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Abstract
Post-transplant lymphoproliferative disorder (PTLD) represents a spectrum of lymphoproliferative disorders and is a serious
complication of pediatric transplantation. The majority of PTLD are associated with Epstein Barr virus (EBV) and the charac-
teristic EBV+ B cell lymphomas are the leading post-transplant malignancy in children. EBV+ PTLD remains a formidable issue
in pediatric transplantation and is thought to result from impaired immunity to EBVas a result of immunosuppression. However,
the key viral and immune factors that determine whether EBV+ PTLD develops remain unknown. Recently, there has beenmuch
interest in developing biomarkers in order to improve and achieve more personalized approaches, in the clinical diagnosis,
management, and treatment of EBV+ PTLD. Here, we review the status of immune-, viral-, and B cell lymphoma-derived
candidates for biomarkers of EBV+ PTLD.
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Introduction

Kidney transplantation is the treatment of choice for children
with a variety of end-stage renal diseases [1]. However, life-
long immunosuppression is required to prevent immune-
mediated allograft rejection, and this is associated with several
serious complications in children, including increased risk of
infection and de novo malignancies. In pediatric transplant
recipients, the most common post-transplant malignancy is
associated with the Epstein Barr virus (EBV). EBV is a widely
disseminated gamma herpes virus that, in immunocompetent
individuals, is linked with both lymphoid and epithelial ma-
lignancies including Burkitt’s lymphoma, Hodgkin’s disease,
gastric adenocarcinomas, nasopharyngeal carcinomas, and
lymphomas in immunocompromised or immunosuppressed
individuals. The latter are classified within a heterogeneous
collection of abnormal lymphoproliferations termed post-
transplant lymphoproliferative disorder (PTLD), the majority
of which are of B cell origin and are associated with EBV
[2–4]. EBV+ B cell lymphomas in PTLD can be rapidly

progressing and potentially fatal, with mortality approaching
50%. In fact, EBV+ PTLD is the most commonmalignancy in
the pediatric transplant population with the incidence ranging
from ~ 3–7% in pediatric renal transplant recipients depending
on the series [5–7]. Pediatric transplant recipients, in particu-
lar, are especially susceptible to EBV+ PTLD since they are
often immunologically naïve prior to transplantation and may
acquire the virus from the donor organ in the setting of max-
imal immunosuppression. Moreover, a notable proportion of
pediatric renal recipients will develop EBV DNAemia, the
clinical significance of which is enigmatic. Finally, current
treatment options for EBV+ PTLD include reduction or elim-
ination of immunosuppression, chemotherapy, radiotherapy,
the anti-CD20 antibody Rituximab, and surgical resection
when feasible [8]. However, there is no consensus on the
optimal treatment because the efficacy of these approaches is
highly variable, with relapse rates and treatment-related mor-
tality a major concern, and because we cannot predict which
treatment strategy will best benefit individual patients [9–12].
Given these challenges, there is an urgent, unmet need for the
development of minimally invasive biomarkers to improve
personalized diagnosis, management, and treatment of
EBV+ PTLD in pediatric transplant recipients. At present,
no such biomarkers have been established and validated.
Here, we discuss the current state of an ongoing investigation
to elucidate cellular, molecular, and genetic characteristics as-
sociated with EBV infection and EBV+ PTLD, and the possi-
bility of their application as biomarkers (Fig. 1).
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EBV life cycle and the immune response

EBV is typically transmitted through the saliva from an infect-
ed individual to the host. In transplantation, another important
mode of transmission is via the graft, particularly in children
who may be EBV seronegative but receive an organ from an
EBV-seropositive adult. Following infection, EBV enters a
lytic phase that is accompanied by viral replication in the
oropharynx involving epithelial cells and B cells that culmi-
nates in the production of new viral progeny. Viral particles
are shed and can go on to infect other cells or they can be
transmitted to another host. In immunocompetent individuals,
the lytic phase is asymptomatic, though in adolescents and
young adults it can result in infectious mononucleosis (IM),
which is usually self-limiting. Eventually, EBV transitions to a
chronic, latent phase in which the virus is harbored as an
episome in a subset of memory B cells for the lifetime of the
host. Periodically, reactivation of the virus can occur possibly
triggered by antigen engagement of the B cell receptor of the
infected cell; however, the exact mechanisms surrounding this
process remain unclear.

There is extensive evidence that the T cell response
to EBV is critical for protection against the virus [13].
Each of the phases of the viral life cycle is associated
with expression of specific viral proteins that are capa-
ble of eliciting a potent cellular immune response dom-
inated by T cells, primarily CD8+ T cells, although
CD4+ T cells also play a role. Extensive analysis of T
cell responses to EBV in healthy donors and IM pa-
tients, using in vitro assays such as ELISPOT, cytotox-
icity assays, or cytokine production, and enumeration

with MHC/peptide tetramers, has catalogued a large
number of HLA-restricted immunodominant epitopes de-
rived from both latent and lytic cycle viral proteins
[14]. However, the associated responses in transplant
recipients, and especially those in patients that go on
to develop EBV+ PTLD, are poorly understood.
Nevertheless, the impairment of T cell function by im-
munosuppression is thought to be a major factor con-
tributing to the development of EBV+ PTLD.

Current approaches for monitoring EBV
in transplant recipients

EBV serology is routinely utilized to assess the status of viral
infection, and antibodies against latent and lytic cycle proteins
can be produced [15]. However, the immunosuppression ad-
ministered to transplant recipients complicates the interpreta-
tion of post-transplant serologies owing to alterations or inhi-
bition of the immune response. Consequently, PCR-based
methods to directly quantitate EBVDNA are used extensively
to monitor the viral load during the post-transplant period,
particularly in high-risk donor-recipient combinations which
occurs when EBV-naïve children receive a graft from an EBV-
seropositive donor. While EBV+ PTLD can arise at any time
post-transplantation, the incidence is highest in the first 1–
2 years post-transplant, so monitoring tends to be most fre-
quent during this period. In addition, the onset of clinical
features symptomatic of EBV+ PTLD can prompt EBV
PCR testing, and it can also be utilized to monitor response
to treatment for EBV+ PTLD. Currently, there is no standard-
ized assay for EBV quantitation and multiple PCR-based plat-
forms have been used, including those developed in-house or
at the center’s designated clinical lab. Thresholds for the de-
termination of elevated EBV viral load are established by
individual labs, but this also hinders the ability to compare
the results across centers. The development of a WHO inter-
national standard for EBV should contribute to improved har-
monization of PCR-based quantitation of EBVacross centers
[16]. However, it remains unclear what the most informative
compartment is to analyze for the quantitation of virus. Most
studies utilize either whole blood or plasma, but others have
utilized serum, peripheral blood mononuclear cells (PBMC),
or isolated B cells for the assessment of EBV viral load. Thus,
a multitude of studies have compared the measurement of
EBV viral load in samples from various compartments
[17–21] as well as in different organs [19, 21–24]. Across
these studies, the viral load cutoff can vary markedly with
respect to numerical range, the denominator used (per μg of
DNA, per 105 or 106 cells, per ml), and the different types of
organ transplants. It will also be important to evaluate this
information in the context of whether the purpose is surveil-
lance or assessment of viral load when PTLD is suspected.

Fig. 1 Viral, immune, and lymphoma-derived biomarker candidates for
EBV+ PTLD. Potential biomarkers for EBV+ PTLD includemiRNA and
either cell-associated or extracellular DNA from the virus; molecules,
including cytokines, miRNA, soluble light chain, and sCD30 produced
by the B lymphoma cells, genomic variants, or polymorphisms from the
host cell or EBV DNA, and alterations in immune cell frequency or
function
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The clinical significance of observed elevations in EBV
viral load has been the subject of intense interest in the field,
yet there remains no consensus on how to apply this informa-
tion to diagnosis and management of EBV+ PTLD. DNAemia
does not necessarily portend the onset of EBV+ PTLD.
Whereas prior studies show the majority of patients with
EBV+ PTLD had elevations in EBV viral load prior to clinical
diagnosis [25], and higher first positive or peak levels of virus
[26, 27], not all patients with DNAemia go on to develop
EBV+ PTLD. In fact, some patients manifest prolonged viral
elevations and have been termed chronic high viral load
(CHL) carriers, but do not progress to EBV+ PTLD [28,
29]. Green et al. showed that CHL patients were more likely
to progress to EBV+ PTLD if they were cardiac recipients as
compared with liver recipients, illustrating the complexity of
this problem [30]. A recent study of pediatric kidney trans-
plant recipients indicates that 8% became CHL but none went
on to develop late-onset EBV+ PTLD [31]. These results sug-
gest that the proportion of pediatric kidney recipients with
CHL that ultimately develop PTLD is less than seen in other
solid organ transplants. Thus, the interpretation and clinical
management decisions, in the face of elevated EBV load, are
challenging, and additional monitoring approaches are needed
to assess the risk, or impending onset, of EBV+ PTLD.

Biomarkers

Biomarkers have been defined by the National Institutes
of Health Biomarkers Definitions Group [32] as “a char-
acteristic that is objectively measured and evaluated as
an indicator of normal biological processes, pathogenic
processes, or pharmacologic responses to a therapeutic
intervention.” Biomarker assessment has become an in-
creasingly common feature of clinical studies and may
inform on the risk of disease, diagnosis, clinical out-
come, and response to treatment depending on study
design [33]. Less invasive sampling, as with blood, is
preferable but analysis of tumor specimens in EBV+
PTLD has also been investigated. Currently, there are
no established biomarkers for use in EBV+ PTLD.
Discovery, validation, and reproducibility testing of bio-
markers are a rigorous, multi-step process, and a variety
of statistical tests must be applied to establish a bio-
marker as reviewed extensively by others [33, 34].
Here, we focus on recent studies of biomarker candidate
molecules for determining risk, diagnosis, and response
to the treatment of EBV+ PTLD. We have categorized
EBV+ PTLD biomarkers candidates according to their
origin, whether it be the virus itself, host genomics, the
immune response to EBV, or the virally infected B lym-
phoma cells.

Viral nucleic acids and proteins

Detection of EBV nucleic acids and proteins in tissues
for diagnosis

Viral nucleic acids or proteins are useful in establishing the
presence of EBV in tissues for diagnostic purposes. Along
these lines, in situ hybridization of Epstein Barr encoding
region (EBER) is the standard method for the detection of
EBV in tissue sections. The presence of EBER is consistent
with the latent EBV infection, as is seen in EBV+ PTLD, and
can help localize the virus to specific cell types within the
lesion. Immunohistochemical staining for latent membrane
protein 1 (LMP1), an EBV-encoded latent cycle protein, is
also used to identify EBV-infected cells in tissue specimens,
though this methodology may be less conclusive given the
sensitivity of the anti-LMP1 antibodies that are an available
and potentially variable expression of LMP1 in tumors.

Detection of EBV nucleic acids and proteins in blood
as predictors of PTLD or at the time of diagnosis

miRNA are small, non-coding RNA that are important in post-
transcriptional regulation of cellular genes and have attracted
interest as biomarkers, in part, due to their stability in blood.
Of note, EBV was the first virus shown to encode miRNA
[35]. However, despite the growing literature on the impor-
tance of EBV miRNA in the process of B cell transformation
and proliferation, there are relatively few studies that have
addressed their potential as biomarkers for EBV+ PTLD.
Hassan et al. [36] examined 42 EBV-encoded miRNA origi-
nating from the BARTand BHRF viral open reading frames in
pediatric renal transplant recipients. They noted several
BART-derived miRNA, including BART7-3p, 15, 9-3p, 1-
3p, and 3-3p, were only detected in CHL patients (n = 10
analyzed) and IM patients, compared with transplant recipi-
ents that had previously resolved an EBV infection. One CHL
patient went on to develop EBV+ PTLD many years later and
had markedly increased BART2-5p, compared with CHL pa-
tients, prior to disease onset. A few studies have examined the
EBV miRNome within the PTLD tumor tissue itself. Navari
et al. [37] found miRNA expression in tumor tissue was pri-
marily of cellular origin, but the EBV miRBHRF-1-2 was
detected in diffuse large B cell lymphoma type PTLD as com-
pared with EBV+ Burkitt’s lymphoma tissues. miRNA pro-
files were examined in CNS-associated EBV+ PTLD as com-
pared with systemic EBV+ PTLD to gain insight into viral and
cellular features that may distinguish them [38]. BART-
encoded and BHRF1-encoded miRNAwere identified in most
of the EBV+ PTLD specimens but 28 host cell–derived
miRNA were found to be differentially expressed between
systemic and CNS type PTLD. Interestingly, the CNS PTLD
specimens could be divided into two subtypes, one that was

Pediatr Nephrol (2020) 35:1173–1181 1175



more similar to the systemic PTLD and another that was
unique to the CNS. Whereas analysis of latent cycle genes
failed to distinguish the CNS and systemic PTLD specimens,
at least one lytic gene could be identified in all EBER+ lym-
phomas, despite the presence of the type III latency pattern
that is a characteristic of EBV+ PTLD.

Expression of the lytic cycle gene BZLF1 and the latent
cycle gene LMP2A was analyzed in the blood of PTLD pa-
tients, transplant recipients without PTLD, and non-
transplanted subjects with EBV DNAemia [39]. The ratio be-
tween LMP2A and BZLF1 was not different between PTLD
and non-PTLD transplant recipients but was lower than in
non-transplanted subjects. Habib et al. [40] measured the
ZEBRA protein, a product of the BZLF1 gene of EBV, in
the serum of 35 patients with PTLD. Soluble ZEBRA was
detected in 60% of PTLD cases and was present in significant-
ly higher levels in early-onset PTLD patients, but not late-
onset PTLD, compared with subjects who did not develop
PTLD.

Expression of the latent cycle genes EBNA3c, LMP1, and
LMP2A/B, and the lytic cycle–associated gene gp350 was
variable in the blood of 11 cardiac recipients with PTLD with
a mixture of lytic and latent patterns [41]. The most common
signature showed evidence of latency III and lytic cycle activ-
ity, similar to what was observed in healthy subjects with
elevated viral levels but also observed in transplant recipients
without PTLD. Collectively, these studies indicate that gene
expression of viral genes alone does not correlate with the
presence of EBV+ PTLD. Additional studies are needed to
determine whether viral gene expression can be used to pre-
dict the onset of EBV+ PTLD. Along these lines, a current
ongoing multi-center, prospective clinical study in pediatric
transplant recipients is evaluating whether the presence of
two gain of function mutations in LMP1 [42] is associated
with an increased risk of EBV+ PTLD (https://clinicaltrials.
gov/ct2/show/NCT02182986). More broadly, next-generation
sequencing approaches may facilitate the identification of vi-
ral genomic variations and/or mutations that are associated
with the development of EBV+ PTLD and could potentially
lead to new candidate biomarkers.

Other viruses that may be informative in the diagnosis
of PTLD

The Quake laboratory analyzed the human virome in cell-free
circulating DNA in the plasma of 96 heart and lung transplant
recipients [43], and tracked the impact of immunosuppression
and antiviral prophylaxis on viral levels. Interestingly, specific
viral families were associated with different levels of drug
therapy. When immunosuppression and antiviral medication
were low, herpesvirales and caudovirales were the predomi-
nant viral families, whereas at high drug levels, anelloviridae
was dominant. Patients with biopsy-proven rejection had

significantly lower levels of anelloviruses than patients with
no rejection. Together, these findings suggest that
anelloviruses load may be a surrogate marker of immunocom-
petence with high levels of anelloviruses indicative of
overimmunosuppression. Interestingly, metagenomic shotgun
sequencing of formalin-fixed paraffin-embedded tissues from
PTLD patients [44] showed that more than 50% of the spec-
imens contained anellovirus sequences, and the anellovirus
levels, but not EBV levels, were associated with death within
5 years in a univariate analysis. These findings indicate that
changes in the virome, and even specific viruses such as
anelloviruses, may provide indirect measures of immunosup-
pression and immune status which can promote the develop-
ment of EBV+ PTLD.

Host

B cell–derived miRNA

While EBVencodes its own miRNA, it can also modulate the
miRNA profile of the host cell it has infected. Harris-Arnold
et al. [45] demonstrated that the establishment of a latent in-
fection by EBV in human B cells markedly alters the expres-
sion of > 100 host cell miRNA, including miR155, which has
been shown to promote the development of B cell malignan-
cies [46]. Another miRNA, miR-194, was determined to par-
ticipate in the regulation of IL-10 [45], a known autocrine
growth factor for EBV+ B cell lymphomas [47]. More recent-
ly, it has been demonstrated that EBV-infected cells can re-
lease exosomes, cell-derived vesicles, containing miRNA, in-
to the extracellular milieu suggesting that they may be a
source of miRNA in the blood. Thus, like viral miRNA,
EBV-infected B cell–derived miRNA are a family of mole-
cules that warrant further exploration as biomarkers for EBV+
PTLD, particularly since miRNA have also shown promise as
biomarkers in other EBV malignancies, including nasopha-
ryngeal carcinoma [48, 49].

Genetic polymorphisms and HLA associations with EBV+
PTLD

Cytokines are important in mediating and regulating immune
responses to viruses and tumor cells. Several single nucleotide
polymorphisms have been defined within regulatory regions
of cytokine genes that are linked to either high or low levels of
production of the cytokine. Early studies examined cytokine
gene polymorphisms in transplant recipients to determine
whether either high- or low-production genotypes for specific
cytokines were associated with the development of EBV+
PTLD. While some provocative associations were observed,
some non-confirmatory or conflicting findings were also re-
ported leaving the utility of cytokine gene polymorphism as
potential biomarkers for the risk of EBV+ PTLD unresolved.
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For example, IFN-γ production by T cells and natural killer
(NK) cells is known to be important in antiviral responses and
a genotype linked to low IFN-γ production was associated
with early onset of EBV+ PTLD [50]. However, this associa-
tion was not confirmed in other studies [51, 52], though asso-
ciations between low-production genotypes of IL-10 and
TGF-β were noted in PTLD patients [52]. Moreover,
McAuley [53] reported that a specific variant allele within
the promoter of TNF-α was more frequent in EBV+ PTLD
patients, but no differences were seen in polymorphic regions
of lymphotoxin, IL-1-α, IL-6, IL-10, TNF receptor (R) I or II,
and IL-1R and IL-10R. Therefore, at present, there is no con-
clusive cytokine gene polymorphism or group of polymor-
phisms that are indicative of the increased risk of development
of EBV+ PTLD.

The possible link between HLA type and susceptibility to
EBV+ PTLD has also been examined. The HLA of transplant
recipients could potentially impact the quality and magnitude
of the immune response to EBV, due to variable efficacy in the
presentation of EBV-derived peptides and recognition by an-
tiviral effector cells. Several HLA of either donor or recipient
have been linked to increased, or decreased, susceptibility to
EBV+ PTLD and have been reviewed elsewhere [54–56].
These findings underscore the challenge of biomarker analy-
ses in EBV+ PTLD owing to the complexity of the disease,
the variety of organs transplanted, and the difficulty in achiev-
ing large cohort sizes that yield conclusive, broadly applicable
findings.

Immune response

Identification of EBV-specific T cells and characterization of T
cell responses to EBV in PTLD patients

A protective immune response to a primary EBV infection in
healthy individuals is associated with the expansion of signif-
icant populations of CD4+ and CD8+ T cells that are specific
for well-defined immunodominant epitopes of both lytic and
latent viral genes. Eventually, the EBV-specific T cell popula-
tion contracts and memory T cells are generated that provide
ongoing protection to the latent, persistent virus.

Because impaired, or altered, T cell responses to EBV are
thought to be an important component of the pathogenesis of
EBV+ PTLD, monitoring EBV-specific T cells in transplant
recipients could reveal new biomarkers for the risk of EBV+
PTLD. One possibility that has been considered is that the
generation or maintenance of EBV-specific T cells is dimin-
ished in those individuals that go onto to develop EBV+
PTLD. MHC/peptide multimers are complexes of HLA mol-
ecules carrying a specific peptide derived from a known
immunodominant EBV epitope. These fluorescently tagged
multimers, in combination with flow cytometry, can be used
to identify antigen-specific T cells and, therefore, assess the

frequency of T cells for known lytic and latent antigens. Early
studies with MHC class I/peptide tetramers established that
pediatric liver and kidney transplant recipients without
PTLD had similar frequencies of CD8+ T cells specific for
peptides derived from BZLF1, EBNA3A, and BMLF1 as
those reported in non-transplanted, healthy seropositive con-
trols [57]. Moreover, seronegative transplant recipients that
obtained a graft from a seropositive donor had detectable
levels of EBV-specific T cells in their circulation within a
month after transplantation. In adult solid organ transplant
recipients, class I multimers were used to compare the fre-
quency of CD8+ T cells specific for peptides derived from
EBNA3A, BMLF1, BZLF1, and LMP2 [58]. Overall, the
proportion of CD8+ T cells specific for lytic and latent cycle
proteins was increased in patients with chronic viral loads in
the circulation compared with patients with undetectable viral
load, yet similar to the levels seen in healthy controls.
Moreover, the EBV-specific T cells of patients with chronic
high viral load had mixed functional characteristics including
the expression of the activation marker CD38 and the exhaus-
tion marker PD-1, along with the reduced IFN-γ production.
Thus, the specificity and frequency of EBV-specific Tcells are
similar in PTLD-free transplant patients and healthy, seropos-
itive donors, but questions remain concerning the functional
properties of these cells.

There is limited data on EBV-specific T cells in patients
with PTLD. MHC class I tetramers for EBNA3A, LMP2,
BZLF1, and BRLF1 were used to assess EBV-specific
CD8+ T cells in the blood of PTLD patients. The frequencies
and specificities of EBV-specific Tcells were similar in PTLD
patients to that of healthy, EBV-seropositive recipients but
lower compared with transplant recipients with EBV reactiva-
tion in the absence of PTLD [59]. The total CD4+ T cell
counts were lower in PTLD patients than in a control group
consisting of healthy, seropositive donors, transplant patients
with EBV reactivation, or primary infection and no PTLD.
Clearly, additional studies are needed to determine whether
differences in the frequencies of EBV-specific T cells are in-
formative for identifying patients at risk of PTLD. Future
studies that include larger cohorts of subjects, enumeration
of antigen-specific CD4+ and CD8+ T cells, and the use of
multimers that expand our analysis to a broader range of HLA
types and EBVepitopes are necessary.

These studies most likely will need to be complemented by
the analysis of the function of EBV-specific T cells since al-
tered or impaired T cell function could also contribute to the
escape and expansion of EBV-transformed B cells. Along
these lines, Jones et al. [60] investigated whether CD4 or
CD8 T cells from PTLD patients could mount a functional
response to EBV proteins. PBMC were obtained from
PTLD patients or healthy donors and stimulated in vitro for
14 days with peptides from either the latent cycle protein
EBNA1 or the lytic cycle protein BZLF1, then restimulated,
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and the proportion of responding cells determined by flow
cytometry. No differences were seen in the ability of CD8+
T cells from PTLD patients, or healthy donors, to produce
IFN-γ or mobilize CD107 as a surrogate for cytotoxic func-
tion, in response to the viral antigens. In contrast, CD4+ T
cells from PTLD patients had significantly reduced IFN-γ
production in response to EBNA1 and BZLF1 as compared
with CD4+ Tcells from healthy donors. Interestingly, 10 of 14
PTLD patients carried a strain of EBV containing isoleucine
in place of threonine at position 524 of EBNA. This polymor-
phism in EBNA1 is within a HLA-B8–presented epitope that
elicits cytotoxic function by CD8+ T cells. These results sug-
gest that variations in the EBV genome may result in alter-
ations in the magnitude and specificity of the T cell response
to the virus.

Wilsdorf et al. [61] employed a different in vitro ap-
proach to assess anti-EBV–specific T cell responses in
pediatric PTLD patients by using the short-term culture
of PBMC with autologous, EBV-infected B cells prior
to the assessment of IFN-γ production. No differences
in the proportion of T cells that produce IFN-γ were
found when comparing the PTLD patients at the time
of diagnosis with pediatric transplant recipients with pri-
mary EBV infection or reactivation, or with healthy
controls. Nevertheless, the frequency of IFN-γ+ T cells
was lower in early PTLD as compared with the late
PTLD (more than 12 months post-transplant). Ning
et al. [62] compared the breadth of the CD4+ and
CD8+ T cell response after stimulation with a panel of
lytic and latent cycle peptides by assaying the cells for
simultaneous production of IFN-γ, MIP-1α TNF-α, IL-
2, and CD107 mobilization. Though only two PTLD
subjects were included, they showed a striking pattern
with a predominantly monofunctional response such that
only one cytokine or CD107 was mobilized in each cell.
In con t ras t , hea l thy sub jec t s o f ten showed a
polyfunctional response with multiple functions pro-
duced by individual cells, a property that has been as-
sociated with immune protection against viruses. Finally,
a prospective study of 45 pediatric liver recipients mon-
itored the number of EBV-specific T cells that produced
IFN-γ by ELISPOT in combination with EBV viral load
[63]. All seven of the children that developed PTLD
had a high viral load and a low level of EBV-specific
T cells. A score was established based on the number of
lymphocytes per milliliter of blood, the percentage of
lymphocytes in PBMC, and the number of spots per
105 PBMC in the ELISPOT. No patients with a score
of greater than 2/mm3 developed PTLD. Together, these
studies suggest that the combined assessment of viral
load with T cell frequency and function may hold po-
tential in identifying patients at risk of developing
EBV+ PTLD.

Natural killer cells and control of EBV infection

NK cells are a rapidly responding cellular effector population
of the innate immune system that is particularly important in
the elimination of virally infected cells and tumor cells. Recent
studies [64, 65] have revealed that NK cells play an important
role in the recognition and cytotoxicity of B cells that harbor a
latent EBV infection, as is seen in the EBV+ B cell lympho-
mas associated with PTLD. The phenotypic analysis demon-
strated that NK cells in PTLD patients had predominantly
CD56dimCD16− and CD56−CD16+ NK cells in contrast to
asymptomatic pediatric transplant [66]. Furthermore, NK cells
in PTLD patients had downregulation of the natural cytotox-
icity receptor NKp46 and the activating receptor NKG2D and
upregulation of PD-1, associated with cellular exhaustion,
suggesting NK cells from PTLD patients are functionally im-
paired. Taken together, these studies indicate that further in-
vestigation of NK cell subsets may be informative in identify-
ing PTLD-associated changes in the immune response to
EBV.

B lymphoma cells

EBV+ B cell lymphomas–derived cytokines associated
with PTLD

Establishment of latent EBV infection in B cells results in
multiple changes in host cell gene expression that promote
tumor cell survival and proliferation. One latent cycle protein,
LMP1, can induce expression of host cell cytokines including
IL-6 [67] and IL-10 [68]. These cellular cytokines are secreted
by the infected B cells, utilized as autocrine growth factors
[47, 67], and can be measured in the blood of PTLD patients.
Thus, they have received interest as possible biomarkers of
EBV+ B cell lymphomas in PTLD. Most studies have been
done in adult transplant recipients with PTLD and have shown
increases in IL-10 levels at the time of EBV+ PTLD diagnosis
[69–71], whereas some also show increases in IL-6 at the time
of diagnosis [70] and others do not [71]. IL-6 has also been
shown to increase prior to the development of PTLD in adults
[67] and children [72], and seems to track more closely with
disease showing a rise when the disease progresses and a drop
in levels with successful treatment [70]. However, elevations
in IL-6 are also noted in patients with other infections or re-
jection [67].

Other soluble molecules produced by B cell lymphomas

CD30 is a member of the TNF receptor family and is
expressed on the membrane of activated T and B cells.
Soluble CD30 is released when CD30 is proteolytically
cleaved from the membrane and has been detected in the cir-
culation following viral infection, graft rejection, cancer, and
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autoimmunity. In a single study of 23 EBV+ PTLD patients,
sCD30 was elevated during PTLD compared with transplant
recipients without PTLD and healthy controls [73]. The ele-
vations in sCD30 in PTLD patients correlated with increased
EBV DNA levels. Another product of B cells, free light chain
(FLC) of immunoglobulin (Ig), is also released by B cells and
elevated light chains or altered kappa/lambda ratios in the
circulation may be an indication of abnormal B cell activation
or expansion. Elevations in FLC were noted in adult EBV+
PTLD patients but a significant proportion of matched PTLD-
free transplant controls also showed elevations in FLC.
Nevertheless, elevated FLC in the peripheral blood prior to
EBV+ PTLD were associated with an increased risk of subse-
quent disease [74]. The same group conducted a study of 36
liver and hematopoietic stem cell pediatric transplant recipi-
ents, including 12 with PTLD, and analyzed for kappa and
lambda FLC, monoclonal Ig (M) proteins, and sCD30 [75].
More than 90% of the samples had elevations in sCD30 and
20–30% showed elevations in kappa or lambda FLC. M pro-
teins were found in the majority of subjects but were more
frequent in the PTLD samples. Overall, these studies indicate
that in transplant recipients, disturbances in B cells including
elevated FLC are common. Similarly, sCD30 can be released
in response to a variety of antigenic stimuli. Thus, other
immune-activating events beyond EBV infection and the
pathogenesis of PTLD modulate the levels of these B cell–
associated markers.

Summary

Diagnosis, management, and treatment of EBV+ PTLD re-
main a clinical challenge. At present, there is a need for non-
invasive, specific, and sensitive biomarkers that can contribute
to improved clinical care. Research to identify new bio-
markers has primarily focused on molecules of viral, immune,
or lymphoma origin that can be detected in the blood. While
there are some promising candidate molecules, there are sig-
nificant challenges with identifying biomarkers that are spe-
cific indicators of risk for development of EBV+ PTLD, di-
agnosis, and response to treatment. The improved utility may
be achieved by a combined analysis of candidate molecules
with measurements of viral load. In addition, the majority of
studies to date have been conducted in comparatively small
numbers of adult subjects. Therefore, it will be important to
establish multi-center pediatric studies to increase the study
cohort size in order to evaluate and validate the most informa-
tive biomarkers.
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