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Abstract
Shiga toxin (Stx)-producing Escherichia coli (STEC) is the offending agent in post-diarrhea-associated hemolytic uremic
syndrome (HUS), a disorder characterized by thrombocytopenia, microangiopathic hemolytic anemia, and acute kidney failure,
with thrombi occluding the renal microvasculature. Endothelial dysfunction has been recognized as the trigger event in the
development of microangiopathic processes. Glomerular endothelial cells are susceptible to the toxic effects of Stxs that, via
nuclear factor kappa B (NF-κB) activation, induce the expression of genes encoding for adhesion molecules and chemokines,
culminating in leukocyte adhesion and platelet thrombus formation on the activated endothelium. Complement activation via the
alternative pathway has been seen in patients during the acute phase of STEC-associated HUS. Experimental evidence has
highlighted the role of complement proteins in driving glomerular endothelium toward a thrombogenic phenotype. At the
glomerular level, podocytes are also an important target of Stx-induced complement activation. Glomerular injury as a conse-
quence of podocyte dysfunction and loss is thus a mechanism that might affect long-term renal outcomes in the disease. New
approaches to targeting the complement system may be useful therapeutic options for patients with STEC-HUS.
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Introduction

Shiga toxin (Stx, or verotoxin)-producing Escherichia coli
(STEC) is the primary cause of the worldwide spread of hem-
orrhagic colitis complicated by diarrhea-associated hemolytic
uremic syndrome (D +HUS), a disorder characterized by mi-
croangiopathic hemolytic anemia, thrombocytopenia, and
acute renal failure, which develops principally in children un-
der the age of 5 [1–4]. Thrombotic microangiopathy is the
characteristic histological feature of HUS and consists of
thickening of arterioles and capillaries, swelling and detach-
ment of endothelial cells from the basement membrane, and
fibrin- and platelet-rich thrombi that obstruct the microcircu-
lation of different organs, mainly the kidney [5]. The overall

incidence of STEC-HUS is about 2/100,000, with a peak of
6.1/100,000 in children <5 years of age [2]. In Latin America,
where STEC infections are endemic, the incidence of the dis-
ease is markedly higher (10-17 cases per 100,000 children
<5 years in Argentina) [6]. Concerning mortality, a review
by Spinale et al. [7] indicates 1– 4%mortality rates in children
during the acute phase of the disease. Accordingly, a study in
STEC-HUS children hospitalized in the USA between 1997
and 2012 reported in-hospital mortality of 2.9% [8].
Evaluations of the percentage of patients who develop long-
term sequelae (hypertension, impaired renal function, protein-
uria, neurological symptoms) are variable among studies [7, 9,
10]. A systematic review by Garg et al. [9] estimated that
4 years after experiencing STEC-HUS, 25% of patients had
renal sequelae and 3% developed end-stage renal disease
(ESRD). In a study by Rosales et al. [10] in pediatric patients
followed over a 6-year period, 70% of patients were fully
recovered. The remaining 30% had renal impairment or neu-
rological symptoms. Progression to ESRD within 2 months to
2 years was 1.4%. The frequency of neurological manifesta-
tions was 29% at the acute phase, decreased to 4% after 1 year,
and remained stable at 5–years’ follow-up [10].
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Specific therapies for STEC-HUS are lacking or still being
investigated in preclinical studies, and patient care remains
largely supportive [11–13]. The extreme clinical conse-
quences of an outbreak in Germany in 2011 [14, 15] highlight-
ed the continuing threat to public health that it poses and the
need for effective treatments for STEC-HUS. Evidence that
complement is dysregulated in STEC-HUS provided the ra-
tionale for using complement inhibitors as a therapeutic op-
tion. Results, however, were controversial [16–22].

In this paper, we will first review pathogenetic aspects of
Stx-associated HUS. Then, we provide an update on comple-
ment system activation in this disease, highlighting the role of
Stx-induced complement alternative pathway activation in
glomerular microvascular injury and thrombosis. Finally, the
impact of complement activation on glomerular podocyte
damage and loss is discussed.

Pathogenetic aspects of STEC-HUS

The enterohemorrhagic E. coli (EHEC) O157:H7 serotype
was the main offender in multiple outbreaks throughout
the world until 2010 [1, 3]. In Europe and North America,
other non-O157:H7 serotypes, including O26, O103,
O111, O104, and O80, are all now as frequent as
O157:H7 [3, 13], while O157:H7 remains the predomi-
nant (>70%) serotype in Latin America [6]. In 2011, a
large outbreak of gastroenteritis and HUS linked to the
consumption of raw fenugreek sprouts [14] occurred in
northern Germany, with a satellite outbreak in western
France, which was caused by an unusual E. coli
O104:H4 strain combining the virulence potentials of
enteroaggregative E. coli and typical Stx-producing
enterohemorrhagic E. coli [23–25]. The outbreak predom-
inantly affected adults (89%), with exceptionally severe
manifestations and high mortality rates [15].

The main reservoirs of STEC are the intestinal tracts of
healthy cattle, and foods of bovine origin, particularly
undercooked beef and unpasteurized milk, and cattle-
manure-contaminated vegetables and fruit or water are ma-
jor sources of STEC infection in humans [3, 6]. Person-to-
person transmission and contact with infected animals after
farm or petting zoo visits have also been described. The
production of Stx is the main virulence feature of STEC
associated with the development of HUS but is not solely
responsible for full pathogenicity. The risk of developing
HUS for only a fraction of individuals following STEC in-
fection may depend on host factors, including demography,
immunity, lifestyle, use of antimotility agents, and pathogen
factors such as the initial bacterial inoculum, the E. coli
serotype, horizontally acquired genetic elements known as
pathogenicity islands, and Stx type [6, 26, 27].

STEC colonization and Shiga toxin transport
to the kidney

STEC colonize the large intestinal mucosa through pecu-
liar attaching/effacing (A/E) lesions in a process charac-
terized by the destruction of microvilli, intimate attach-
ment of the pathogen to the host enterocyte, and changes
in cytoskeletal structure of the enterocyte, with formation
of an actin-rich pedestal around the bacteria [28]. This
causes diarrhea and intestinal inflammation. Crucial colo-
nization properties are carried by the locus of the
enterocyte effacement (LEE) pathogenicity island, which
encodes a diverse set of effector molecules, including a
type III secretion system, the adhesin intimin, and its
translocated receptor, Tir, which—together with several
host proteins—is involved in actin polymerization and
pedestal formation (see reviews in [29, 30]). Following
Stx release, blood vessels in the colon are damaged, and
bloody diarrhea occurs [1]. Stx translocates across the
gastrointestinal epithelium, enters the circulation, and
moves to the kidney and other target organs, such as brain
and lungs , tha t express the g lycosphingo l ip id
globotriaosylceramide (Gb3Cer) or globotriaosylceramide
(Gb4Cer) receptors [31, 32].

Lipopolysaccharide (LPS) developed in the gut by
STEC may also enter the systemic circulation and pro-
mote an inflammatory response that contributes to renal
injury. LPS from E. coli O157 bound to circulating plate-
lets has been found in children with Stx-HUS [33]. LPS
potentiated the cytotoxic effect of Stx on cultured endo-
thelial cells by enhancing the inhibiting activity of Stx on
protein synthesis [34]. In a baboon model of HUS, LPS
increased the toxicity of Stx by upregulating renal Stx
receptors [35], and both Stx and LPS were required to
elicit a HUS-like response in mice [36–38].

Free Stxs have been detected in the sera of HUS
patients in only negligible amounts [39]; the toxin cir-
culates preferentially in the cell-bound form. Human
blood cells, such as erythrocytes, platelets, and mono-
cytes, have been suggested as possible Stx carriers via
the Gb3 receptor (for review, see [40]). Recently, the
toll-like receptor 4 (TLR4) has been identified as the
receptor that specifically recognizes and binds Stxs in
human neutrophils [41]. This finding is particularly rel-
evant because TLR4 polymorphisms, which have been
described as influencing the frequency and course of
infectious diseases, could contribute to explaining the
individual susceptibility of humans to STEC-infections,
resulting in mild or more severe clinical manifestations
[41]. Microvesicles derived from Stx-infected blood
cells have been proposed as a novel mechanism of Stx
transfer to glomerular cells in vitro and in patients with
HUS [4, 42].
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Shiga toxin structure and cytotoxic effects

STEC may generate two major types of Stx: Stx1, a family
consisting of Stx1, 1c, and 1d, and the more heterogeneous
Stx2 family, comprising the variants Stx2c, 2c2, 2d,
2dactivatable, 2e, and 2f [43]. The type of Stx produced by
E. coli greatly influences the clinical outcome of the infection.
While Stx2, 2c, and 2activatable can cause hemorrhagic colitis
and HUS, the other Stx types are responsible for asymptom-
atic infections and uncomplicated diarrhea. All Stxs share a
common structure consisting of one biologically active A sub-
unit of 32 kDa, associated with five identical B subunits, each
of 7.7 kDa [44], which allow toxin binding to the Gb3Cer/
CD77 receptor [45], except for Stx2e, which preferentially
binds to globotetraosylceramide (Gb4Cer).

Following binding to Gb3-expressing cells, Stx is
endocytosed, mainly via a clathrin-dependent mechanism,
and undergoes retrograde transport through the Golgi appara-
tus to the endoplasmic reticulum [46]. Here, the A subunit is
proteolytically processed to form a 27-kDa A1-fragment,
which is translocated into the cytosol, where it triggers molec-
ular damage within infected cells. The A1 fragment possesses
ribosomal RNA (rRNA)-N-glycosidase activity and inacti-
vates the host ribosomes by removing a single adenosine res-
idue from the 28S rRNA of the 60S subunit, thereby inhibiting
protein synthesis [47]. On the other hand Stx, at concentra-
tions causing ribosomal lesions, also activates multiple stress-
induced signaling pathways, with a mechanism culminating in
the induction of inflammatory gene expression and apoptosis.
There is abundant in vitro and in vivo evidence that Stx, with
negligible effects on global protein synthesis, led to changes in
gene expression that activate the vascular endothelium toward
the apoptotic program and cell death [29, 48, 49].

Shiga toxin induces endothelial damage

It has been recognized that endothelial damage plays a central
role in the events that lead to the microangiopathic process of
HUS [29]. Glomerular endothelial cells are the primary target
of the toxic effects of Stx, which triggers a cascade of signal-
ing events resulting in loss of endothelial antiadhesive, anti-
inflammatory, and thromboresistant properties. Studies con-
ducted by us show that Stx, via activation of nuclear factor
kappa B (NF-κB), induced adhesion of leukocytes to cultured
human endothelial cells under flow conditions through upreg-
ulation of adhesive molecules (E-selectin, ICAM-1, and
VCAM-1) and chemokines (MCP-1, IL-8, fractalkine) [38,
50, 51]. Consistently, gene-expression profiling in Stx-
treated human endothelial cells demonstrated the upregulation
of cytokines, cell adhesion molecules, and transcription fac-
tors belonging to the NF-κB and tumor necrosis factor (TNF)/
stress-related signaling pathways [52].

The prothrombotic state in Stx-associated HUS has been
principally ascribed to endothelial cell damage. In response to
Stx, endothelial cells are activated and lose their
thromboresistant phenotype. Thus, Stx promoted platelet ad-
hesion and thrombus formation on cultured human microvas-
cular endothelial cells under high shear stress, which mimics
that encountered in the microcirculation [53]. Von Willebrand
factor (VWF), which undergoes conformational changes un-
der conditions of high shear stress, was found to mediate
platelet adhesion on activated endothelial cells in response to
Stx. Functional blockade of adhesive proteins, including P-
selectin, was associated with a reduction of platelet thrombi
on endothelial cells [53]. Data showing Stx-dependent upreg-
ulation of endothelial chemokine receptor 4 (CXCR4), and
increased stromal-cell-derived factor-1 (SDF-1) levels have
revealed that CXCR4 and its ligand SDF-1 play an important
role. Inhibition of CXCR4/SDF-1 interaction in vitro
prevented Stx-mediated platelet adhesion to the endothelium
under flow conditions and restored platelets to basal levels in
mice injected with Stx [54].

The complement system

The complement cascade, a component of the immune sys-
tem, acts as an important effector of humoral defense against
invading pathogens, but at the same time, it preserves normal
Bself^ cells. The complement system orchestrates various re-
sponses during immune and inflammatory reactions. In addi-
tion to protecting against bacterial infections, it is involved in
the disposal of immune complexes, chemotaxis for recruiting
inflammatory cells, opsonization, phagocytosis of foreign par-
ticles, and cell lysis [55].

The complement system comprises >30 components, in-
cluding serum proteins and cell-surface molecules.
Activation of complement occurs through: (1) the classical
pathway, which involves antibody-mediated activation via
the C1 complex; (2) the lectin pathway, induced by
mannose-binding lectin (MBL) bound to glycan-associated
mannose on the cell surface; and (3) the alternative pathway,
involving the direct activation of C3 through surface binding
or tick-over. All three routes converge in the generation of
C3b by C3 convertases and terminate with the formation of
the membrane attack complex (MAC, C5b-9).

The complement cascade is finely regulated to guarantee
activation focused on pathogen surfaces and to limit the depo-
sition of complement proteins on normal cells [55]. To avoid
self-destructive activation, host cells are protected by a battery
of regulatory inhibitor proteins, present both in serum and on
cell membranes. These regulatory proteins favor cleavage of
C3b to the inactive form iC3b, dissociate C3/C5 convertases,
and prevent C9 assembly into the C5b-9 complex [56].
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Activation of the complement system
in STEC-HUS

Clinical evidence

The first pieces of evidence of complement activation in pa-
tients with Stx-HUS date back to >30 years ago to anecdotes
about reduced C3 and augmented serum levels of the C3 frag-
ments C3b, c, and d during the active phase of the disease
[57–59]. Later on, high plasma levels of factor Bb and C5b-
9 were measured in 17 children during disease onset, indicat-
ing complement activation via the alternative pathway [60].
Consistently, factor Bb and soluble C5b-9 plasma levels were
increased in active Stx-HUS patients and correlated with
oliguria [61]. Plasma levels of C3a, generated by the cleavage
of C3 in C3b, were significantly increased compared with
controls in ten patients during HUS [62]. More recently, high
levels of circulating microparticles, arising from platelets,
monocytes, and red blood cells, with surface-bound C3 and
C9, were found in patients with Stx-HUS [62, 62].

In addition to the systemic activation of complements, C3
and C5b-9 deposits associated with fibrin deposition were
detected in the glomeruli of a Stx-HUS child [64], which
supports the hypothesis that there is a functional link between
complement activation and microvascular thrombosis. Intense
glomerular C3 and C5b-9 deposits were also present in the
kidney of a patient with a mutation of complement factor I
who developed ESRD after STEC-HUS [65].

Experimental evidence

That Stx contributes directly to dysregulation and activation of
the complement system is confirmed by several reports. Stx2
activates complement in the fluid phase, as described by Orth
et al. [66], who detected the formation of soluble C5b-9 in
normal human serum exposed to Stx2. Stimulation of whole
blood with Stx2 increased formation of platelet–monocyte
and platelet–neutrophil complexes and the release of blood-
cell-derived microparticles, with surface-bound C3 and C9
[62]. Stx2 also caused the release of red-blood-cell-derived
microvesicles coated with C5b-9, indicating that complement
plays a role in the hemolytic process that occurs during STEC-
HUS [63]. In vitro evidence indicates that Stx can activate
complement through the alternative pathway. Stx2 binds fac-
tor H, the major soluble inhibitor of the alternative pathway,
and this translates into a delay/reduction in factor H cofactor
activity on the cell surface, with a consequent increase in
complement activation and C3b deposition [66]. Stx2 is also
a ligand for the factor H family proteins FHR-1 and FHL-1,
which display amino acid sequence and regulatory function
similarities with factor H [67]. In vitro studies have shown that
FHR-1 competes with factor H for Stx2 binding [67]. FHR-1
exists in two allotypes: FHR-1*A and B, with FHR-1*B

having lower binding capacity to Stx2 than allotype A. It
has been proposed that in homozygous or heterozygous pa-
tients for FHR-1*B, because of the weaker binding capacity of
FHR-1*B, Stx2 may preferentially bind to factor H, with con-
sequent delay and/or reduction of cofactor activity of St x2-
bound factor H [67]. Thus, interindividual variability of FHR-
1 allotype might contribute to different degrees of disease
susceptibility or severity in STEC-HUS patients.

Stx activates complement by acting at different levels of the
cascade. A reduction in both messenger RNA (mRNA) and
the surface expression of CD59, the membrane-bound com-
plement inhibitor that prevents MAC formation, was found on
human glomerular endothelial cells exposed to Stx2 [68]. On
the other hand, high levels of CD59 were found on erythro-
cytes of HUS patients during the outbreak in Germany in
2011, suggesting that CD59 has a role in counteracting the
hemolytic anemia caused by STEC infection [69].

Shiga-toxin-activated complement promotes
glomerular endothelial cell damage

Animal models have provided valuable information about the
importance of complement activation, via the alternative path-
way, in the development of the thrombotic process, leading to
kidney dysfunction in HUS. Mice with HUS induced by
coinjection of Stx2/LPS exhibited thrombocytopenia and re-
nal function impairment associated with glomerular deposi-
tion of C3 and fibrin(ogen) [38, 70, 71]. In this setting,
factor-B-deficient mice were protected against platelet loss
and renal dysfunction, indicating that the alternative comple-
ment pathway is a key mediator for microvascular thrombosis
[70, 71]. Glomerular deposition of C3 and C5b-9 was found in
mice infected with STEC. Renal disease progression was
prevented when mice lacking C6 were used [64].

It is known that activation of the alternative pathway can be
amplified by the lectin pathway through direct activation of
factors B and D by MBL/ficolin-associated serine proteases
(MASPs) [72]. The inhibition of MBL2 in a mouse model of
Stx-HUS significantly attenuated renal C3d deposition and
limited renal injury, with new implications for the lectin path-
way in disease onset [73].

Several lines of evidence point to thrombomodulin, a
membrane-bound complement and coagulation regulator,
as having a role in the pathogenesis of Stx-associated
HUS [74]. Thrombomodulin is an endothelial transmem-
brane receptor for thrombin, the best-known cofactor in
the protein C anticoagulant pathway [75], which pos-
sesses different properties that impact on fibrinolysis,
complement activation, inflammation, and cell prolifera-
tion [76]. Our group has demonstrated that mutations that
impair thrombomodulin function and cause defective
complement regulation increase the human risk of
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developing atypical HUS, a form that is not Stx-
associated [76]. In vitro Stx2 reduced thrombomodulin
expression in human glomerular endothelial cells [77].
Stx-induced thrombomodulin loss was due to the ability
of the toxin to increase thrombomodulin shedding from
the endothelial cell surface through release of serine pro-
teases from endothelial-cell-specific intracellular storage
vesicles [70]. In a mouse model of Stx-HUS, the glomer-
ular expression of thrombomodulin was reduced in asso-
ciation with C3, fibrin (ogen), and platelet deposition [70,
74 ] . M i c e l a ck i ng t h e l e c t i n - l i k e doma i n o f
thrombomodulin were more susceptible to developing
thrombocytopenia and renal dysfunction than were wild-
type mice exhibiting a stronger inflammatory reaction and
earlier intraglomerular fibrin (ogen) deposits [74]. These
data suggested that genetic or acquired functional defects
in thrombomodulin may contribute to an adverse outcome
during the course of Stx-HUS.

Overactivation of the complement system on renal and
blood cells contributes significantly to the abnormal vas-
cular function and prothrombotic processes that typically
occur in Stx-HUS. Stx directly induces complement acti-
vation, via the alternative pathway, on the surface of en-
dothelial cells, as revealed by increased C3 deposition and
thrombus formation on microvascular endothelial cells af-
ter perfusion with human serum [70]. Proof that C3 depo-
sition is functionally linked to thrombus growth derives
from data that confirms that the complement inhibitor sol-
uble complement receptor 1 (sCR1) completely blocks
thrombus formation on the endothelial surface. Loss of
endothelial thromboresistance due to Stx depends on up-
regulation of P-selectin—a membrane adhesion molecule
acting as a specific ligand of C3 [70, 78]—and on the
reduction of thrombomodulin expression. This evidence
was confirmed in the mouse model of Stx-HUS in which
both treatment with anti-P-selectin antibody and factor-B
deficiency protected mice from glomerular endothelial
damage and thrombosis [70].

Complement proteins such as C3a, C5a, and C5b-9 cause
profound perturbation of the thromboresistance phenotype
of endothelial cells. The binding of C5a to its receptor and
the deposition of a sublytic amount of C5b-9 on the endo-
thelial surface induce proinflammatory and procoagulant
activities [79, 80]. C3a promotes cytokine production and
increases endothelial cell permeability [81, 82]. We demon-
strated that C3a increased P-selectin expression and
thrombomodulin release from cultured endothelial cells,
all of which culminated in thrombus growth on the cell
surface [70] (Fig. 1). The role of C3a in potentiating micro-
vascular thrombosis in Stx-HUS has been highlighted by
data showing a marked reduction in fibrin(ogen) and limited
thrombomodulin loss in glomeruli of mice with Stx-HUS
after treatment with a C3a receptor antagonist [70].

Shiga-toxin-activated complement induces
podocyte injury

Long-term renal sequelae have been observed in about 25–
30% of STEC-HUS patients who undergo a critical reduction
in nephron numbers, with consequent hyperfiltration, protein-
uria, glomerular injury, and chronic kidney disease [7, 9].
Glomerular podocyte injury and loss have been recognized
as the inciting event in the complex process that ends in
glomerulosclerosis, whatever the primary kidney disease
[83–86]. Podocytes are postmitotic cells that are incapable of
proliferating and replenishing their numbers following migra-
tion and detachment from the basement membrane in disease
[87, 88]. In STEC-HUS, little information is available regard-
ing the role of Stx in the development of proteinuria and glo-
merular podocyte damage due to the fact that kidney biopsies
are rarely performed in these patients. The structural hallmarks
of Stx-associated HUS, such as collapse and retraction of the
glomerular microvascular endothelium, are often associated
with swelling of podocytes and the effacement of their foot
processes [58, 89]. The presence of nephrin and synaptopodin
mRNA in the urine of 15 patients during active Stx-HUS
means that podocyte injury and loss may occur during the
acute phase of the disease [90]. Consistently, in a primate
model of HUS, glomerular endothelial injury was linked to
structural podocyte alterations [91]. Microalbuminuria oc-
curred in rats injected with Stx2, being an early sign of
podocyte injury as evidenced by alteration of the slit-
diaphragm proteins nephrin and podocalyxin. These glomer-
ular changes were also functionally linked to proximal tubular
alteration of megalin-dependent endocytosis [92].

The proof that podocytes represent a relevant target for
Stx rests on in vitro studies showing that podocytes are
susceptible to the direct cytotoxic effects of Stx1 and 2 iso-
forms because they express discrete levels of Gb3 receptor
[93–96]. Upon binding to the receptor, Stxs activate
podocytes to release cytokines such as interleukin-1 (IL-1)
and TNF, which remarkably increase Gb3 expression, thus
enhancing cell sensitivity toward the toxins [94, 97] and
favoring apoptosis [96]. That Stxs elicit inflammatory re-
sponses is also suggested by findings that in cultured mouse
podocytes, Stx2 activates p38 and p42/44 mitogen-
activated protein kinases (MAPKs) and upregulates tran-
scription factors NF-κB and activator protein (AP-1) [93],
known regulators of cytokine and chemokine gene expres-
sion. In this setting, the increased podocyte expression and
production of the vasoactive peptide endothelin-1 (ET-1) in
response to the toxin suggests that Stx may also deleterious-
ly impact on glomerular microcirculation via an autocrine
and paracrine action of podocyte-derived ET1, thus contrib-
uting to glomerular dysfunction.

In search of important determinants of glomerular damage
to predict the cause of long-term renal prognosis in HUS, we
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recently determined that complement activation, via the alter-
native pathway, is a functional player of podocyte dysregula-
tion and loss [71]. The robust presence of C3 deposits was
observed in the proximity of podocytes, as shown by the
costaining of complement with nephrin in glomeruli of mice
with Stx/LPS-induced HUS. Moreover, glomerular comple-
ment deposition was associated with increased expression of
activated integrin-linked kinase (ILK), a signal responsible for
podocyte adhesion/motility on the glomerular basement mem-
brane (GBM). The early engagement of ILK preceded the
activation of Snail, a transcription factor known to regulate
nephrin expression [71]. In parallel, a marked reduction of
alpha-actinin 4, an actin cross-linking protein, involved both
in the stabilization of podocyte attachment and regulation of
cell motility through its interaction with integrins, was also
described [71]. The instrumental role of the complement al-
ternative pathway activation was demonstrated by applying
the Stx2/LPS model to factor-B-deficient mice and the phar-
macological inhibition of factor B with a functional blocking
antibody. Both strategies successfully normalized
complement-dependent glomerular structural and functional
changes in response to Stx2 [71]. Our data also substantiated
the novel concept that C3a, generated during C3 deposition,
could be a key driver of podocyte dysfunction as well as

endothelial injury. The proof-of-concept was based on data
confirming that treatment with a C3a receptor antagonist re-
duced podocyte ultrastructural changes and loss by limiting
ILK and Snail activation and preserving alpha-actinin 4 in
mice with HUS. Thrombocytopenia and renal function were
also improved. In vitro data with human cultured podocytes
showed that C3a affected podocyte phenotype andmotility via
activated ILK [71] (Fig. 1). In this context, the possible con-
tribution of C5a and MAC in processes leading to glomerular
damage cannot be excluded.

The aberrant role of C3/C3a in podocyte dysregulation and
glomerular injury has been highlighted in a model of protein-
uric progressive nephropathy [98]. In mice with protein over-
load proteinuria, marked glomerular accumulation of C3 and
local generation of C3a was an indispensable factor in
podocyte dysfunction and loss that subsequently led to parie-
tal epithelial cell activation and development of glomerular
lesions.

Conclusions

In recent years, a substantial amount of evidence has
shown that complement activation has a role in Stx-
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Fig. 1 Glomerular complement activation in Shiga toxin (Stx)-associated
hemolytic uremic syndrome (HUS). Possible sequence of events through
which Stx promotes complement activation on glomerular endothelial
cells and podocytes. Stx, by binding to its specific endothelial receptor
Gb3, favors the surface expression of P-selectin, which is responsible for
thrombus formation on endothelial cells. Excessive glomerular C3
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expression and promoting integrin-linked kinase (ILK)-dependent
nuclear translocation of Snail, with consequent nephrin downregulation
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HUS. Glomerular endothelial cells have long been con-
sidered the main target of Stx-induced renal toxicity.
However, it was recently recognized that another cell pop-
ulation in proximity to injured glomerular endothelium—
the podocytes—is involved in the disease pathogenesis.
Abnormal glomerular activation of the complement cas-
cade via the alternative pathway, with local C3 deposition
and C3a generation in response to Stx, causes a series of
e v e n t s b e g i n n i n g w i t h l o s s o f e n d o t h e l i a l
thromboresistance and followed by the development of
microvascular thrombi. Complement-dependent endotheli-
al injury may be accompanied by dysfunction and loss of
podocytes. This is possibly the cause of the long-term
renal sequelae in 25–30% of Stx-HUS patients. Indeed,
podocytes—the critical regulators of the glomerular filtra-
tion barrier—change their phenotype in response to acti-
vated complement proteins, which translates into abnor-
mal cell–cell interaction and cell matrix adhesion to the
GBM, ending in podocyte detachment. The recent find-
ings obtained in patients and in experimental models of
HUS suggest complement inhibition at C3 and C3a levels
is a possible therapeutic tool for counteracting Stx-
induced glomerular damage. Using C3a receptor antago-
nist, currently available in preclinical studies [70, 71, 99],
could offer the advantage of avoiding the complete shut-
down of C3—which could increase susceptibility to infec-
tions—and provide a promising opportunity for long-term
systemic intervention. So far, the only complement inhib-
itor used in clinical studies has been the anti-C5 antibody
(eculizumab), which exhibited beneficial effects in parox-
ysmal nocturnal hemoglobinuria, myocardial infarction,
age-related maculopathy, atypical HUS, and C3 glomeru-
lopathy [100]. Eculizumab showed encouraging results in
three children with severe Stx-associated HUS [16], but
clear effects could not be demonstrated during the large
O104:H4 STEC-HUS outbreak in 2011 [17–19, 22].
Subsequent smaller studies reported a rapid improvement
after eculizumab in severe STEC-HUS patients [20, 21].
The controversial results regarding the use of eculizumab
in STEC-HUS may reflect statistical bias in retrospective
or uncontrolled studies, which emphasizes the need for
prospective studies. The ongoing phase III prospective
randomized controlled trial (NCT02205541) in pediatric
patients affected by STEC-HUS should help clarify the
benefit of eculizumab in this devastating disease.
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