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Indoxyl sulfate associates with cardiovascular phenotype in children
with chronic kidney disease
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Abstract
Background Cardiovascular disease is the leading cause of death in children with chronic kidney disease (CKD). Serum levels of
gut-derived uremic toxins increase with deterioration of kidney function and are associated with cardiac comorbidities in adult
CKD patients.
Methods Indoxyl sulfate (IS) and p-cresyl sulfate (pCS) were measured by high-performance liquid chromatography in serum of
children participating in the Cardiovascular Comorbidity in Children with CKD (4C) Study. Results were correlated with
measurements of the carotid intima-media thickness (cIMT), central pulse wave velocity (PWV), and left ventricular mass index
(LVMI) in children aged 6–17 years with initial eGFR of 10–60 ml/min per 1.73 m2.
Results The median serum levels of total IS and of pCS, measured in 609 patients, were 5.3 μmol/l (8.7) and 17.0 μmol/l (21.6),
respectively. In a multivariable regression model, IS and pCS showed significant positive associations with urea and negative
associations with eGFR and uric acid. Furthermore, positive associations of pCS with age, serum albumin, and non-
Mediterranean residency and a negative association with glomerular disease were observed. Bymultivariable regression analysis,
only IS was significantly associated with a higher cIMT SDS at baseline and progression of PWV SDS within 12 months,
independent of other risk factors.
Conclusions Serum levels of gut-derived uremic toxins IS and pCS correlated inversely with eGFR in children. Only IS was
significantly associated with surrogate markers of cardiovascular disease in this large pediatric CKD cohort.
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Introduction

Recent studies in adult patients with chronic kidney disease
(CKD) suggest that the gut-derived uremic toxins indoxyl
sulfate (IS) and p-cresyl sulfate (pCS) correlate inversely with

glomerular filtration rate (eGFR) and promote CKD progres-
sion and cardiovascular disease (CVD) [1–4].

In patients with CKD, several factors, including slow in-
testinal transit time [5], iron therapy, special diets, and fre-
quent use of antibiotics, lead to qualitative and quantitative
changes in gut microbiome, or dysbiosis [6]. These changes
include an increase of proteolytic bacteria, such as
Enterobacteria and Enterococci, and a decrease of
saccarolytic bacteria, e.g., Bifidobacterium species, leading
to an impaired metabolism of nutrients [6–8]. Intestinal catab-
olism of amino acids leads to formation of indoles and cresols,
which are further metabolized by the liver to IS and pCS.
Furthermore, high concentrations of urea in body fluids lead
to an influx of urea into the gut and to synthesis of ammonium,
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which alters the epithelial gut cell barrier and promotes sys-
temic toxin accumulation [9]. These protein-bound uremic
toxins are eliminated insufficiently due to reduced glomerular
and tubular function [6, 7].

CVD is the leading cause of death in children with CKD
[10, 11]. In the absence of symptomatic CVD or cardiovascu-
lar endpoints, surrogate parameters such as carotid artery
intima-media thickness (cIMT), pulse wave velocity (PWV),
and left ventricular mass index (LVMI), which have been
validated in children [12, 13], are used to detect early CKD-
specific changes in the cardiovascular phenotype [14, 15]. In
this study, we aimed to assess the determinants of the uremic
toxins IS and pCS and their association with cardiovascular
surrogate parameters cIMT, PWV, and LVMI in a large cohort
of children with CKD.

Materials and methods

Study design and cardiovascular assessment

The Cardiovascular Comorbidity in Children with Chronic
Kidney Disease (4C) study is a prospective observational
study with 55 participating centers in 12 European countries.
Children aged 6–17 years with an initial eGFR of 10–60 ml/
min per 1.73 m2 not on renal replacement therapy (RRT) were
eligible for the study. Written informed consent was obtained
from all patients or parents. The study was approved by the
Ethics Commission of the University of Heidelberg (S-032/
2009) and subsequently by the local review board of each
participating institution (for a complete list of review boards,
see [16]). Additional details, including exclusion criteria, were
published in detail previously [17].

In this ongoing study, all participating centers are closely
monitored by regional coordinators, providing comparable
standards in diagnostic procedures and equipment. Every
6months, medical history, clinical status, anthropometric data,
and medication are recorded, and blood and urine samples are
collected, stored, and analyzed in a central laboratory. eGFR
was calculated using a previously published cystatin C and
creatinine-based equation [18]. Physical activity is estimated
by hours of physical activity (0/1–2/3–4/> 4 h per week) using
a standardized questionnaire.

Starting in 2009, cardiovascular assessment has been per-
formed at baseline and at each annual study visit. Office blood
pressure (BP) was documented as an average of three
oscillometric measurements using local devices [14]. Carotid
IMTwas measured according to a standardized protocol using
a portable ultrasound device (Acuson P50, Siemens Medical
Solutions USA, Inc.) [19]. Carotid-femoral PWV was mea-
sured using an oscillometric Vicorder device [12]. Two-
dimensional echocardiography was performed, and left ven-
tricular (LV) mass was calculated according to the Devereux

equation [14] and indexed to height (LVMI) according to
Chinali et al. [20]. Height, body mass index (BMI), BP,
cIMT, and PWV were normalized for sex, age, and/or height
by calculation of standard deviation scores (SDS) derived
from reference values established previously in healthy chil-
dren [13, 21]. Phosphate SDS was calculated by calculating z-
scores with reference values for the two age groups 5 to
12 years and age > 12 years [22].

As surrogate parameter for the influence of nutrition, pa-
tients were categorized according to their country of residency
as Mediterranean (Turkey, Portugal, France, and Italy) and
non-Mediterranean (Germany, Austria, Switzerland, Poland,
Lithuania, Serbia, Czech Republic, and UK). Renal diagnoses
were grouped into congenital anomalies of the kidney and
urinary tract (CAKUT), tubulointerstitial diseases, glomerular
diseases, post-AKI CKD, and others.

Laboratory methods

IS and pCS were measured centrally in serum samples obtain-
ed at the baseline visit (first visit after study entry) using a
reversed-phase separation and fluorescence detection. In brief,
serum samples were deproteinized by addition of three parts
methanol to one part serum for determination of total IS and
pCS. All analyses were performed on a high-performance
liquid chromatography (HPLC) system (SL 1000; GOEBEL,
Germany), including binary solvent manager, autosampler
(AS 5200, GOEBEL, Germany), column compartment, and
fluorescence array detector (Shimadzu RF-535), connected
with the Geminyx III software (GOEBEL, Germany).

For injection into HPLC, 20 μl of the dissolved samples was
used. IS (Potassium salt, Sigma ALDRICH; Nr. I3875) and
pCS (Potassium salt, kind gift of Griet Glorieux; University
Hospital, Gent, Belgium) were identified using a Shimadzu
RF-551 fluorescence detector (λex = 260 nm, λem = 309 nm).

A pre-column LiChroCart-4-4 (Lichrospher 100 RP-18e
endcapped, 5 μm, MERCK, Darmstadt, Germany) and a sub-
sequent reversed-phase column LiChroCart-250-4
(Lichrospher 100 RP-18e, 5 μm, MERCK, Darmstadt,
Germany) were used for chromatography. The HPLC mobile
phases consisted of 10 mMNH4H2PO4 and 20% acetonitrile
(pH = 4.0) (buffer A) and 10 mM NH4H2PO4 and 60% ace-
tonitrile (pH = 4.0) (buffer B). Buffer flow was 0.4 mL/min
using buffer A for 11 min, buffer 2B for 2 min, and buffer A
for 5 min. Under these conditions, IS and pCS eluted at 4.76
and 6.41 min, respectively. Linearity for both derivatives was
found between 0 and 130 μM. Coefficient of variation was
3.1% for IS and 1.9% for pCS.

Statistical analyses

Data were stratified by CKD stage and described by mean ±
standard deviation (SD) or median with interquartile range

Pediatr Nephrol (2019) 34:2571–25822572



(IQR) or frequencies (n, %), as appropriate. ANOVA,
Kruskal-Wallis, or chi-squared tests with respective post hoc
tests were applied for group comparisons. As the distribution
of IS and pCS was skewed, these variables were log-trans-
formed. The associations of log-transformed IS or pCS with
baseline cIMT, PWV, or LVMI were analyzed using Pearson
correlation and visualized using a scatter plot. The associa-
tions of log-transformed IS with the change of cIMT, PWV,
and LVMI were analyzed using partial correlations corrected
for the respective baseline value. Dependent t test was used to
analyze if the change in cIMT, PWV, and LVMI within 1 year
of follow-up was statistically significant.

Multivariable linear regression analysis was applied to quan-
tify the association of log-transformed IS or pCS with clinically
relevant variables at baseline, including age, sex, diagnosis,
residency, physical activity, eGFR, albumin, urea, uric acid,
phosphate, iron therapy, and calcium-based phosphate binders.
Additionally, multivariable linear regression was used to assess
the association between log-transformed IS or pCS levels and
cardiovascular parameters including cIMT, PWV, and LVMI
corrected for age, sex, body mass index (BMI), BP, eGFR,
albumin, log-transformed C-reactive protein (CRP), phosphate,
iron therapy, calcium-based phosphate binders, and diagnosis.
As cIMT, PWV, and LVMI measurements not always coincide
with the regular visit, the time difference (days) was included as
a covariate in the model as well. The same models were run to
analyze the influence of log-transformed IS or pCS levels with
1-year cIMT, PWV, and LVMI change with start of dialysis
(yes/no) as an additional confounder. In these models, the time
difference between the first and second measurement was in-
cluded as a covariate. In addition, we performed mediation
analysis to analyze if IS and pCS affected the cardiovascular
outcome through a mediator. A subgroup of patients with very
high IS levels was identified by determining the upper 95%
prediction limit in an univariable regression of eGFR on log-
transformed IS. Patient characteristics of this subgroup were
compared to the rest of the sample. p Values < 0.05 were con-
sidered statistically significant. Data were analyzed using
SAS® software version 9.4 (SAS Inc. Cary/NC, USA).

Results

Patient characteristics

A cohort of 704 patients with initial eGFR of 10–60 ml/min per
1.73 m2 was included in the 4C study between October 2009
and August 2011. IS and pCS levels were measured in 609
patients with serum samples available at their baseline visit.

Baseline patient characteristics are given in Table 1. In
general, baseline characteristics of our cohort were similar to
the complete 4C cohort, which have been described in detail
previously [14]. Mean eGFR was 28.1 ± 10.3 ml/min/1.73 m2

and mean age was 12.1 ± 3.3 years. CAKUT was the most
prevalent underlying disease category (69.4%), followed by
tubulointerstitial diseases (12.8%) and glomerulopathies
(8.1%). Male patients comprised 65.6% of the cohort.
Approximately 50% of patients were treated in Turkey.
There were significant differences in uric acid, phosphate
SDS, systolic and diastolic BP SDS, and physical activity
between CKD stages. In higher CKD stages, significantly
more patients were treated with iron and phosphate binders
and the number of children without physical activity in-
creased. Patients with higher CKD stages also had significant-
ly higher LVMI.

Cross-sectional analysis of IS and pCS

Total serum levels of IS and pCS were elevated above the
normal range of healthy adults (2.5 μmol/l for total IS and
10.1 μmol/l for total pCS levels) [23]. Mean and median
levels of total IS and pCS are shown in Table 1 and illustrated
in Online Resource 1. The levels of both toxins increased
significantly with higher CKD stages.

Variables associated with IS and pCS levels

In a multivariable regression analysis (Table 2), both IS and
pCS levels showed positive associations with urea (p = 0.005
for IS and p = 0.03 for pCS) and negative associations with
eGFR (both p < 0.001). Levels of pCS were higher in older
patients (p = 0.008), whereas IS levels showed no association
with age. Levels of pCS were lower in patients with glomer-
ulopathies compared to patients with CAKUT (p = 0.002) and
lower in patients of Mediterranean compared to non-
Mediterranean residency (p < 0.001). We also observed nega-
tive associations of both toxin levels with uric acid (both
p < 0.001) and a positive association of pCS with albumin
(p < 0.001). The influence of residency and renal diagnosis
on IS and pCS levels is further illustrated in an univariable
analysis in Fig. 1.

Associations of IS and pCS with baseline
cardiovascular parameters

Carotid IMT SDS (n = 571) and LVMI (n = 531), but not
PWV SDS (n = 571), at baseline were significantly correlated
with the IS (Fig. 2), whereas pCS serum levels were not cor-
related with any cardiovascular parameters at baseline (data
not shown).

The results of a multivariable linear regression analysis of
variables associated with cIMT SDS, PWV SDS, and LVMI
are shown in Table 3 and Online Resource 2 and 3, respec
tively. cIMT SDS was significantly associated with IS (p =
0.05) independently of eGFR, age, sex, BMI, SDS, BP SDS,
albumin, CrP, phosphate SDS, therapy with phosphate binders,
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iron supplementation, and renal diagnosis. PWV SDS and
LVMI showed no independent associations with IS at baseline
in our multivariable model. There were no significant associa-
tions of pCS with either cIMT SDS, PWV SDS, or LVMI.

A subgroup of patients with very high IS levels above the
95% percentile of the distribution in the cohort (n = 43) was
identified (Online Resource 4). While the group characteris-
tics of these patients did not differ significantly from the rest of

the cohort (Online Resource 5), they had significantly higher
baseline cIMT SDS compared to the rest of the cohort (2.16 ±
1.66 vs. 1.60 ± 1.46, p = 0.03).

Follow-up analysis

One year follow-up data for cIMT, PWV, and LVMI was
available in 458, 460, and 419 patients, respectively (Online

Table 1 Patient baseline characteristics of 609 children according to CKD stage. Data are shown as mean ± SD, median (IQR), or n (%) as appropriate

All CKD 3a CKD 3b CKD 4 CKD 5 p value

N 609 41 197 325 46

eGFR (ml/min/1.73 m2) 28.1 ± 10.3 51.4 ± 4.1 36.0 ± 4.1 22.5 ± 4.1 13.3 ± 1.4

Age (years) 12.1 ± 3.3 12.4 ± 2.9 12.1 ± 3.3 12.1 ± 3.4 12.1 ± 2.9 0.96

Diagnosis

CAKUT 424 (70%) 29 (71%) 145 (74%) 224 (69%) 26 (57%) 0.63

Tubulointerstitial 78 (13%) 6 (15%) 23 (12%) 41 (13%) 8 (17%)

Glomerulopathy 49 (8%) 3 (7%) 9 (5%) 31 (10%) 6 (13%)

Post-AKI 27 (4%) 1 (2%) 10 (5%) 14 (4%) 2 (4%)

Others 31 (5%) 2 (5%) 10 (5%) 15 (5%) 4 (9%)

BMI SDS 0.10 ± 1.48 0.17 ± 1.00 0.04 ± 1.96 0.14 ± 1.24 0.05 ± 1.03 0.87

Systolic BP SDS 0.81 ± 1.37 0.84 ± 1.19 0.95 ± 1.41 0.65 ± 1.35 1.25 ± 1.40 0.01

Diastolic BP SDS 0.69 ± 1.10 0.83 ± 0.93 0.75 ± 1.15 0.58 ± 1.07 1.11 ± 1.11 0.01

cIMT SDS 1.62 ± 1.47 1.83 ± 1.44 1.47 ± 1.41 1.65 ± 1.46 1.89 ± 1.79 0.23

PWV SDS 0.34 ± 1.72 0.36 ± 1.60 0.25 ± 1.55 0.33 ± 1.82 0.86 ± 1.67 0.22

LVMI (g/m2.16) 41.4 ± 13.3 35.8 ± 10.9 40.2 ± 13.3 42.2 ± 12.2 45.0 ± 19.0 0.006

Urea (mg/dl) 46.8 ± 19.6 24.1 ± 05.6 34.6 ± 10.1 53.2 ± 17.4 74.3 ± 18.8 < 0.001

Uric acid (mg(dl) 6.47 ± 1.83 5.88 ± 1.81 6.28 ± 1.79 6.63 ± 1.86 6.73 ± 1.64 0.02

Phosphate SDS 0.60 ± 1.16 0.41 ± 1.41 0.34 ± 1.12 0.62 ± .098 1.68 ± 1.62 < 0.001

Albumin (g/l) 38.9 ± 6.3 39.2 ± 4.5 39.1 ± 6.5 39.0 ± 6.1 37.2 ± 7.9 0.29

CRP (mg/l) 0.55 (1.88) 0.56 (1.57) 0.51 (1.85) 0.55 (1.83) 1.05 (3.55) 0.43

Indoxyl sulfate (μmol/l) 25.3 ± 86.0
5.3 (8.7)

4.2 ± 11.7
1.4 (1.5)

16.5 ± 62.5
3.4 (3.4)

30.7 ± 99.5
7.3 (8.6)

43.9 ± 101
15.6 (11.4)

< 0.001

p-Cresyl sulfate (μmol/l) 21.0 ± 17.6
17.0 (21.6)

6.7 ± 05.9
5.8 (7.5)

13.9 ± 11.3
10.4 (15.1)

24.5 ± 17.6
20.9 (22.1)

38.8 ± 24.2
35.1 (29.9)

< 0.001

Ca-based P binders 271 (44%) 13 (32%) 74 (38%) 152 (47%) 32 (70%) < 0.001

Ca-free P binders 25 (4%) 0 (0%) 1 (1%) 16 (5%) 8 (17%) < 0.001

Iron therapy 268 (44%) 8 (20%) 64 (33%) 171 (53%) 25 (54%) < 0.001

Physical activity

None 144 (24%) 3 (8%) 42 (21%) 78 (24%) 21 (46%) < 0.001

1–2 h per week 119 (20%) 4 (10%) 37 (19%) 69 (21%) 9 (20%)

3–4 h per week 87 (14%) 7 (18%) 34 (17%) 44 (14%) 2 (4%)

> 4 h per week 257 (42%) 26 (65%) 84 (43%) 133 (41%) 14 (30%)

Country

GER, CH, AT 119 (20%) 7 (17%) 34 (17%) 67 (21%) 11 (24%) 0.02

FR, IT, PT 97 (16%) 8 (20%) 44 (22%) 42 (13%) 3 (7%)

PL, LT, CZ, SRB 53 (9%) 3 (7%) 20 (10%) 29 (9%) 1 (2%)

UK 35 (6%) 1 (2.) 4 (2%) 25 (8%) 5 (11%)

Turkey 305 (50%) 22 (54%) 95 (48%) 162 (50%) 26 (57%)

CAKUTcongenital anomalies of the kidney and urinary tract, Post-AKI chronic kidney disease after acute kidney injury, BMI bodymass index,BP blood
pressure, cIMT carotid intima media thickness, PWV pulse wave velocity, SDS standard deviation score, LVMI left ventricular mass index, Log-CRP
logarithmic value of C-reactive protein, Ca calcium, P phosphate
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Resource 6). Due to higher drop-out rate and variable influ-
ences like deterioration of renal function, renal replacement
therapy, or renal transplantation during a longer follow-up,
only 1 year follow-up data was evaluated. The change in
PWV SDS adjusted for the respective baseline value was sig-
nificantly correlated with the prevailing IS level (Fig. 2).

The multivariable regression analysis for changes of cIMT
SDS, PWV SDS, and LVMI after 12 months is shown in
Table 4. The change in PWV SDS was significantly associated
with IS levels (p = 0.02). The cIMT SDS was still associated
with IS after 12 months in the univariable analysis (r = 0.01,
p = 0.04), while there was only a trend for significant associa-
tion of change in cIMT SDS with IS in the multivariable model
(p = 0.07). No associations of change in LVMI with IS levels
and no associations of changes in cIMT SDS, PWV SDS, or
LVMI with pCS levels were observed (data not shown).

In an additional mediation analysis, the effect of IS on
baseline cIMT SDS, but not on progression of PWV SDS,
was mediated by phosphate (Online Resource 7).

Discussion

In this comprehensive study of 609 children with different
stages of CKD, we found a significant association of IS with
cardiovascular surrogate parameters. By multivariable linear
regression, IS was associated with cIMT SDS independent of
eGFR, age, sex, diagnosis, BMI SDS, systolic BP SDS, serum

albumin, phosphate SDS, and CRP. Similar results have been
published in a cohort of adult CKD patients [24].
Furthermore, in a multivariable regression analysis, we could
demonstrate a significant association of IS levels with 1 year
change in PWVSDS, but no association with change in LVMI
or cIMT SDS. Further supporting this association, a subgroup
analysis of 43 patients with highest IS levels showed a signif-
icantly higher cIMT SDS compared to the other patients.
Whereas adult CKD patients frequently suffer from diabetic
nephropathy, obesity, metabolic syndrome, and other chronic
conditions, the patients in this pediatric CKD cohort were
largely free of age- and lifestyle-related comorbidities, permit-
ting the study of the effects of “pure” CKD on serum levels of
gut-derived uremic toxins and their associations with vascular
measurements and demographic and clinical conditions.

There is growing mechanistic knowledge from in vitro
studies as to how gut-derived uremic toxins, including IS
and pCS, promote cardiovascular toxicity. These manifold
mechanisms have been systematically reviewed [25, 26] and
include induction of endothelial microparticles [27, 28], in-
flammation [29], and activation of the aryl hydrocarbon re-
ceptor [30, 31].

The mediation analysis suggested some effect of IS on
baseline cIMT SDS was mediated by phosphate. This associ-
ation has not been described previously, but it is known that
uremic toxins, especially IS, also affect bone metabolism and
are associated with CKD mineral and bone disorder. In this
regard, it has been shown that IS induces PTH resistance and

Table 2 Multivariable linear
regression models of variables
associated with serum levels of
indoxyl sulfate and p-cresyl
sulfate in 609 children with CKD
at baseline

Log-inodxyl sulfate Log-p-cresyl sulfate

Estimate ± standard error p value Estimate ± standard error p value

Age (years) − 0.028 ± .016 0.086 0.036 ± 0.013 0.008
Girls − 0.132 ± .107 0.216 0.031 ± 0.087 0.720
Diagnosis
Tubulointerstitial 0.186 ± .151 0.217 − 0.094 ± 0.125 0.450
Glomerulopathy − 0.126 ± .199 0.527 − 0.501 ± 0.165 0.002
Post-AKI 0.200 ± .255 0.434 − 0.273 ± 0.211 0.196
Others 0.209 ± .228 0.360 − 0.310 ± 0.188 0.099

Residency
Non-Mediterranean − 0.171 ± .110 0.120 0.347 ± 0.091 < 0.001

Physical activity
1–2 h − 0.40 ± .154 0.800 − 0.128 ± 0.127 0.314
2–4 h 0.087 ± .172 0.612 0.180 ± .142 0.206
> 4 h − 0.013 ± .129 0.923 − 0.204 ± 0.107 0.055
BMI SDS − 0.005 ± .038 0.906 − 0.041 ± 0.032 0.199
eGFR (ml/min/1.73m2) − 0.051 ± .007 < 0.001 − 0.038 ± 0.006 < 0.001
Albumin (g/l) 0.008 ± .009 0.387 0.032 ± 0.007 < 0.001
Urea (mg/dl) 0.012 ± .004 0.005 0.007 ± 0.003 0.032
Uric acid (mg/dl) − 0.118 ± .030 < 0.001 − 0.086 ± 0.025 < 0.001
Phosphate SDS 0.076 ± .049 0.120 − 0.002 ± 0.040 0.949
Ca-based P binders 0.010 ± .104 0.928 0.039 ± 0.086 0.643
Iron therapy 0.177 ± .105 0.092 0.193 ± 0.086 0.025

Diagnostic groups were compared to patients with the diagnosis of CAKUT. Residency was defined as living in
Mediterranean or non-Mediterranean countries. Physical activity was compared to being physically inactive (0 h).
See Table 1 for abbreviations
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leads to repression of osteocyte Wnt/β-catenin signaling and
increased expression of Wnt antagonists, a pattern associated
with adynamic bone disease [32, 33]. Further, phosphate
might be a surrogate parameter for nutrition. However, we
can only give first insight into the associations but have not
proved a causal relationship since the original study was not
designed to prove causal mediation.

Clinical studies, however, have found conflicting evidence
regarding the impact of gut-derived uremic toxins on cardio-
vascular disease and mortality in CKD patients. Several stud-
ies suggested that uremic toxins promote CVD and mortality
[2, 25, 34]. On the other hand, data from the HEMO study in
adult dialysis patients contradicts these findings [35].

Our study shows that subclinical vascular pathology (base-
line cIMT SDS, progression of PWV SDS) increased depen-
dent of toxin burden (IS level) and independent of eGFR in
children with stage 3–5 CKD. In the absence of other comor-
bidities, our data might support the role of gut-derived uremic

toxins in promoting vascular remodeling. Interestingly, high
albumin levels were associated with lower baseline cIMT
SDS and LVMI as well as lower progression of LVMI within
12 months. This fact might be partially explained by the lower
fraction of free and therefore toxic IS. Nevertheless, high al-
bumin and lower cIMT and LVMI could be due to better
nutrition and lower inflammatory state, both of which can also
explain higher albumin levels.

We observed a positive association of iron supplementation
with cIMT SDS. The role of oral iron supplementation on gut
microbiome has been described previously, and hereby, some
influence on CVD might be explained [36]. However, the
impact of iron therapy on CVD has not been proven. On the
one hand, an association with an increase of cIMT has been
described [37], while on the other hand, there was no associ-
ation with cardiovascular events [38].

IS and pCS derive from bacterial colonic fermentation of
tryptophan and tyrosine, respectively. In patients with CKD,

Fig. 1 Indoxyl sulfate and p-cresyl sulfate (logarithmic values; mean ±
SD) according to residency in Mediterranean or non-Mediterranean
countries (a, b) and according to diagnostic group (c, d) (n = 609).
Abbreviations: Log-IS logarithmic value of indoxyl sulfate; Log-pCS

logarithmic value of p-cresyl sulfate; Medit. Mediterranean residency;
Non-Medit. non-Mediterranean residency; CAKUT congenital
anomalies of the kidney and urinary tract, Glom-Path glomerulopathies;
Tub-Int tubulointerstitial diseases
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changes in gut microbiome (dysbiosis), impaired intestinal
protein assimilation, and epithelial tight junction breakdown
in the gut lead to systemic accumulation of toxins, which are
eliminated insufficiently due to glomerular and tubular

dysfunction in CKD [3, 6, 22]. Except for two small studies
of 57 and 20 patients with CKD, respectively [39, 40], uremic
toxins have not been studied previously in children. In our
analysis of 609 children, we show representative data for the

Fig. 2 Linear correlation of log-transformed indoxyl sulfate levels with
cIMT SDS (n = 571), PWV SDS (n = 571), and LVMI (n = 531) and
partial correlation of log-transformed indoxyl sulfate levels with the
change of cIMT SDS (n = 458), PWV SDS (n = 460), and LVMI (n =

419) corrected for the respective baseline value. Abbreviations: Log-IS
logarithmic value of indoxyl sulfate; cIMT carotid intima-media
thickness; PWV pulse wave velocity; LVMI left ventricular mass index;
SDS standard deviation score

Table 3 Multivariable linear
regression models of variables
associated with cIMT at baseline
in 571 children with CKD

Variable cIMT SDS cIMT SDS

Estimate ± standard error p value Estimate ± standard error p value

Log-indoxyl sulfate 0.095 ± .048 0.050

Log-p-cresyl sulfate − 0.057 ± 0.060 0.342

Age − 0.029 ± 0.019 0.138 − 0.032 ± 0.019 0.095

Girls 0.326 ± 0.123 0.009 0.313 ± 0.123 0.012

BMI SDS 0.066 ± 0.039 0.094 0.064 ± 0.040 0.109

Systolic BP SDS 0.177 ± 0.044 < 0.001 0.175 ± 0.044 < 0.001

eGFR (ml/min/1.73m2) 0.011 ± 0.007 0.117 0.002 ± 0.007 0.755

Albumin (g/l) − 0.020 ± 0.010 0.049 − 0.018 ± 0.010 0.074

Log-CRP 0.013 ± 0.038 0.733 0.016 ± 0.038 0.680

Phosphate SDS 0.245 ± 0.056 < 0.001 0.254 ± 0.056 < 0.001

Ca-based P binders − 0.013 ± 0.122 0.916 − 0.012 ± 0.123 0.922

Iron therapy 0.339 ± 0.124 0.007 0.366 ± 0.125 0.004

Diagnosis

Tubulointerstitial − 0.118 ± 0.177 0.503 − 0.063 ± 0.180 0.725

Glomerulopathy − 0.505 ± 0.229 0.028 − 0.553 ± 0.230 0.017

Post-AKI − 0.608 ± 0.286 0.034 − 0.607 ± 0.287 0.035

Others − 0.324 ± 0.288 0.261 − 0.309 ± 0.289 0.284

Linear regression models were calculated for cIMT-associated variables including either indoxyl sulfate (left
table) or p-cresyl sulfate (right table). Diagnostic groups were compared to patients with CAKUT. See Table 1
for abbreviations
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uremic toxins IS and pCS according to CKD stage in
predialysis children. There was a significant inverse correla-
tion of IS and pCS with eGFR, confirming data from previous
studies of adult patients [23, 25].

While in adult CKD patients both IS and pCS appear to
increase with age [41, 42], the influence of age on gut-derived
toxin levels in the pediatric age group has not been studied
before. Our study indicates a relatively small but significant
increase of pCS levels with age in a multivariable regression
analysis (Table 2).

Interestingly, patients with glomerular diseases had lower
levels of pCS compared to patients with CAKUT in the mul-
tivariable model (Table 2) and also compared to
tubulointerstitial diseases in the univariable analysis (Fig.
1d). Since tubular secretion plays a major role in toxin
elimination, decreased tubular function might contribute
to toxin accumulation in patients with tubulointerstitial
disease and CAKUT [3, 43]. However, IS levels did not
correlate independently with diagnosis (Table 2). This
might be explained by higher concentrations of free solute
fractions of IS compared to pCS, which are not bound to
albumin and can be excreted by glomerular filtration.
Further, different tubular transport systems for both toxins
might play a role in toxin elimination [3, 44].

We also found a significant impact of residency on pCS
levels. In the multivariable analysis, residence in non-
Mediterranean countries and higher albumin levels were inde-
pendently associated with higher pCS levels (Table 2). These
findings might be partially explained by the influence of nu-
trition. Adult patients with low fiber and high protein intake
showed higher gut-derived toxin levels [45, 46], especially
higher levels of pCS [47]. This might apply to pediatric pa-
tients living in non-Mediterranean countries (i.e., Middle or
Eastern Europe), while vice versa, patients in Mediterranean
countries have diets with higher fiber and lower protein intake.
Further, as mentioned above, free solute concentration and
therefore tubular clearance is lower in patients with high albu-
min. Thus, the impact of albumin on serum levels of uremic
toxins on the one hand and its role in promoting cardiovascu-
lar disease on the other hand seems opposing and needs to be
further investigated. However, genetic variability or other fac-
tors might also play a role.

Interestingly, high uric acid was associated with low IS and
pCS levels. In our cohort, uric acid increased inversely with
eGFR as expected (Table 1). One explanation for the inverse
association of uric acid and gut-derived uremic toxins might
be a competitive antagonism at tubular excretion mechanisms,
leading to saturation of transport channels by the uremic toxin

Table 4 Multivariable linear regression models of baseline variables associated with change of cIMT (n = 458), PWV (n = 460), and LVMI (n = 419)
12 months after baseline

Change cIMT SDS 12 months Change PWV SDS 12 months Change LVMI 12 months

Variable Estimate ± standard error p value Estimate ± standard error p value Estimate ± standard error p value

Log-indoxyl sulfate 0.080 ± 0.044 0.067 0.128 ± 0.055 0.022 0.008 ± 0.458 0.986

Baseline parameter − 0.703 ± 0.038 < 0.001 − 0.482 ± 0.043 < 0.001 − 0.422 ± 0.050 < 0.001

Age − 0.018 ± 0.017 0.303 0.006 ± 0.023 0.795 − 0.094 ± 0.186 0.615

Girls 0.471 ± 0.112 < 0.001 0.324 ± 0.143 0.024 − 1.82 ± 1.21 0.132

BMI SDS 0.031 ± 0.042 0.449 − 0.276 ± 0.053 0.605 0.757 ± 0.448 0.092

Systolic BP SDS 0.094 ± 0.042 0.026 0.169 ± 0.057 0.003 1.19 ± 0.440 0.007

eGFR (ml/min/1.73m2) 0.010 ± 0.007 0.144 − 0.002 ± 0.009 0.836 − 0.156 ± 0.073 0.035

Albumin (g/l) − 0.016 ± 0.010 0.113 − 0.012 ± 0.013 0.357 − 0.285 ± 0.106 0.008

Log-CRP − 0.027 ± 0.035 0.433 0.019 ± 0.044 0.664 − 0.004 ± 0.369 0.991

Phosphate SDS − 0.034 ± 0.056 0.548 − 0.057 ± 0.073 0.435 0.181 ± 0.590 0.759

Ca-based P binders − 0.153 ± 0.119 0.200 − 0.263 ± 0.153 0.087 2.06 ± 1.27 0.106

Iron therapy 0.033 ± 0.127 0.800 0.124 ± 0.161 0.441 − 0.340 ± 10.32 0.763

Start dialysis 0.351 ± 0.213 0.100 − 0.246 ± 0.272 0.366 2.01 ± 2.23 0.367

Diagnosis

Tubulointerstitial − 0.458 ± 0.160 0.004 − 0.171 ± 0.208 0.411 0.366 ± 1.73 0.832

Glomerulopathy 0.054 ± 0.224 0.811 − 0.172 ± 0.296 0.561 10.47 ± 2.46 0.549

Post-AKI 0.062 ± 0.271 0.820 0.196 ± 0.347 0.572 − 10.92 ± 2.96 0.687

Others 0.041 ± 0.268 0.878 − 0.219 ± 0.346 0.578 − 10.05 ± 2.98 0.725

Linear regression models were calculated for variables associated with change of cIMT SDS, PWV SDS, and LVMI within 12 months, respectively.
Baseline measurement of cIMT SDS, PWVSDS, and LVMI were respected as an additional variable. As some patients started dialysis during follow-up,
this variable was added to our analysis. All effects are adjusted for the covariate “time” (= time difference between the first and second measurement).
Diagnostic groups were compared to patients with CAKUT. See Table 1 for abbreviations
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burden and therefore leading to a higher increase of uric acid
and vice versa. It has indeed been shown that uric acid and
gut-derived toxins are excreted in part by the same organic
anion transporters (e.g., OAT3) [48–50]. The clinical signifi-
cance of these findings remains unknown; however, in view of
the conflicting evidence regarding the role of uric acid as a risk
factor for CVD [51], interactions in the excretion of uric acid
with gut-derived uremic toxins could be a confounding factor
in the evaluation of cardiovascular risk associated with either
uremic toxins or uric acid.

IS and pCS were both independently associated with eGFR
and correlated with each other (r = 0.20, p < 0.001). Both sol-
utes are among the best-studied uremic toxins. Several mech-
anisms leading to cardiovascular damage in vitro have been
reported for both toxins and corroborated in clinical studies in
adults [25, 52]. We can only speculate why IS, but not pCS,
was associated with cardiovascular outcome (baseline IMT
SDS, progression of PWV SDS) in our pediatric cohort.
Differences in population characteristics such as age, varia-
tions in risk factor load, and comorbid conditions such as
diabetes might explain the exclusive association of IS and
CVD in our cohort. Of note, pCS is independently associated
with the presence of diabetes [35, 44].

Several limitations of our study should be mentioned. First,
we performed a cross-sectional analysis and therefore cannot
prove any causal associations of uremic toxins and cardiovas-
cular phenotype. We cannot rule out the presence of symp-
tomatic or asymptomatic gastrointestinal disorders at the time
of blood drawing, which might have influenced intestinal
dysbiosis and hereby toxin levels. Furthermore, antibiotic
treatment, which also influences gut microbiome, and nutri-
tion were not recorded in our study. Toxin levels were only
measured at one single time point. It has been shown that
some toxins have a high intra-patient variability, which might
affect associations with clinical outcomes [53]. However, this
effect might be diminished by the large study population.
Finally, we measured only total and not free solute concentra-
tions, which are suspected to play an active role in CVD dis-
ease pathophysiology [34].

The results of this study outline potentially fruitful areas of
future clinical research. It is presently unclear whether uremic
solutes predispose to CVD [54–56] or promote [57] CKD
progression. To assess this issue, prospective evaluation of
free and total levels of uremic toxins and cardiovascular sur-
rogate parameters are necessary. This issue was not targeted in
our analysis but should be investigated further in cohort stud-
ies. Furthermore, since removal of protein-bound toxins by
dialysis is insufficient, the impact of preemptive renal trans-
plantation and different renal replacement strategies should be
reevaluated in the future [58, 59]. Finally, the role of pre-, pro-,
or antibiotics in influencing the gut microbiome and hereby
decreasing or increasing the burden of uremic toxins should
be further evaluated in clinical trials [6, 60].

Summarizing, our study shows an increase of uremic gut-
derived toxin burden in children with CKD, associated with
eGFR, urea, and uric acid. Serum levels of IS, but not pCS,
were independently associated with cardiovascular surrogate
parameters (baseline cIMT SDS) and their progression within
12 months (PWV SDS), independent of other risk factors.
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