a l though PTH can rema in h igh in the case of t e r t i a ry
hyperparathyroidism. With impaired graft function, levels of all three
parameters can increase again, starting with FGF23, as observed in the
pre-transplantation CKD setting. CKD, chronic kidney disease.
Figure reproduced with permission from Baia et al. [18].
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Experimental data shows evidence that treatment with
mammalian target of Rapamycin (mTOR) inhibitors, includ-
ing everolimus and sirolimus, negatively impacts osteoblast
differentiation and growth plate structure and function [43,
44]. Treatment with sirolimus resulted in impaired linear
growth and altered vascular invasion in the growth plate when
given to young rats [43]. However, in case-control studies,
similar growth rates were noted in transplanted children with
and without mTOR inhibitor treatment [45, 46]. There is no
evidence that treatment with mycophenolate mofetil or azathi-
oprine impairs bone health.

Bone health and cardiovascular morbidity
after transplantation

Bone deformities and fractures

Studies on long-term follow-up in pediatric KTx patients sur-
viving into adulthood demonstrate a high burden of skeletal
morbidity. Bartosh et al. showed a 41% prevalence of bone-
joint abnormalities including genu varum an valgum, and a
23% prevalence of fractures [47]. Groothoff et al. also report-
ed bone disease in 35% of patients, including disabling bone
disorders (17.3%) and aseptic bone necrosis (11.8%) [48]. A
markedly increased rate of vertebral fractures, as well as sco-
liosis, back pain, and disc degeneration, was noted in children
after solid organ transplantation—the majority of whom re-
ceived renal transplants [49, 50]. In the most recent study, a
10% prevalence of fractures was noted in children treated with
concomitant glucocorticoid within the first 6 months post KTx
[41]. Thus, despite a substantial improvement over the last 2
decades, transplanted children still suffer a high burden with
CKD-MBD-associated complications.

Bone histomorphometry

Almost 100% of adult KTx patients show histological evi-
dence of renal osteodystrophy [51, 52]. The most common
manifestation is low bone turnover, which has been reported
in up to 50% of patients. High bone turnover is associatedwith
SHPT and observed in about 25–50% of adult KTx patients.
By contrast, impaired mineralization is rarely observed (<
5%). Most studies in adults report a decline in bone formation
and mineralization in the late post-transplant period [51–55].
A recent prospective study in adult patients undergoing bone
biopsy while on dialysis and 2 years after KTx, or 2 years after
baseline if KTx was not performed, showed a similar decrease
in bone turnover over time in both groups [56].

Bone histology is rarely performed in pediatric KTx pa-
tients due to its invasiveness and cost. In a cross-sectional
study, 10% of pediatric renal allograft recipients presented
with adynamic bone disease and 23% of patients with high

bone turnover [57]. The finding of persistent renal
osteodystrophy in about 30% of patients, despite successful
transplantation, is probably due to preexisting severe CKD-
MBD related to long-term dialysis, persistent SHPT, the use of
glucocorticoids, and/or vitamin D deficiency.

Bone mineral density and cortical structure

Bone mineral density (BMD) assessed by the two-
dimensional technique dual-energy X-ray absorption ap-
pears to be normal in pediatric KTx patients when data is
corrected for the degree of growth retardation [58].
Peripheral quantitative computed tomography (pQCT) is
a three-dimensional technique which allows differentia-
tion between trabecular and cortical bone. In addition, it
measures volumetric BMD and bone dimensions [59]. In
three cross-sectional studies, height-adjusted cortical
thickness was found to be reduced in pediatric KTx pa-
tients when compared with controls [60–62]. In a prospec-
tive study, a reduced mean section modulus, which is a
measure for bone strength, and a reduced muscle mass
was noted in pediatric patients at the time of KTx com-
pared with controls [41]. By contrast, trabecular BMD
was significantly increased compared with controls in
children aged below 13 years. Since SHPT results in the
transformation of metaphyseal spongiosa, this finding is
most likely due to PTH effects on the metaphysis. After
KTx, cortical thickness improved significantly in this pa-
tient cohort. However, the section modulus did not im-
prove within 12 months post-KTx, indicating persistent
impaired bone strength in the patients despite marked im-
provement of SHPT and excellent graft function in the
majority of patients. This may explain, at least partly,
the high frequency of bone fractures (10% within 6
months post KTx) in this study. The persistent cortical
deficits in pediatric KTx patients in the above-mentioned
studies are most likely due to concomitant glucocorticoid
treatment. However, pQCT data in transplanted children
with complete steroid avoidance, or after steroid with-
drawal, is lacking.

Growth

Although many of the metabolic and endocrine disorders con-
tributing to uremic growth failure are resolved by renal trans-
plantation, post-transplant catch-up growth is usually restrict-
ed to young children and occurs far from regularly [30, 47, 48,
63]. Persistent short stature is reported in about half of pedi-
atric kidney transplant recipients. Beyond transplant function,
age and extent of stunting at the time of KTx and glucocorti-
coid dosage is inversely associated with longitudinal growth.
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Cardiovascular morbidity

Although KTx improves survival, subclinical cardiovascular
organ damage is frequently noted in pediatric KTx patients,
including left ventricular hypertrophy (43%), arterial stiffness
(22%), atherosclerosis (58%), and endothelial dysfunction
(77%) [64, 65]. Several risk factors have been shown to be
associated with cardiovascular organ damage in these patients,
e.g., hypertension, low eGFR, elevated body mass index, and
treatment with mTOR inhibitors and glucocorticoids [64, 65].
It is important to note that the progression of vascular organ
damage (aortal pulse wave velocity, carotid intima-media
thickness) is significantly prevented by preemptive KTx when
compared with initiating dialysis in children with ESKD [66].
By contrast, changes in left ventricular mass index were
strongly associated with increased blood pressure but not with
the mode of renal replacement therapy (dialysis or preemptive
KTx). This highlights the need for stringent blood pressure
control in KTx patients.

Coronary artery calcification is noted in 17–92% of chil-
dren and young adults with childhood-onset ESKD [16]. Its
presence is significantly associated with age, dialysis duration,
serum phosphate, calcium, PTH, and c-reactive protein levels.
Renal transplantation slows the rate of coronary artery calci-
fication in patients with ESKD, but despite largely normalized
serum calcium, phosphate, and PTH levels, they usually do
not regress, at least in adults [67, 68].

Evaluation

As for every pediatric CKD patient, an anamnesis should be
taken, including bone pain and walking difficulties, together
with a thorough clinical assessment, including height, weight,
signs of rickets or leg bowing, and calculation of annual height
velocity, which should be done at regular intervals (Table 2)
[69]. Young children and those who presented previously with

clinical signs of CKD-MBD or impaired graft function should
be seen more often. There is no evidence for performing reg-
ular X-rays in pediatric KTx patients. However, an X-ray of
the left wrist should be considered in cases of persistent bone
pain or SHPT to detect signs of demineralization and rickets
and to establish growth potential (open epiphysis) in patients
who are candidates for treatment with recombinant humanGH
(rhGH). In addition, calcium, phosphate, magnesium, alkaline
phosphatase (ALP), PTH, and 25(OH)D levels should be reg-
ularly monitored [1, 70, 71]. The regular follow-up intervals
as recommended by KDIGO are given in Table 3. These pa-
rameters should be considered together, with particular atten-
tion to trends in values [71]. Unfortunately, the above-
mentioned biochemical parameters are poor predictors of
bone disease, e.g., presence of impaired mineralization and
high or low turnover. Therefore, KDIGO recommends assess-
ment of bone histomorphometry, if the type of renal
osteodystrophy will impact treatment decisions. However, this
is rarely the case in transplanted children and may be consid-
ered in patients with unexplained fractures, especially when
anticipating an underlying metabolic bone disease due to
nephropathic cystinosis or primary hyperoxaluria. In adult
KTx patients with an eGFR > 30 mL/min/1.73m2, KDIGO
suggests using BMD to assess whether fracture risk results
will alter therapy. As mentioned above, BMD values are nor-
mal in pediatric KTx patients when normalized to height and
data on the predictive value of BMD measurements in
assessing fracture risk in these patients is lacking. Therefore,
there is currently no evidence for its clinical use in this popu-
lation. The same holds true for newer techniques such as high-
resolution pQCT or MRI.

Treatment options

In general, a lifestyle including a healthy diet, regular physical
activity (a minimum of 30 min onmost days of the week), and

Table 2 Recommended
frequency of assessment (in
months) of length/height, skeletal
status, and length/height velocity
by CKD stage and age

CKD stage

1–
2T

3T 4T 4–5T

Length/height/skeletal status*

Age 0–1 years 1–2 0.5–2 0.5–2 0.5–2

Age 1–3 years 2–3 1–3 1–2 1–2

Age > 3 years 3–6 3–6 1–3 1–3

Length/height velocity

Age 0–1 years 1–2 0.5–2 0.5–2 0.5–2

Age 1–3 years 3–6 1–6 1–3 1–3

Age > 3 years 6 6 6 6

Table adapted from [69], reproduced with permission; *History of pain and signs of rickets and leg bowing
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not smoking is recommended, as for other CKD patients.
Patients should be provided with an adequate dietary calcium
and phosphate intake (at least 100% of daily recommended
intake in healthy children) to allow for bone mineralization
and growth [1, 69]. Patients should avoid foods high in salt as
high sodium intake promotes hypertension and hypercalciuria
[72]. The latter may impair bone formation. In addition, a high
intake of cola drinks should be avoided as this has been linked
to decreased BMD and increased fracture risk in the general
pediatric population and delays bone healing in rodents [73].

Correction of alterations of vitamin D and mineral
metabolism

KDIGO recommends that treatment choices be influenced by
the presence of CKD-MBD, as indicated by abnormal levels
of calcium, phosphate, PTH, ALP, and 25(OH)D [1, 70]. It is
important to note that these parameters should be considered
together with particular attention to trends in values. KDIGO
also recommends considering treatment with vitamin D ana-
logs or bisphosphonates to treat bone disease in adult patients
with an eGFR above 30 mL/min/1.73 m2 during the first 12
months after KTx. However, there is no evidence to recom-
mend treatment with bisphosphonates in kidney-transplanted
children.

We suggest evaluation of vitamin D deficiency as the
first step, as it is present in approximately 50% of pediat-
ric KTx patients and may promote hypophosphatemia and
SHPT [22]. Oral vitamin D supplementation with chole-
calciferol or ergocalciferol was recommended in vitamin
D-deficient KTx patients aiming at 25(OH)D target levels
of 75–12 nmol/L (30–50 ng/mL) as in CKD patients prior
to transplantation [69, 74]. In the second step, treatment
with active vitamin D should be considered, in the pres-
ence of PTH levels above the target range, based on the
stage of CKD, if vitamin D deficiency is absent or
corrected [1]. We suggest applying the minimum PTH-
suppressive dosages as recommended for CKD patients
prior to KTx [75]. It is important to note that there is no
agreement on the optimum PTH target range and

consequently recommended CKD-stage-dependent PTH
target range values differ widely [69, 76–79]. However,
most important is the acknowledgment that none of these
recommendations have been validated in a large pediatric
CKD cohort study/investigation, especially in children af-
ter renal transplantation. Parathyroidectomy should be
considered in patients with persistent severe, therapy-
refractory SHPT, i.e., with radiological indications and
hypercalcemia [78].

In pat ients showing persis tent post- t ransplant
hypophosphatemia, a high phosphate diet and initiation of oral
phosphate supplementation is recommended in order to reach
low normal levels (for age). However, phosphate supplemen-
tation may stimulate both PTH and FGF23 levels, which may
further stimulate renal phosphate wasting, causing a vicious
circle. Therefore, the lowest possible phosphate dosages
should be applied in these patients.

Magnesium deficiency is known to promote osteoporosis
and PTH resistance, and it should be corrected with oral mag-
nesium supplementation aiming at levels above the lower nor-
mal limit.

Correction of acidosis

Metabolic acidosis should be corrected by oral bicarbonate,
aiming for bicarbonate levels above 22 mEq/L, as recom-
mended in other CKD patients [69]. However, this may not
be possible in all patients because high doses of sodium bicar-
bonate may promote hypertension.

Steroid avoidance

A meta-analysis of 5 randomized clinical trials (RCTs) on
growth outcome using steroid minimization protocols in pe-
diatric KTx patients showed a significant improvement in
height z scores in the steroid-avoidance group, particularly
within the first year after steroid withdrawal and in prepubertal
patients [80]. Therefore, it is recommended to minimize or
completely avoid glucocorticoid use in children who have
growth potential, if possible.

Table 3 Follow-up of biochemical parameters of CKD-MBD after kidney transplantation

CKD stage Follow-up

Stages
1–3T

Calcium, phosphorus, and bicarbonate every 6–12 months, PTH at least once, to adapt to the evolution of renal function

Stage 4T Calcium, phosphorus, and bicarbonate every 3–6 months, PTH every 6–12 months

Stage 5T Calcium, phosphorus, and bicarbonate every 1–3 months, PTH every 3–6 months

Stages
3–5T

Alkaline phosphatase every year, and more frequently in case of hyperparathyroidism

Stages
1–5T

25(OH)-vitamin D to be measured on a regular basis, defined depending on baseline levels. In all cases, a vitamin D deficiency should be
corrected.

CKD, chronic kidney disease; Table adapted from KDIGO [70], reproduced with permission
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Growth hormone treatment

Several RCTs have shown the benefit of rhGH therapy in short
pediatric KTx patients. A meta-analysis of 5 RCTs demonstrat-
ed that patients receiving rhGH therapy had a significantly
higher height velocity 1 year after initiation of therapy than
the control group, with a mean difference in height z score of
0.68 (95% CI 0.25–1.11) [81]. In addition, treatment with
rhGH resulted in increased osteoblast activity, bone formation,
and turnover in short pediatric KTx patients [82].
Consequently, a recent European guideline recommends initi-
ating rhGH therapy 1 year after transplantation if spontaneous
catch-up growth does not occur—defined as a height below the
third percentile for age and sex and a growth velocity below the
twenty-fifth percentile—and steroid-free immunosuppression
is not a feasible option. The latter may be the case in patients
with a high immunological risk, particularly in children with
suboptimal graft function (eGFR < 50 mL/min/1.73 m2) [83].
Growth hormone should be given at a dose of 0.045–0.05
mg/kg body weight per day by subcutaneous injection in the
evening and parents and physicians may encourage children
from about 8–10 years of age to do the rhGH injections on their
own, if adequate training and adherence is ensured. Clinical
visits every 3–6 months are recommended to monitor height,
growth velocity, pubertal development, skeletal maturation on
wrist radiography, renal function, thyroid hormone levels, and
serum glucose levels. If growth velocity in the first year of
rhGH treatment is less than 2 cm per year over baseline, then
assessment of patient adherence to rhGH therapy, including
measurement of serum IGF-I levels and weight-adjusted
rhGH dosage, is recommended. Finally, rhGH should be
stopped when epiphyseal closure is confirmed [83].

Key summary points

& Monitoring of CKD-MBD in pediatric kidney transplant
recipients should primarily focus on assessment of
growth, leg deformities, and serum levels of calcium,
phosphate, magnesium, bicarbonate, alkaline phospha-
tase, 25(OH)D, and PTH.

& Regular physical activity, healthy diet, and preservation of
transplant function are recommended.

& Steroid-sparing immunosuppressive protocols and ade-
quate treatment of alterations in vitamin D, phosphate,
alkaline phosphatase, calcium, and PTH as well as correc-
tion of metabolic acidosis are recommended.

& Treatment with active vitamin D is recommended in case
of persistent secondary hyperparathyroidism, using the
minimum PTH-suppressive dosages and aiming for the
recommended CKD stage-dependent PTH target range.

& Treatment with recombinant human growth hormone
should be considered in patients lacking catch-up growth
within the first year after renal transplantation.

Multiple choice questions

1. What is a typical clinical feature of post-transplant CKD-
MBD?

a. Bone pain
b. Delayed sexual maturation
c. Increased bone mineral density
d. Low bone turnover

2. Post-transplant CKD-MBD is often due to

a. Mycophenolate mofetil treatment
b. Decreased FGF23 levels
c. Glucocorticoid treatment
d. Preemptive renal transplantation

3. Management of post-transplant CKD-MBD does focus
on

a. Maintenance of regular physical activity
b. High sodium intake
c. High dose treatment with active vitamin D
d. Treatment with bisphosphonates

4. Treatment with recombinant human growth hormone
should be considered

a. Within 12 months post transplantation
b. If height velocity is below the 30th percentile for age

and gender
c. If eGFR is above 50 mL/min/1.73 m2

d. If height is below the 3rd percentile for age and
gender

e. In case of concomitant glucocorticoid therapy
5. Which statement regarding control of PTH levels is right?

a. Correction of vitamin D deficiency should be done
before starting active vitamin D

b. Active vitamin D should be started within the first
three months after transplantation

c. Hypercalcemia stimulates PTH levels
d. PTH levels should be above 2 times the upper limit of

normal
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