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Abstract
The increasing use of extended criteria organs to meet the demand for kidney transplantation raises an important question of how
the severity of early ischaemic injury influences long-term outcomes. Significant acute ischaemic kidney injury is associated with
delayed graft function, increased immune-associated events and, ultimately, earlier deterioration of graft function. A compre-
hensive understanding of immediate molecular events that ensue post-ischaemia and their potential long-term consequences are
key to the discovery of novel therapeutic targets. Acute ischaemic injury primarily affects tubular structure and function.
Depending on the severity and persistence of the insult, this may resolve completely, leading to restoration of normal function,
or be sustained, resulting in persistent renal impairment and progressive functional loss. Long-term effects of acute renal
ischaemia are mediated by several mechanisms including hypoxia, HIF-1 activation, endothelial dysfunction leading to vascular
rarefaction, sustained pro-inflammatory stimuli involving innate and adaptive immune responses, failure of tubular cells to
recover and epigenetic changes. This review describes the biological relevance and interaction of these mechanisms based on
currently available evidence.
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Introduction

The global burden of chronic kidney disease (CKD) has been
steadily increasing over recent years. This has resulted in a
continuing rise in the number of kidney transplants performed,
but also identifies a major problem for kidney transplant
programmes—a shortage of available donors. The increasing
use of extended criteria donors and utilisation of ex vivo nor-
mothermic perfusion technologies are some of the steps taken
to increase the donor pool. However, this will also increase the
number of organs with more severe ischaemic injury, poten-
tially increasing the risk of delayed graft function and earlier
deterioration in graft function. A comprehensive understand-
ing of molecular events involved in post-ischaemic kidney

injury and how they may affect the long-term function of the
organ is crucial in formulating prevention strategies and to
identify novel therapeutic targets. We review the available
evidence on the underlying mechanisms involved in the pro-
gression of acute kidney injury (AKI) to CKD, focusing on
transplantation.

The link between AKI and CKD

An increasing number of clinical epidemiology studies have
reported an association between AKI and the development of
CKD [1, 2]. Despite the well-established epidemiological link
between AKI and CKD, evidence to support a causative rela-
tionship between the two clinical entities is still lacking.
Transplant patients serve as an ideal cohort to investigate the
link between acute ischaemic injury and development of late
organ dysfunction. Ischaemic injury in kidney transplantation
initially manifests as delayed graft function (DGF), which is
associated with prolonged hospitalisation and the need of re-
nal replacement therapy post-transplant. Nevertheless, recov-
ery of organ function is usually achieved in patients with DGF,
indicating a degree of resolution of acute ischaemic injury.
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However, several studies have reported that patients with DGF
have increased risk of acute rejection and poorer long-term
renal function [3]. These findings provide a link between acute
ischaemic injury to the kidney and long-term deterioration in
graft function, despite relatively Bnormal^ function in the ear-
lier stages. Several mechanisms have been proposed in the
development of chronic dysfunction, as illustrated in Fig. 1.
It is important to consider these mechanisms not as separate
pathophysiologic entities, rather as components of an intricate
network with many overlapping, co-existing pathways.

Role of hypoxia and hypoxia-inducible factor
(HIF)

The renal response to hypoxia

The anatomy of the nephron and renal microcirculation plays
a crucial role in understanding the effect of ischaemia on the
kidney. In physiological conditions, kidneys receive approxi-
mately 20% of cardiac output. This blood flow is primarily
channelled to the cortex with blood flow to the medulla pre-
dominantly from the vasa recta, a continuation of efferent
arterioles of the juxtamedullary glomeruli. In comparison to
other parts of the body, the kidney, particularly the outer me-
dulla, operates at lower oxygen tensions, both during
normoxia and hypoxia [4]. This is due to post-glomerular
arterio-venous shunting and high oxygen demands [5]. In re-
sponse to hypoxia, kidney blood flow may alter dramatically,
especially to the outer medullary region, reducing oxygen
delivery and increasing hypoxic injury in this region.

The capacity of a kidney to withstand an ischaemic injury
or to undergo repair after an ischaemic injury is highly depen-
dent upon the available nephron mass, pre-existing
glomerulosclerosis and arteriosclerosis [6, 7], features typical-
ly associated with increasing donor age. In experimental
models of transplantation, older kidneys were more suscepti-
ble to ischaemic injury even after a brief ischaemia time [6]. A
retrospective analysis of the Australian and New Zealand
transplant registry by Wong et al. [8] also suggests a signifi-
cant interaction between total ischaemic time, donor age and
graft function, with higher DGF rates in recipients receiving
kidneys from older donors.

The mechanism by which a further reduction in oxygen
delivery to the kidney induces AKI has been well
established. However, demonstrating the role of hypoxia
in progression of kidney injury in the longer-term is more
challenging. Several studies have shown an association
between chronic tubulointerstitial hypoxia, oxidative stress
and chronic inflammation, and that these factors are in-
volved in the progression of CKD [9, 10].

The role of hypoxia inducible factor

Cellular adaptation to hypoxia is largely regulated by a het-
erodimeric transcription factor, hypoxia-inducible factor
(HIF), which consists of two sub-units; α and β. Whereas
the β sub-unit is relatively insensitive to alteration in oxygen
levels, the level of the alpha sub-unit (HIF-α) is highly depen-
dent on cellular oxygen tension [11, 12]. HIF-α has two major
isoforms; HIF-1α, HIF-2α and one additional minor isoform
HIF-3α [11, 13]. HIF-α is expressed at a basal level in cells
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but in normoxic conditions HIF-α is hydroxylated by HIF-
prolyl hydroxylase (PHD) leading to ubiquitination and deg-
radation. In order to perform their catalytic function, HIF-
prolyl hydroxylases require O2, Fe and 2-oxoglutarate (an
intermediate in the Tri-carboxylic acid cycle) [14]. In
normoxic conditions, degradation occurs very rapidly,
resulting in very short half-life of HIF-α, making it almost
undetectable in healthy cells. During hypoxia, HIF-propyl hy-
droxylase function is reduced, leading to accumulation of
HIF-α in the cytoplasm. HIF-α forms a complex with the
constitutively expressed HIF-β, leading to nuclear transloca-
tion and binding of the complex to hypoxia-response elements
(HRE), initiating gene transcription (see Fig. 2).

Conde et al. found that HIF-1α is expressed during is-
chaemia, but disappears 24 h after hypoxia is reversed,
then reappears in late reperfusion [15], suggesting recur-
rence of tissue hypoxia during the cell regenerative phase
[16]. In human kidney allograft biopsies, upregulation of
HIF-1α is detected immediately after engraftment, at 10–
14 days post procedure, but not after 3 months [17]. These
findings suggest that renal hypoxia occurs not only during
the acute phase of ischaemic injury but also during the
recovery phase, presumably due to the activity of
oxygen-consuming regenerative processes.

HIF activation and fibrogenesis: antagonist
or protagonist

Current evidence is conflicting regarding the role of HIF in
progression of CKD. Experiments using cobalt chloride
(CoCl2) and dimethyloxalyglycine (DMGO) to stabilise HIF

and increase expression of HIF target genes in an ablation/
infarction mouse model showed up-regulation of vascular en-
dothelial growth factor (VEGF), glucose transporter 1
(GLUT1) and cell proliferation, indicating a reno-protective
effect of HIF [18]. Another study in mice assessed the relation-
ship between HIF-1, ischaemic acute kidney injury (AKI) and
the development of fibrosis by increasing HIF level using pre-
ischaemic pharmacological inhibition of HIF-propyl hydroxy-
lases. Increased HIF level was associated with reduced fibrosis
and less alpha-smooth muscle actin (α-SMA) expression at 21-
day post ischaemia reperfusion injury (IRI) [19]. This anti-
fibrotic effect was not observed when HIF-propyl hydroxylase
inhibition was given after IRI. In addition, Kobayashi et al.
documented reduced fibrosis in mice subjected to unilateral
ureteral obstruction (UUO) and global activation of HIF [20].

In contrast to these observations, there is a significant body
of evidence to support a pro-fibrotic role of HIF. Wang et al.
showed that silencing HIF-1α in a rat model of chronic renal
ischaemia decreased collagen and α-SMA induction [21].
Moreover, HIF-1α knockout prevented transforming growth
factor-β1 (TGF-β1) induced epithelial-to-mesenchymal tran-
sition (EMT) in mouse proximal tubular epithelial cells fol-
lowing unilateral ureteral obstruction (UUO) [22]. Our unpub-
lished data shows that hypoxia or stabilisation of HIF-1α is
associated with inhibition of SMAD7 and increased in
SMAD3 activity, also suggesting a pro-fibrotic role of HIF.
Post-ischaemic renal fibrosis can occur through several
mechanisms, including direct transcriptional regulation of
pro-fibrotic genes, epithelial-to-mesenchymal transition
(EMT) and induction of epigenetic changes. All of these
mechanisms can be driven by HIF activation, either
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through direct regulation or indirectly, involving crosstalk
with multiple signalling pathways [23, 24], as discussed in
the subsequent sections.

Direct transcriptional regulation of pro-fibrotic genes
by HIF

HIF binding to HREs in gene promotor regions allows
direct transcriptional regulation of many genes essential
in promoting renal fibrosis. As examples, in a mouse
glomerulosclerosis model, Baumann et al. has shown
HIF-1α binding to HREs in the promotor region of the
collagen type-1 alpha 2 chain (COL1A2) gene [25].
Nuclear accumulation of HIF-1α induced by ischaemia
was shown to promote extracellular matrix deposition by
renal proximal tubular epithelial cells by direct regulation
of plasminogen activator inhibitor-1 (PAI-1) [26].

Exposure of human renal fibroblasts to hypoxia in vitro led
to significant increase in Col-1 and tissue inhibitor of metal-
loproteinase (TIMP)-1 production, accompanied with de-
creased expression of collagenase [27]. Although hypoxia
alone induced TGF-β1, the introduction of an inhibitory
anti-TGF-β1 antibody had no effect in preventing hypoxia-
induced Col-1 and TIMP-1 mRNA expression, suggesting a
direct effect of HIF-1α on gene transcription [27]. In addition,
a study on human skin fibroblasts demonstrated the contribu-
tion of HIF-1α to the development of post-ischaemic fibrosis
by directly regulating pro-Collagen prolyl (P4HA1 and
P4HA2) and lysyl (PLOD2) genes essential for collagen de-
position, extracellular matrix stiffening and collagen fibre
alignment (see Fig. 3) [28].

HIF interaction with the TGF-β pathway

TGF-β is one of the main mediators of renal fibrosis. A rela-
tionship between HIF and TGF- β was shown by the increas-
ing level of TGF- β1 produced by tubular cells in response to
hypoxia [29]. HIF has been shown to directly regulate the
transcription of many genes involved in the TGF- β pathway.
In a glomerulosclerosis model, HIF-1α was shown to form a
complex with phophoSMAD3 at the COL1A2 promoter, in-
ducing Col-1 synthesis [25]. Similar synergistic interaction of
HIF and TGF-β1/SMAD3 signalling has also been reported in
the regulation of VEGF, endothelin and erythropoietin expres-
sion [24]. Furthermore, accumulation of HIF in the endothelial
cells of endothelial specific propyl hydroxylase-2 knockout
mice upregulated TGF-β1 expression, resulting in significant-
ly poorer renal function [30]. In a study using a renal tubular
cell line in which transcription of HIF-αwas absent, there was
a decrease in basal and TGF-β1 stimulated Col-1 expression
[31]. Altogether, these findings highlight the close interaction
between HIF and TGF-β pathway.

Despite being implicated in promoting fibrosis, TGF-β has
also been shown to have an immunosuppressive effect, which
may be beneficial in a kidney transplant setting. Yoshimura
et al. proposed several mechanisms by which TGF-β inhibits
the immune response [32]. These mechanisms include sup-
pression of helper T cell differentiation, suppression of T cell
activation and proliferation, suppression in macrophages, den-
dritic cells (DCs) and natural killer (NC) cells, conversion of
naive T cells to regulatory T cells, and inhibition of cytokine
production (IL-2, IL-4). The effect of the interaction between
HIF and TGF-β pathway on the recipients’ immune status,
and how this may affect long-term allograft function is not
known. However, profiling of biopsy tissues from chronic
allograft nephropathy (CAN) patients showed significantly
higher expression of both HIF-1α and TGF-β1 compared to
the group without CAN [33].

HIF interaction with other pro-fibrotic pathways

Post-ischaemic induction of HIF also plays a pro-fibrotic role
by indirect crosstalk with other pro-fibrotic pathways includ-
ing Notch, NF-κB and PI3K/Akt pathways [23]. The interac-
tion between HIF and these other pathways is complex (see
Fig. 3). HIF can increase the transcription of proteins involved
in these other pathways [30, 34]. HIF can also interact with
other transcription factors, augmenting their transcriptional
activity [35]. In addition, these other pathways can increase
HIF gene expression, creating a positive feedback loop [35].
Recently, a transcription factor CCAAT/enhancer-binding
protein δ (CEBPD) was discovered as a potential link between
hypoxia and inflammation. CEBPD is known to be rapidly
induced by inflammatory cytokines, such as IL-1β, in a
NF-κB dependent manner. In both an acute and chronic mu-
rine model of renal hypoxia, CEBPD was induced in the nu-
clei of tubular epithelial cells and by direct promoter binding
increased HIF transcription and activity [36].

Endothelial injury and vascular rarefaction

Depending on its severity, ischaemia alone may cause endo-
thelial injury/dysfunction. As a consequence, the endothelium
is no longer able to serve as an adequate barrier between the
insterstitium and the vascular compartment, loses its ability to
control adhesion and infiltration of immune/inflammatory
cells and fails to regulate key haemostatic mechanisms [37].
Endothelial cells contribute to progression of IRI by two main
mechanisms; (1) increased permeability and (2) vasomotor
dysregulation.

Increased endothelial permeability can be attributed to
direct injury to the endothelial cells, alterations to the actin
cytoskeleton, loss of cell-to-cell junctions and enhanced
leukocyte-endothelial interactions [38, 39]. In normal
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conditions, the endothelium is maintained in a monolayer
by the formation of intercellular junctional complexes.
These junctional complexes interact with the cell cytoskel-
eton and other intracellular proteins, and this interaction is
highly sensitive to physiological/pathophysiological stim-
uli, such as ROS, cytokines, lipid mediators and proteases
[37]. Release of pro-inflammatory mediators and ROS dur-
ing IRI will induce phosphorylation, internalisation and
degradation of these junctional complexes resulting in en-
dothelium structural damage [40].

Increased levels of prostaglandin H2, leukotrienes C4
and D4, increased sympathetic activity and reduced nitric
acid synthetase activity have all been documented follow-
ing endothelial injury, leading to vasoconstriction. [41].
The injured endothelium will also release chemotactic cy-
tokines, increasing leukocytes-endothelial adhesion and re-
lease of vasoactive, inflammatory cytokines, which in turn
amplify the vasoconstriction that occurs [41]. Exacerbation
of hypoxia is closely tied to changes in outer medullary
haemodynamic, mainly as a result of IRI induced inflam-
mation, which reduces naturally occurring anti-coagulant
activity crucial to prevent micro-coagulapathy [39]. The
combination of excessive vasoconstriction, leukocyte acti-
vation and subsequent activation of coagulation pathways
may lead to mechanical obstruction of the capillary net-
work and reduction in blood vessel patency, which further
compromises microcirculatory physiology, especially in
the outer renal medulla (see Fig. 4). As a consequence,
further ischaemia will ensue, amplifying the initial insult
as well as affecting subsequent repair processes.

Significant reduction in peri-tubular capillaries (PTC)
density has been suggested as a possible factor that makes

the post-ischaemic kidney susceptible to further loss of
function. Using the bilateral ischaemia reperfusion rat
model, Basile et al. showed a 30–50% permanent reduction
in PTCs in the outer medulla despite normal tubular mor-
phology. Ischaemic kidneys subsequently developed
tubulointerstitial fibrosis [42]. Similar findings were also
reported in a kidney transplant cohort. Loss of PTC during
the first 3 months post-transplant was associated with in-
creased interstitial fibrosis, tubular atrophy and reduced
renal function [43].

Basile et al. [44] proposed three possible mechanisms on
how post-ischaemic PTC loss may lead to the development of
long-term fibrosis: (1) exacerbation of pre-existing hypoxia,
(2) changes in outer medullary haemodynamics, which is
linked to impairment in sodium homeostasis, predisposing
the kidney to the development of sodium sensitive hyperten-
sion and (3) endothelial-to-mesenchymal transition
(EndoMT), which promotes proliferation of new fibroblasts.
Acute hypoxia has been linked with the activation of pro-
fibrotic pathway, and there is strong evidence available to
show that PTC loss increases interstitial hypoxia even after
the initial acute hypoxic episode has resolved [45]. Alterations
in outer medullary haemodynamics affect tubule-glomerular
feedback mechanisms that are involved in the regulation of
sodium homeostasis, leading to the development hypertension
[46]. EndoMT is a potential source of interstitial fibroblasts
after hypoxia. A study on bilateral ischaemic kidney mouse
model showed prominent co-existing staining of endothe-
lium (CD31 or cablin) and the mesenchymal marker
(S100A4) within 6 h after hypoxia, which was sustained
for at least 7 days [47]. The role of EndoMT is still not
clearly understood but there in increasing that data
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suggests it makes a significant contribution, in combina-
tion with the loss of endothelial regenerative capacity, to
the progression of chronic kidney damage [47, 48].

The role of inflammation and the immune
system

Ischaemia reperfusion injury is a result of various mecha-
nisms, including the host inflammatory/immune response.
The initiation of inflammation occurs during ischaemia,
whilst post-ischaemic events, such as ROS generation, am-
plifies the response. Therefore, the ischaemic kidney is not
merely the target of immune activation. Instead, it plays an
active role in promoting immune activation. The acute in-
flammatory component of IRI involves the expression of
cell surface adhesion molecules. To evaluate the effect of
IRI on the expression of these adhesion molecules, rat re-
nal grafts were cold preserved for 2, 4, 6, 12, 24 and 48 h,
before being transplanted into syngeneic recipients [49].
The study revealed that longer duration of cold-ischaemia
led to loss of endothelial integrity and increased expression
of VCAM-1. Ischaemic grafts also displayed enhanced
intra-graft pro-coagulant capacity and a worse tubular ne-
crosis [49]. Unexpectedly, renal function measured by cre-
atinine and urea were similar in all groups. This implies
that there are potentially injurious processes occurring after
moderate IRI that are clinically undetectable. Whether the
same is true in patients receiving allografts from marginal
donors but who do not develop DGF remains an important
research question.

The role of neutrophils and macrophages

Neutrophil adhesion to injured endothelial cells is a rapid and
important component in the initiation of damage in the isch-
aemic kidney. Neutrophils have been shown to migrate into
the transplanted organ within 6 h of reperfusion and are
attracted by a set of chemokines, including CXCL8 (IL-8),
CXCL10, RANTES, IL-17 and MCP-I [50–53]. Damaged
cells will be killed by neutrophils by direct phagocytosis or
degranulation, releasing proteases, myeloperoxidase, nitrogen
species, antimicrobial peptides and cytokines, which further
contribute to the generation of ROS [54]. Recruitment of neu-
trophils also involves endothelial cell expression ICAM1, E
and P selectin, which cross-talk with integrins and L-selectin
on neutrophils [51, 55, 56]. Inhibiting the accumulation of
neutrophils in the kidney may prevent acute kidney injury
[53, 56–58]. In contrast, other studies have failed to repro-
duce beneficial effects of neutrophil depletion and suggest
neutrophil independent mechanism in the pathophysiology
of acute tubular injury [59, 60]. Nevertheless, the majority
of evidence supports a role for neutrophils in the develop-
ment of post-ischaemic injury, by mechanisms including
obstruction of renal microvasculature and release of free
radicals and proteases [61].

Several studies have observed a decrease in IRI severity
after macrophages depletion prior to injury [62, 63] indicting
a role for macrophages in promoting tubular injury during the
initial phase of IRI. However, suppressing macrophage func-
tion during the repair process has been shown to suppress
tubular proliferation, thus impairing the normal recovery pro-
cess. Therefore, the role of macrophages in renal response to
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IRI is complex. Pre-clinical studies have described the in-
volvement of macrophages in the early inflammatory re-
sponse, during cellular regeneration and tissue repair as well
as during the development of fibrosis. These diverse roles are
played by different sub-types of macrophages based on their
activation and functional states. Classical activation of macro-
phages typically involves interferon gamma (IFNγ).
Ischaemia-induced cellular injury also produces danger-
associated molecular patterns (DAMPs), which will be
recognised by pattern recognition receptors (PRRs) and con-
tribute to classical macrophage activation. These classically
activated M1 macrophages are pro-inflammatory and associ-
ated with tissue damage. However, they also play an important
role in clearing apoptotic cells and debris, thereby initiating
repair process [64]. Alternatively activated macrophages in-
clude M2a macrophages, which are responsible for wound
healing and M2b macrophages, also known as immunoregu-
latory macrophages. M2a macrophages are activated through
IL-4/IL-13 binding to IL-4 receptor, which leads to production
of growth factors, collagen precursor synthesis and generation
of extracellular matrix. M2b macrophages regulate inflamma-
tory response by producing of immunosuppressive cytokines,
IL-10 and TGF-β. Production of TGF-β limits inflammation,
but at the same time may contribute to activation of pro-
fibrotic pathways. When injury persists, chemokines, macro-
phage colony-stimulating factors (M-CSF) and IL-34 are se-
creted to sustain recruitment and retention of macrophages
[65]. Blockade of the M-CSF receptor has a protective effect
following experimental transplantation [66]. Retention of
M2b macrophages in the injured tissue will produce
macrophage-derived factors, which subsequently activate
and support myofibroblasts, inducing extracellular matrix de-
position and fibrosis. The signals responsible for retaining
pro-fibrotic macrophages in the kidney remain unclear, but
studies using unilateral ureteral obstructive (UUO) rodent
model suggest a role for the chemokine receptors CCR1,
CCR2, CX3CR1 [65].

The role of the complement system

The complement system has been well identified as an impor-
tant, early mediator of the post-ischaemic inflammatory re-
sponse [67, 68]. Activation of complement is an important
factor in the progression of renal disease, and targeting com-
plement has been an attractive therapeutic option due to its
involvement in both innate and adaptive immune response to
IRI [69, 70]. Ischaemic insult to the kidney has been shown to
involve the anaphylotoxins, C3a and C5a, acting through their
respective receptors (C3aR and C5aR). Stimulation of C3a/
C5a receptors during IRI was shown to increase pro-
inflammatory cytokine/chemokine production and tubular in-
jury. The membrane attack complex C5b-9 has also been
shown to contribute to the progression of renal damage [71].

Recently, C-type lectin collectin-11 (CL-11/Colec11) was dis-
covered as an activator of mannan-binding lectin (MBL) path-
way in the kidney in response to ischaemia. CL-11 acts by
recognising L-fucose on kidney tubules following ischaemia
[72]. The study showed that global or kidney-specific defi-
ciency of CL-11 reduces post-ischaemic tubular injury and
functional loss [72].

The role of natural killer cells, dendritic cells
and lymphocytes

Substantial evidence is available to link natural killer (NK)
and NKT cells, renal dendritic cells (DCs), T cells and B cells
to early IRI, mainly linking their actions to direct targeting of
injured tubular and endothelial cells, activation of neutro-
phils and macrophages, and secretion of pro-inflammatory
cytokines, such as IFN-γ, TNF-α, IL-4 and IL-10. If NK
and NKT cell function is reduced, the severity of renal
injury following IRI is also reduced [73–75]. DCs contrib-
ute to post-ischaemic kidney injury by the secretion of
TNF [76]. Biopsies taken from DGF patients suggested
an association between DGF and acute rejection due to
an imbalance between myeloid DCs (involved in graft re-
jection) and plasmacytoid DCs (which may play role in
graft tolerance) [77].

Although initially regarded as by-standers, current evi-
dence suggests an active role for T cells in the pathogenesis
of IRI. Depletion of CD4 and CD8 T cells in murine IRI has
been shown to improve renal function and reduce neutrophil
infiltration and tubular atrophy [78]. Furthermore, reconsti-
tution of T cells in T cell-deficient mice restores injury to
the level seen in normal mice [79]. Depletion of either αβ
or γδ T-cells in mice was associated with reduction in renal
injury [80]. Nevertheless, a subset of T cells is also
recognised to play a role in preventing injury and promot-
ing repair. Pre- and post-ischaemic adoptive transfer of
regulatory T cells has been shown to protect the kidney
from ischaemic injury, reduce TNF-α and IFN-γ produc-
tion and accelerate repair [81, 82].

B cells are involved in the adaptive immune response to
IRI. To date, studies have shown a predominantly harmful
effect of post-ischaemic B cell activation [83]. Depleting B
cell in mice was shown to improve renal function and reduce
tubular injury after ischaemia [84]. A study by Jang et al.
documented that B cell-deficient mice subjected to ischae-
mia showed more tubular proliferation, less tubular atro-
phy and higher expression of IL-10 and VEGF [85].
Adoptive transfer of B cells into these mice blocked this
effect, suggesting that B cells may interfere with post-
ischaemic repair processes. In contrast, another study
found worse post-ischaemic renal injury in mice lacking
all mature B cells [86], suggesting a more complex and
divergent role for B cells in the progression of IRI.
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Tubular recovery and maladaptive repair

The proximal tubule is the main site of injury in acute ischae-
mic kidney. Consequently, the severity and recurrence of in-
jury at this site acts as an important factor in determining
reversibility of the damage and progression to long-term organ
failure. Severe and repeated injuries induce worse interstitial
fibrosis, distal tubular injury, glomerulosclerosis and atubular
glomeruli [87]. Ischaemic tubular injury is most evidently
found in the S3 segment of the proximal tubule and initially
results in loss of cytoskeletal integrity [88]. The degree of
cytoskeletal alteration depends on the severity and duration
of ischaemia. This loss of cytoskeletal integrity further mod-
ifies cellular polarity, cell-to-cell interactions as well as cell-to-
matrix interactions, and loss of function [89].

Kidney tubular epithelial cells have been shown to play an
active role in progression of post-ischaemic tissue damage
through several mechanisms (see Fig. 5). There is substantial
evidence that TECs release pro-inflammatory and chemotactic
cytokines in response to IRI [89–91], which includes TNF-a,
IL-6, IL-1B and TGF-B in addition to chemokines, such as
MCP-1, IL-8, RANTES and ENA-78 [90]. This leads to re-
cruitment of immune cells, important for subsequent repair
following IRI but also to the damage that occurs. In addition,
damaged epithelial cells produce DAMPs, which act as warn-
ing signals by activating a series of Toll-like receptors (TLR2,
TLR3 and TLR4) and express complement receptors and oth-
er co-stimulatory molecules which regulate T lymphocyte ac-
tivity [41, 92, 93]. Downregulating the expression of TLR-2
on kidney parenchymal cells was shown to reduce the level of
pro-inflammatory cytokines (IL-1β, IL-6, MCP-1 and
Keratinocyte Chemoattractant) produced by the kidney, thus
providing functional and structural protection against IRI [92].
Wu et al. demonstrated upregulation of TLR4 post IRI in
TECs and inhibiting TLR4 reduced the severity of IRI [93].

Furthermore, TLR4 knockout mice showed reduced tubular
injury with better preservation of renal function after induction
of IRI compared with wild type mice [94].

Dedifferentiation of proximal tubule cells caused by IRI
may not always be followed by complete re-differentiation
and resolution of injury. Rodent kidneys subjected to IRI still
had a proportion of abnormal tubules with flat epithelium
without brush borders after 14 days. These cells were morpho-
logically abnormal, atrophic and growth arrested. As well as
showing strong TGF-β signalling, these abnormal cells also
showed persistent loss of phosphate and tension homologue
(PTEN) associated with increased expression of vimentin,
pro-fibrotic c-Jun N-terminal kinase (JNK) activation and
platelet-derived growth factor (PDGF)-B production [95].

TEC secretion of cytokines and growth factors is important
for cell survival and repair, however, this should halt once
complete regeneration is achieved [96, 97]. A study of five
different mouse models of acute kidney injury revealed large
numbers of proximal tubule were arrested in the G2/M phase
of the cell cycle, which is associated with persistent activation
of JNK signalling and higher production of COL4A1 and
ACTA2 mRNA levels [98]. A number of studies by
Venkatachalam et al. also showed that tubular cell arrest
and atrophy is linked with increased secretion of fibrogenic
peptides, which accelerates proliferation of interstitial
pericytes/fibroblasts through multiple pathways, including
PI3K-Akt-mTOR, ERK-MAPK, JNK-MAPK and TGF-β
pathways [96, 99, 100], eventually resulting in nephron
loss. Based on these finding, several authors have investi-
gated the potential usage of cell cycle arrest biomarkers in
the detecting acute kidney injury [101].

Tubular cells maladaptive repair is also associated with
activation of several other pro-fibrotic pathways, such as
Notch and Wnt signalling. Recent work using a mouse
model with inducible proximal tubule Wnt1 secretion
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displayed interstitial myofibroblast activation and prolifer-
ation and increased matrix protein production [102].
Interestingly, no evidence of inflammatory cytokine ex-
pression, leukocyte infiltration or epithelial injury were
detected in these fibrotic kidneys, demonstrating direct
paracrine Wnt1 activity in initiating interstitial fibrosis
through tubulointerstitial crosstalk [102].

Epigenetic changes

Recent findings highlight the pivotal role of epigenetic
changes caused by acute IRI in damage progression
resulting in renal fibrosis and long-term deterioration of
function. Hypoxia has been proven to induce epigenetic
changes in the form of DNA methylation, histone modifi-
cation, alteration in chromosome conformation, differen-
tially expressed long non-coding RNAs (lncRNAs) and
microRNAs (miRNAs) [103, 104]. Affected cells have
been shown to store these changes in form of Bmemory^
[103, 105]. In respect to IRI, this Bhypoxic memory^ may
sustain initial pathological alteration in homeostasis or in-
duce new changes that result in transition from acute to
chronic kidney injury. Animal models of acute kidney in-
jury have demonstrated that Bhypoxic memory^ can pro-
mote pro-inflammatory and pro-fibrotic gene expression,
such as monocyte chemoattractant protein-1, TGF-β1,
and collagen [103]. The development of renal fibrosis has
been associated with several DNA methylation and histone
modifications. Comparison of the methylation profile of
fibroblasts derived from fibrotic and non-fibrotic kidneys
showed dis t inct methylat ion pat terns , including

hypermethylation of RAS protein activator-like 1 gene
[106]. In UUO model, TGF-β has been shown to increase
histone H3 lysine methylation, which increased expression
of extracellular matrix gene connective tissue growth fac-
tor, Collagen-1 and plasminogen activator inhibitor-1 in
mesangial cells. The study also showed inhibition of renal
fibroblast accumulation through blocking of class I histone
deacetylates [107, 108]. Moderate IRI has been shown to
increase TGF-β1 and CTGF protein production, which in
turn initiated epigenetic changes in fibroblasts [98].
Bechtel et al. documented hypermethylation of RASAL1
gene loci [106], which in turn persistently activated Ras,
resulting in transformation of fibroblasts to myofibroblasts
secreting collagen in a growth-factor independent manner
[109]. As described in a previous section of this review,
long-term effect of acute IRI is partly mediated by EMT.
A cell model of TGF-β-mediated EMT revealed global
altered methylation of several heterochromatins, highlight-
ing the role of epigenetic changes in the pathogenesis of
IRI progression [110].

Extensive investigations have been made to link miRNA
with renal pathologies, such as acute kidney injury, fibrosis,
polycystic kidney and neoplasm. In the kidney transplant set-
ting, miRNA expression has been profiled in association with
rejection, interstitial fibrosis, tubular atrophy as well as ischae-
mia and reperfusion injury. In the context of IRI progression
to fibrosis, several miRNAs have been examined, among
many are miR-363, miR-192, miR-200, miR-21-, miR-34a,
miR-155 and miR-127 [111–113]. Our unpublished data
shows that the up-regulation of miR-21 that occurs follow-
ing IRI inhibits SMAD7 activity, contributing to exagger-
ated tubular cell responses to TGF-β1 and upregulation of
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pro-fibrotic markers (α-SMA, collagen type-1) and down-
regulation of E-cadherin.

Concluding remarks

We have reviewed currently available evidence on potential
mechanisms of acute ischaemic renal injury progression to
long-term organ dysfunction. Despite the lack of evidence to
prove a causative association between AKI and CKD, strong
epidemiological correlates and substantial biological mecha-
nistic links clearly point to the impact of early post-ischaemic
events on the development of long-term graft dysfunction.
Biological links that connect acute IRI to chronic dysfunction
include; (1) HIF-1α driven changes, (2) endothelial and epi-
thelial injury that leads to cellular senescence and maladaptive
repair, (3) inflammation/immune system driven processes and
(4) epigenetic alteration, all of which may lead to chronic
hypoxia and fibrosis as the main underlying pathophysiology.
The severity and frequency of the initial insult are crucial
factors in determining possible occurrence of long-term con-
sequences. It is also important to acknowledge the active roles
played by the cells within the kidney. This is especially of
importance in kidney transplant setting, as the repair mecha-
nisms following IRI will vary greatly, depend on the charac-
teristics of the donor kidney (donor type, age, ischaemic time,
etc.), characteristics of the recipient (age, underlying disease,
co-morbidities, etc.) and various perioperative parameters
(haemodynamic fluctuations, warm ischaemia time, the use
of prophylaxis for IRI, etc.). In addition, unlike native kid-
neys, the cellular and molecular effects of IRI in the
transplanted kidneys are influenced by immunosuppressive
agents. This will have an effect in the kidney’s susceptibility
to IRI and its capacity for repair. Modification of the contrib-
uting factors to IRI through careful donor selection and pre-
ventative procedures are essential to prevent long-term conse-
quences of IRI (see Fig. 6). In the era of rising CKD incidence
and where extended criteria donor organs are increasingly
utilised, our understanding of IRI-induced molecular events
is pivotal in the search for interventions to improve organ
quality, thus achieving longer graft survival.
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