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Abstract

Background Dry weight is the lowest weight patients on hemodialysis can tolerate; correct dry weight estimation is necessary to
minimize morbi-mortality, but is difficult to achieve. Here, we used artificial intelligence to improve the accuracy of dry weight
assessment in hemodialysis patients.

Methods/Results We designed a neural network which used bio-impedancemetry, blood volume monitoring, and blood pressure
values as inputs; output was artificial intelligence dry weight. Fourteen pediatric patients were switched from nephrologist to
artificial intelligence dry weight. Artificial intelligence dry weight was higher (28.6%), lower (50%), or identical to nephrologist
dry weight. Mean difference between artificial intelligence and nephrologist dry weights was 0.497 kg (— 1.33 to + 1.29 kg). In
patients for whom artificial intelligence dry weight was lower than nephrologist dry weight, systolic blood pressure significantly
decreased after dry weight decrease to artificial intelligence dry weight (77th to 60th percentile, p = 0.022); anti-hypertensive
treatments were successfully decreased or discontinued in 28.7% of cases. In patients for whom artificial intelligence dry weight
was higher than nephrologist dry weight, no hypertension was observed after dry weight increase to artificial intelligence dry
weight; when present, symptoms of dry weight underestimation receded.

Conclusions Neural network predictions outperformed those of experienced nephrologists in most cases, proving artificial
intelligence is a powerful tool for predicting dry weight in hemodialysis patients.
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Introduction

End-stage renal disease (ESRD) is a public health issue in
most developed countries. In the USA, about 70% of ESRD
patients are treated with hemodialysis, either temporarily or
permanently. ESRD patients on chronic hemodialysis face an
increased morbi-mortality compared to kidney transplant re-
cipients [1]; in particular, the prevalence of cardiovascular
complications such as hypertension [2] and left ventricular
hypertrophy [3] or cardiac ischemia increases as dialysis is
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maintained. Therefore, to maximize cardiovascular tolerance
[4], dialysis parameters need to be optimized; this is particu-
larly true for dry weight (DW) [5].

Dry weight is usually defined as the lowest weight a patient
on chronic hemodialysis can tolerate [6]. It has been reported
that DW overestimation is responsible for hypertension [7]
and cardiac dysfunction, whereas DW underestimation leads
to hypotension [8], asthenia, and ischemia. DW management
is a complex process; frequent DW updates are often neces-
sary, especially in children, to avoid DW underestimation that
occurs owing to patients’ ponderal growth; the same concept
is true in malnourished patients, for whom DW overestimation
is the main risk.

As a consequence, it is crucial to use an efficient and pre-
cise method to determine DW in ESRD patients on chronic
hemodialysis.

Historically, DW was determined from clinical examina-
tion, looking for edema or cutaneous fold, and from blood
pressure measurements [9]. Over the years, paraclinical tools
have been developed to help nephrologists assess DW.
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Measure of the cardio-thoracic ratio on chest X-rays has been
used for a long time, but is an imprecise method, as it is
dependent on underlying cardiovascular conditions, such as
cardiac hypertrophy [10]. Ultrasonic measurement of the in-
ferior vena cava diameter remains controversial, as it seems
related to DW in some studies only; moreover, it has not
proven to be correlated with DW in pediatric patients [11].
Modern multi-frequency bio-impedancemetry has been vali-
dated as part of the strategy to estimate DW [12]; however,
due to inter-individual variability, bio-impedancemetry is not
usually the only technique used to estimate DW. Thoracic
ultrasound could also be a promising tool [10], but is still
being evaluated. Finally, blood volume monitoring during he-
modialysis has been documented as a valuable help to esti-
mate DW [13]; however, the inter-individual variability of this
method remains an issue.

To date, no perfect tool has emerged to precisely assess
DW in ESRD patients on chronic hemodialysis; in the absence
of clear guidelines, most nephrologists determine DW empir-
ically, using technologies available in their center.

However, such an empirical assessment of DW often
proves to be inaccurate [6]. This imprecision jeopardizes dial-
ysis tolerance and increases morbidity, particularly in low-
weight infants and children. To improve the accuracy of DW
determination, we turned to artificial intelligence [14, 15], a
novel and powerful technology.

Patients and methods

Patients

ESRD patients on chronic hemodialysis or hemodiafiltration
weighing 20 kg or more were considered between July 1st
2017 and August 2nd 2017 in Robert Debré Hospital.
Neural network

Inputs

Inputs to the neural network were patients’ hydration status
measured by bio-impedancemetry (derived from the relative
hydration to body weight ratio), relative blood volume mea-
sured by blood volume monitoring, and post-dialysis systolic
blood pressure.

Output

The output of the neural network was a correction to apply to
nephrologist DW to obtain artificial intelligence DW.
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Training

Simulated dialysis sessions were created in silico to train
the neural network; tuples of simulated inputs were
computer-generated along with corresponding simulated
output. Neural network training required 11,866 loops
and 698 epochs.

Hydration status

Hydration status was measured using bio-impedancemetry
(Fresenius Body Composition Monitor), according to the
manufacturer’s guidelines, and expressed as a relative percent-
age of hydration, derived from the relative hydration to body
weight ratio.

Relative blood volume

Relative blood volume was monitored during hemodialysis on
hemodialysis machines (Fresenius 5008) according to the
manufacturer’s recommendations.

Blood pressure

Blood pressure was measured according to the American
Heart Association recommendations using oscillatory
methods on certified devices, and converted into percentiles
based on patients’ age and height. Blood pressures > 90th
percentile or < 50th percentile were confirmed by ausculta-
tory methods.

Dialysis
Dialysis sessions

Patients were on hemodialysis or hemodiafiltration depending
on their medical history; all patients had 3 dialysis sessions per
week; each session lasted 4 h.

Assessment session

Stable patients on chronic hemodialysis were monitored for
hydration status, relative blood volume, and post-dialysis
blood pressure during assessment sessions. These parameters
were used by the neural network to determine artificial intel-
ligence DW.

Follow-up sessions

After validation by expert nephrologists, artificial intelligence
DW was used as reference DW for the following dialysis
sessions. Tolerance was monitored for at least 3 consecutive
follow-up dialysis sessions in terms of inter-dialytic and intra-
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dialytic undesirable events. Inter-dialytic undesirable events
included systolic or diastolic blood pressures above the 75th
percentile or significantly below the 50th percentile, asthenia
and dizziness; intra-dialytic undesirable events included asthe-
nia, post-dialytic systolic or diastolic blood pressures above
the 75th percentile or significantly below the 50th percentile,
or clinically relevant blood pressure drops.

Statistics

Statistical analysis was performed using Prism by GraphPad.
Non-parametric Wilcoxon-Mann-Whitney test was used to
compare medians.
P values < 0.05 were considered significant.

Results
Network training

We applied artificial intelligence to clinical decision making
as we designed, trained, tested, and used a multi-layer
perceptron neural network [14] to determine DW in ESRD
patients on chronic hemodialysis (Supplementary Fig. 1).

Simulated dialysis sessions were computer-generated to
train the neural network: tuples of simulated neural network
inputs (relative percentage of hydration, relative blood vol-
ume percentage and systolic blood pressure expressed as a
percentile) were generated along with their corresponding
simulated output (the percentage of correction that should
be applied to the simulated DW to obtain an improved DW).
Network error after training was 0.00076 (maximum output
error tolerance, 0.02).

Network testing and validation

During the test phase, neural network DW predictions
were performed in real patients and compared to actual
DW estimated by experienced nephrologists based on
clinical examination and blood pressure measures, bio-
impedancemetry results, cardio-thoracic ratio, and blood
volume monitoring analysis. Pearson’s test showed a
strong positive correlation between DW predicted by the
neural network during the test phase, and observed DW in
stable patients (R =0.9997, p <0.00001).

Population characteristics

Once validated, the neural network was used to prospectively
predict DW in 14 patients on chronic hemodialysis who were
switched from nephrologist dry weight (N-DW) to artificial
intelligence dry weight (AI-DW) as shown in Fig. 1. Sex ratio
was 71% male, mean age was 13.7 years (7 to 17 years), and
mean weight was 40.9 kg (20 to 60.2 kg).

Network predictions

Artificial intelligence dry weight was higher (28.6% of cases),
lower (50%), or identical (21.4%) to N-DW. Mean difference
between N-DW and AI-DW was 0.497 kg (—1.33 to +
1.29 kg). There was no significant difference between Al-
DW and DW that could be achieved in practice after the pa-
tients were switched to AI-DW (p =0.99).

A Bland-Altman plot of AI-DW and N-DW showed a bias
of —0.098; 95% limits of agreement ranged from —1.36 to
1.17, as shown in Supplementary Fig. 2.

Fig. 1 Flowchart of the study.
Parameters required by the neural
network to determine artificial
intelligence dry weight (AI-DW)
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Evaluation of DW control

In patients for whom AI-DW was lower than N-DW, AI-DW
was evaluated in terms of blood pressure control, limitation of
anti-hypertensive treatments, and clinical tolerance. Median
systolic blood pressure significantly decreased after DW ad-
justment to AI-DW (77th percentile to 60th percentile, p =
0.022). Anti-hypertensive treatments were successfully de-
creased or discontinued in 28.7% of cases. Direct conse-
quences of blood pressure decrease on left ventricular mass
were not evaluated in this study; however, it has been shown
that better blood pressure control improves cardiovascular
outcome in patients on chronic hemodialysis [2]. No intra-
dialytic or inter-dialytic undesirable events were reported in
these patients.

In patients for whom AI-DW was higher than N-DW, Al-
DW was evaluated in terms of blood pressure control, absence
of initiation of anti-hypertensive treatments, and clinical tol-
erance. No significant change in median systolic blood pres-
sure occurred after DW adjustment to AI-DW (67th to 68th
percentile, p =0.99). Before increasing DW from N-DW to
AI-DW, one patient presented intra-dialytic blood pressure
drop, and two patients complained of mild inter-dialytic as-
thenia; after increasing DW to AI-DW, no intra-dialytic or
inter-dialytic undesirable events were reported. No anti-
hypertensive treatment had to be initiated in these patients.

Notably, no significant difference in terms of tolerance or
blood pressure values was noticed between patients on hemo-
dialysis or hemodiafiltration.

Discussion

Arttificial intelligence in general—and neural networks in par-
ticular—is a powerful approach to approximate functions
which depend on several variables in a complex, non-linear
way [14]. Here, we hypothesized that DW was in the co-
domain of a function which could be successfully approximat-
ed using 3 main variables: patients’ hydration status, relative
blood volume, and blood pressure; these variables have all
been reported to be correlated to DW [9, 12, 13]. In our study,
neural network DW predictions outperformed those of expe-
rienced nephrologists in most cases. Interestingly, variables
required by the neural network to determine AI-DW are vali-
dated, cheap, and easy to obtain, as most centers already use
bio-impedancemetry, blood volume monitoring, and blood
pressure measures to appreciate dialysis tolerance. Notably,
collecting these data is a non-invasive process, which is an
important argument when taking care of children.

From a technical point of view, neural network interface
was user-friendly and could be accessed online through the
Internet, on a computer or a smartphone; this ease of use is an
important criterion for artificial intelligence deployment.
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The main downside of artificial intelligence is the ne-
cessity to retrain the neural network whenever a signifi-
cant change is made in the target population, or in the
way an input is measured; for example, changing relative
blood volume or hydration status measuring techniques
would require a retraining of the network. Moreover,
managing an artificial intelligence algorithm requires spe-
cific competences that are beyond the scope of pure med-
ical training; it necessitates a multidisciplinary approach,
involving computer scientists, mathematicians, and
physicians.

In conclusion, artificial intelligence improved DW estima-
tion and hemodialysis tolerance in pediatric patients. Further
studies are required to assess the impact of the better DW
control obtained with artificial intelligence, in particular in
terms of cardiovascular complications.
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