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Abstract
Background The specificity of the leukocyte esterase test (87%) is suboptimal. The objective of this study was to identify more
specific screening tests that could reduce the number of children who unnecessarily receive antimicrobials to treat a presumed
urinary tract infection (UTI).
Methods Prospective cross-sectional study to compare inflammatory proteins in blood and urine samples collected at the time of
a presumptive diagnosis of UTI. We also evaluated serum RNA expression in a subset.
Results We enrolled 200 children; of these, 89 were later demonstrated not to have a UTI based on the results of the urine culture
obtained. Urinary proteins that best discriminated between children with UTI and noUTI were involved in Tcell response proliferation
(IL-9, IL-2), chemoattractants (CXCL12, CXCL1, CXCL8), the cytokine/interferon pathway (IL-13, IL-2, INFγ), or involved in innate
immunity (NGAL). The predictive power (asmeasured by the area under the curve) of a combination of four urinarymarkers (IL-2, IL-
9, IL-8, and NGAL) was 0.94. Genes in the pathways related to inflammation were also upregulated in serum of children with UTI.
Conclusions Urinary proteins involved in the inflammatory response may be useful in identifying children with false positive
results with current screening tests for UTI; this may reduce unnecessary treatment.
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Introduction

Given that the prevalence of urinary tract infection (UTI) in
children is low (i.e., many children are tested for each UTI
detected), highly specific screening tests are needed so that
empiric treatment can be restricted to those with a true UTI.
Neither the leukocyte esterase nor leukocyte count obtained
using urine conventional microscopy are sufficiently specific
(specificities of 87% and 86%, respectively) [1]; approximate-
ly 50% of children initially treated with antibiotics for UTI
based upon urinalysis are subsequently found to have a nega-
tive urine culture [2]. More specific markers would reduce the
number of false positive results and reduce unnecessary anti-
microbial use. In this study, we evaluated markers belonging
to established inflammatory pathways that could be used in
conjunction with the leukocyte esterase test to increase its
specificity in the diagnosis of UTI.

Methods

From October 2010 to June 2015, we prospectively en-
rolled a convenience sample of children 1 month to 10
years of age, at the time they presented to one of three
Emergency Departments (Children’s Hospital of
Pittsburgh, Children’s National Medical Center, Hasbro
Children’s Hospital) or to one outpatient pediatric clinic
affiliated with the Children’s Hospital of Pittsburgh, with
fever and/or urinary symptoms. We included only children
who were treated for UTI by the caring clinician and had
pyuria on urinalysis or dipstick (≥ 10 WBC/mm3, ≥ 5
WBC/hpf, or ≥ 1+ leukocyte esterase). Exclusion criteria
are listed in Fig. 1 and included recent antibiotics or ste-
roids, chronic disease or genitourinary anomaly, another
infectious condition (pneumonia, sepsis, or meningitis),
and bagged urine specimen. We defined a positive urine
culture as growth of ≥ 100,000 CFU/mL of at least one
uropathogen from a specimen collected by clean catch or
≥ 50,000 CFU/mL of at least one uropathogen from a
catheterized specimen. There were no samples collected
by suprapubic aspiration. No bagged urine specimens
were used for urinalysis or culture. The institutional re-
view board at each respective site approved this study.

Urine sample collection and processing for proteins

We used urine collected at the time of presentation in most
instances; when this was not available, we collected an addi-
tional sample using a perineal collection bag.We filtered urine
samples (Millex filters, Millipore) and stored them in
cryovials at − 80 °C. Processing generally occurred within
1 h of collection. However, if a delay was anticipated, samples
were stored in a specimen refrigerator until processing.

Blood sample collection and processing for proteins

We collected blood samples from children whose parents
consented to phlebotomy. C-reactive protein (CRP) was mea-
sured using Siemens Dimension Vista 500 Intelligent Lab
System. Another aliquot was spun at 2700 rpm for 10 min
and plasma was subdivided into multiple cryovials for protein
measurement (cytokines, neutrophil gelatinase-associated
lipocalin (NGAL), and procalcitonin). Specimens were proc-
essed generally within 1 h of collection, stored at − 80 °C and
analyzed in batches.

Protein measurement

We assessed 53 candidate markers; 48 cyokines, NGAL, and
DEFA1 (human alpha defensin 1) were measured in both blood
and urine using Bio-Rad Pro Human Cytokine 27-plex and 21-
plex plates (Bio-Rad, Hercules, CA), Thermo Fisher’s Rapid
Human NGAL ELISA kit (KIT037; Waltham, MA), and
Hycult DEFEA1 ELISA Kit (HK317; Hycult, Wayne,
Pennsylvania), respectively. On each plate, we included dupli-
cates and control samples. CRP and procalcitoninweremeasured
in blood using Siemens Dimension Vista 500 Intelligent Lab
System and bioMerieux’s miniVIDAS immunoanalyzer
(bioMerieux,Marcy-l’Etoile, France), respectively.Wemeasured
urine creatinine concentration using R&D Creatinine Parameter
Assay Kit (KGE005; R&D Systems, Minnepolis, Minnesota).

Statistical methods for protein data

We used logistic regression for binary variables and t test for
continuous variables (e.g., protein levels). In order to adjust
for multiple comparison, the resulting p values were converted
to q-values using the Benjamini-Hochberg correction [3]. To
access discriminative power, we constructed a receiver oper-
ating characteristic curve (ROC) using UTI vs no-UTI status
as the outcome and calculated the area under the curve (AUC).
Sensitivities and specificities were for the point on the ROC
curve that maximized the Youden index (Youden index =
sensitivity + specificity − 1). To evaluate the predictive power
of combinations of biomarkers, we used classification and
regression tree (CART) [4] classifier from R package rpart.
To be specific, leave-one-out cross validation was adopted to
split the data into training set and testing set, and the predictive
score of each testing sample was calculated using the classifier
constructed by the training set. Samples or variables with
missing values were removed. As a sensitivity analysis, we
also present data for the subgroup of children with fever.

Serum RNA processing and sequencing methods

We used Applied Biosystems mini Tempus™ tubes to stabi-
lize the RNA. Total RNA libraries were generated using
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Fig. 1 Flow diagram
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Illumina TruSeq Stranded Total RNA Sample Preparation
Guide (Rev. E). First, we removed globin and ribosomal
RNA using biotinylated, target-specific oligos combined with
globin and rRNA removal beads. Following purification,
RNAwas fragmented into small pieces using divalent cations
under elevated temperature. Cleaved RNA fragments were
copied into first-strand cDNA using reverse transcriptase
and random primers, followed by second-strand cDNA syn-
thesis using DNA Polymerase I and RNase H. After ligation
of the adapter, we added single ‘A’ base fragments to the
cDNA fragments. We purified and enriched products with
PCR to create the final cDNA library. We validated cDNA
libraries using KAPA Biosystems primer premix kit with
Illumina-compatible DNA primers and Qubit 2.0 fluorometer.
We examined the quality of the RNA using Agilent
Tapestation 2200. The cDNA libraries were pooled at a
final concentration 1.8 pM. Cluster generation and paired-
read 75-bp sequencing was performed on Illumina
NextSeq 500’s. The technician was blinded to the results
of the corresponding patient’s urine culture results.
Because of limitations in funding, RNA sequencing was
undertaken in only a subset of children.

RNA-Seq data preprocessing

The RNA-seq data were aligned to Homo Sapiens UCSC
hg19 using TopHat2 (TopHat v2.0.9) [5]. The expression
count data of 23,710 unique genes and 45 samples were har-
vested after using HTseq to convert BAM files. Low-
expression genes with mean counts smaller than 5 were re-
moved and 15,722 genes remained after this filtering step.

Statistical analysis of RNA data

We used edgeR [6] to detect differentially expressed (DE)
genes. Because of the relatively small sample size, we used
p values at 0.05 and fold change 1.5 as the threshold to deter-
mine DE genes. In order to investigate the functional annota-
tion of the DE genes, we applied enrichment analysis using
the database provided by Chaussabel [7] using Fisher’s exact
test. In addition, we performed pathway enrichment analysis
using ingenuity pathway analysis (IPA).

Results

Figure 1 describes the flow of children into the study.
Compared to excluded children, included children were less
likely to beWhite (p < 0.001) and more likely to be older (p <
0.001). Table 1 describes the demographic characteristics of
the 111 children with UTI and the 89 children with no UTI.
Mean age of the children we included was 4.5 years. Children
with UTIs were younger, were more likely to have fever, were

febrile for longer duration, and had a higher maximum tem-
perature. Mean creatinine level in the two groups did not differ
significantly (p = 0.39), nor did the number of children receiv-
ing ibuprofen (p = 0.99). A urine collection bag was used in
four children for collection of urinary proteins. Of the 57 chil-
dren < 24 months of age, 56 were febrile and 54 had samples
obtained by catheterization.

Protein markers

The urinary markers that best discriminated (i.e., AUC ≥ 0.85
and q < 0.0001) between children with UTI and no UTI
(Table 2 for top 30 markers, Supplementary Table 4s for com-
plete list of all significant markers) were proteins involved in
T cell response proliferation (IL-9, IL-2), cytokine/interferon
pathway (IL-13, IL-2, INFγ), innate immunity (NGAL), and
response to infection (TNFα, IL-17A), as well as
chemoattractants for monocytes (CXCL12) and neutrophils
(CXCL1, CXCL8). Division of protein marker level by urine
creatinine had little effect on the p-values or the AUC of the
urinary markers; accordingly, we present only raw values in
the tables included in this report. The predictive power (as
measured by the AUC, Fig. 2) of a combination of four uri-
nary markers (IL-2, IL-9, IL-8, and NGAL) using the CART
model with leave-one-out cross-validation was 0.94, with a
sensitivity of 0.96 (95% CI: [0.92, 1.00]) and a specificity of
0.84 (95% CI: [0.74, 0.94]).

Serum markers that best differentiated children with UTI
from those with no UTI included interferon α2 (involved in
cytokine signaling), CXCL12 (chemoattractant for mono-
cytes), and IL-3 (Table 2). A combination of five serum
markers (interferon α2, CXCL12, HGF, CCL5, and NGAL)
identified by CART achieved the highest accuracy; its predic-
tive power (as measured by the AUC) was 0.85, with a sensi-
tivity of 0.82 (95% CI: [0.74, 0.89]) and a specificity of 0.88
(95%CI: [0.81, 0.95]). Unlike a previous study [8], we did not
find differences in the levels of urinary human neutrophil pep-
tide 1 (or its gene: human α-defensin 1) in the two groups.

Supplementary Table 5s presents the protein biomarkers in
the subgroup of children that were febrile. Supplementary
Table 6s presents the results after excluding 12 children with
possible contamination (4 children with UTI with significant
growth (≥ 10,000 CFU/mL) of > 1 uroopathogens and 8 chil-
dren without UTI who had significant growth (≥ 10,000 CFU/
mL) of one uropathogen at counts lower than those required
for a UTI). Results in these two sensitivity analyses were
generally similar to the overall results.

RNA expression data

RNA sequencing was only performed on febrile children who
had not received antibiotics or corticosteroids before sample
collection and for whomwe had collected a serum sample that
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had adequate concentrations of RNA. Furthermore, because
of cost, RNA sequencing was only attempted on a subset; we
included all children with pyelonephritis confirmed by
DMSA, a matched (by age and duration of fever) group of
febrile children with cystitis, and all febrile children who had
no growth on culture. A total of 36 children with UTI and 9
children with no UTI were included in this analysis (Fig. 1).
All had fever and three were males. By controlling p values at
0.05 and absolute fold change at 1.5, we obtained 345 differ-
entially expressed (DE) transcripts. The expression levels of
the DE genes can be visualized in Fig. 1s in the appendix; the
list of the top 25 DE genes is shown in Supplementary
Table 1s. Modular analysis (Supplementary Table 2s) using
Chaussabel’s database showed that neutrophil response dif-
fered significantly in children with UTI and no UTI [7].

Pathway analysis (Supplementary Table 3s) revealed several
candidate pathways with biological plausibility that differ sig-
nificantly in children with and without UTI.

Discussion

In this study, we have identified urinary and serum markers
that appear promising in differentiating children with pyuria
who do and do not have UTI. Particularly promising, single
markers include urinary IL-9, IL-2, IL-8, and NGAL. At pres-
ent, NGAL can be measured commercially and ELISA tests
are available for the three interleukins. These findings suggest
that differences in easily measurable inflammatory proteins in
the urine might be useful in differentiating children with and

Table 1 Demographic and
clinical characteristics of the
children includeda

Characteristic No UTIb (N = 89) UTIc (N = 111)
Number (%) Number (%)

Age (months)
1–11 12 (13.5) 28 (25.2)
12–23 3 (3.4) 14 (12.6)
24–59 27 (30.3) 32 (28.8)
≥ 60 47 (52.8) 37 (33.3)

Sex/circumcision
Female 78 (87.6) 102 (91.9)
Uncircumcised male 5 (5.6) 3 (2.7)
Circumcised male 6 (6.7) 6 (5.4)

Race
White 36 (40.4) 57 (51.4)
Black 31 (34.8) 36 (32.4)
Asian 3 (3.7) 3 (3.7)
Unknown 19 (21.4) 15 (13.5)

Fever
Yes 44 (49.4) 83 (74.8)
No 45 (50.6) 28 (25.2)

Duration of fever
No fever 45 (50.6) 28 (25.2)
≥ 48 h 17 (19.1) 33 (29.7)
< 48 h 25 (28.1) 47 (42.3)
Unknown 2 (2.2) 3 (2.7)

Maximum reported temperature
≥ 39 °C 26 (29.2) 52 (46.8)
< 39 °C 63 (70.8) 59 (53.2)

Method of collection
Catheter 17 (19.1) 48 (43.2)
Clean catch 72 (80.9) 63 (56.8)

Dysuria, urgency, frequency, or new onset incontinence
Yes 50 (56.2) 59 (53.2)
No 28 (31.4) 19 (17.1)
Not applicable (i.e., not toilet trained) 11 (12.4) 33 (29.7)

Escherichia coli
Yes 5 (5.6) 105 (94.6)
No 84 (94.4) 6 (5.4)

a All children included either had a positive leukocyte esterase test or evidence of pyuria on urine microscopy. All
were symptomatic and all were treated with antimicrobials for a presumed UTI by the caring provider
b UTI defined by growth of a uropathogen at growth of ≥ 100,000 CFU/mL of at least one uropathogen from a
specimen collected by clean catch or ≥ 50,000 CFU/mL of at least one uropathogen from a catheterized specimen.
Four children with UTI had significant (> 10,000 CFU/mL) growth of another organism
c Eight children with no UTI had significant growth of uropathogens (> 10,000 CFU/mL) but at lower counts than
required for a UTI
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without UTI. Because collection of blood samples is not rou-
tinely performed in children with suspected UTI, and because
accuracy of serum markers was lower than for urinary
markers, it seems prudent to focus on urinary markers.

To understand the implications of our findings, imagine a
hypothetical cohort of 1000 children being tested for UTI
using the leukocyte esterase test, of whom 7% [9] (or 70)
are assumed to have a UTI. Of the 70 children with UTI, the
leukocyte esterase test will identify 55 (because the sensitivity
of the test is 79% [1]). Of the 930 without UTI, 13% (i.e., 121)
will be incorrectly identified as having a UTI (because the
specificity of the test is 87% [1]). Assuming that children with

a positive leukocyte esterase are empirically treated with an-
timicrobials, applying the panel of 4 urinary markers identi-
fied here to the 176 children (55 + 121) with a positive leu-
kocyte esterase test would reduce the number of children re-
ceiving unnecessary antibiotics from 121 to 19 (because the
specificity of the panel is 84%) without significantly reducing
the number of children with UTI who are appropriately treated
with antibiotics (because the sensitivity of the panel is 96%).

A role for the four previously mentioned urinary markers is
supported by their pathophysiological role and by previous
studies of these markers as diagnostic tools. IL-9 is involved
in growth of helper T cells, and these cells have been shown to

Table 2 Univariate association between top 30 biomarkers and urinary tract infection (UTI) in urine and serum by decreasing Q valuea

Biomarker Number
(No UTI/UTI)

Mean (SD) level in
No UTI (pg/mL)

Mean (SD) level
in UTI (pg/mL)

Q value AUC Sensitivityb Specificityb

Urinary markers

IL-9 50/102 3.50 (3.36) 14.91 (9.54) 6.30E-18 0.93 0.81 0.92

CXCL12 (SDF1) 50/102 71.68 (31.92) 136.79 (61.41) 3.84E-13 0.85 0.72 0.88

IL-13 50/102 2.43 (1.21) 4.89 (2.96) 5.78E-10 0.81 0.55 0.94

Interferon-γ 50/102 10.50 (18.54) 39.93 (39.93) 2.96E-09 0.82 0.71 0.86

NGAL 50/103 140023.14 (337843.37) 620493.72 (554538.14) 1.13E-08 0.89 0.79 0.90

PDGF 50/102 5.07 (3.56) 17.33 (18.56) 3.39E-08 0.76 0.48 0.96

TNF-α 50/102 3.98 (2.81) 14.54 (16.18) 4.05E-08 0.85 0.92 0.70

IL-2 50/102 2.28 (1.67) 9.21 (10.77) 4.96E-08 0.89 0.78 0.90

IL-12 50/102 35.63 (23.44) 67.03 (42.50) 2.55E-07 0.75 0.74 0.66

CXCL1 (GROα) 50/102 325.13 (826.33) 1415.24 (1539.32) 5.04E-07 0.86 0.77 0.86

IL-16 50/102 73.45 (61.40) 521.25 (799.99) 1.03E-06 0.78 0.46 0.98

IL-5 50/102 0.42 (0.97) 2.30 (3.16) 1.07E-06 0.77 0.75 0.74

IL-4 50/102 0.41 (0.28) 0.95 (0.92) 1.46E-06 0.74 0.65 0.72

CCL4 (MIP-1β) 50/102 63.01 (117.88) 299.01 (465.03) 1.82E-05 0.78 0.75 0.68

IL-8 50/102 142.18 (236.21) 1086.23 (1954.96) 2.12E-05 0.87 0.90 0.76

SCGF β 50/102 734.07 (671.90) 2418.95 (3467.73) 2.62E-05 0.71 0.68 0.68

IL-17A 50/102 11.96 (26.66) 47.28 (68.45) 4.40E-05 0.86 0.90 0.76

FGF (basic) 50/102 19.30 (17.40) 33.23 (17.99) 5.02E-05 0.76 0.62 0.80

MIP-1a 50/102 1.23 (3.56) 8.82 (17.51) 0.000180088 0.86 0.81 0.80

Serum markers

Interferon α2 67/72 9.98 (19.77) 42.83 (18.53) 2.76E-16 0.85 0.88 0.81

CXCL12 (SDF1) 67/72 233.41 (92.13) 387.42 (102.47) 1.28E-14 0.86 0.83 0.81

FGF (basic) 66/71 19.91 (31.12) 70.56 (50.65) 2.13E-09 0.81 0.76 0.82

SCGF β 67/72 10097.59 (10921.95) 27334.10 (18837.83) 1.48E-08 0.83 0.85 0.76

Leukemia inhibitory factor 67/72 6.68 (6.21) 13.73 (6.52) 1.48E-08 0.80 0.69 0.88

IL-18 67/72 44.83 (36.02) 93.97 (58.82) 2.22E-07 0.79 0.83 0.73

CCL5 (RANTES) 66/71 6919.59 (3038.73) 10155.59 (3615.38) 5.39E-07 0.76 0.72 0.79

IL-3 67/72 27.63 (52.54) 125.84 (134.92) 8.09E-07 0.85 0.86 0.78

IL-2 receptor α 67/72 111.09 (84.50) 209.47 (123.80) 1.16E-06 0.78 0.83 0.63

IL-7 66/71 49.04 (34.21) 25.07 (16.48) 6.61E-06 0.76 0.66 0.82

IL-17A 66/71 34.19 (34.20) 83.72 (94.34) 0.000268492 0.73 0.73 0.70

aQ value represents p value corrected for multiple comparisons
b Sensitivity and specificity for the diagnosis of UTI in children with evidence of pyuria. These values were determined using cutoff that maximized the
Youden index (sensitivity + specificity − 1)
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play a role in the immune response to UTI [10]. Furthermore,
in one study, adults with UTI had significantly higher levels of
IL-9 compared to age- and gender-matched healthy controls
[11]. IL-2 is involved with T cell growth and differentiation
following activation by an antigen [12, 13], and its receptor is
present on neutrophils [14]. IL-8 is a key neutrophil
chemoattractant in the urinary tract, directing the migration
of neutrophils across the mucosa and into the urine [15],
which is elevated in adults and children with UTI [16, 17].
We found significant differences in NGAL levels (in urine and
serum) and in the gene coding for NGAL (LCN2) between the
two groups. Although the function of NGAL is not completely
understood, it plays a role in sequestering iron required for
bacterial growth. It is released from neutrophils, and to a
smaller degree from intercalated cells in the renal collecting
duct in response to infection or cell injury [18]. Several studies
have found that NGAL differs in children with and without
UTI, both in serum and/or blood [19–23].

Of the genes identified though RNA sequencing that are
supported by previous studies (i.e., LTF, AZUI, CEACAM8,
DEFA4, in Supplementary Table 1s and CAMP in
Supplementary Table 2s), most seem to have an antibacterial
role. Lactotransferrin (also known as lactoferrin, encoded by
LTF) interferes with iron uptake and thereby causes bacterial
cell lysis. Azurocidin (encoded by AZUI), present in azurophil
granules of neutrophils, has activity against gram-negative
bacteria [24]. DEFA4 (also known as HNP-4) and CAMP en-
code for antimicrobial peptides (defensin alpha 4 and

cathelicidin, respectively). Carcinoembryonic antigen-related
cell adhesion molecules (CECAM) are glycoproteins
expressed on mucosal surfaces which are thought to be in-
volved in pathogen colonization [25, 26]. All five genes (or
their products) have been implicated in UTI or colonization in
previous studies [25–34]. Our data was slightly puzzling be-
cause, even though all of the above genes are involved in the
defense against UTI, we found that all were underexpressed in
children with UTI. One explanation might be that children
who fail to effectively upregulate expression of these genes
are more susceptible to UTI. Indeed, some support for this
hypothesis comes from a recent study that found children with
increased risk of UTI recurrences had fewer copies of α-
defensin-encoding DEFA1A3 [31]

Analysis of the gene pathways (Supplementary Table 3s)
identified several pathways that appear to have clinical plau-
sibility. Specifically, our data suggests that leukocyte extrav-
asation, natural killer cell signaling, IL-6 and IL-2 signaling,
and T cell pathways are important in the pathophysiology of
UTI. These findings are generally consistent with previous
studies [12, 17, 35–43]. Of note, both pathway analysis of
gene expression in the serum and urinary protein measure-
ment suggest that IL-2 signaling could also be important in
the immune response to UTI. To our knowledge, other than
one tangentially related study [44], this is a novel finding.

Our study was limited because the recruited sample did not
provide us with adequate power to examine potentially impor-
tant subgroup differences. Asymptomatic bacteriuria, although

Fig. 2 Accuracy of a combination of four urinary markers in diagnosing urinary tract infection (area under the ROC curve = .94)
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possible, is unlikely because all patients were symptomatic to
the extent that clinicians tested and treated for UTI and all had
pyuria. As with most studies on pediatric UTI, a small propor-
tion children categorized as having a UTI may have actually
had contamination of the sample during collection. We
attempted to minimize this by avoiding bag-collected urine
samples for diagnosis of UTI, by requiring pyuria, and by using
established cutoff-offs to define a UTI. Furthermore, as a sen-
sitivity analysis, we present the results in which we exclude
children with possible contamination. A strength of the study
is performance of both RNA sequencing and protein measure-
ment, which appear to have provided complimentary data.

In conclusion, this study provides preliminary evidence to
support a role for measurement of urinary IL-9, IL-2, IL-8,
NGAL, and preliminary support for the use of an RNA signa-
ture in differentiating, among children with pyuria, those with
UTI from those without UTI. These markers, if confirmed by
future studies, could be useful in reducing unnecessary anti-
microbial use for children with presumed UTI.
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