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Genetic testing in steroid-resistant nephrotic syndrome: why, who,
when and how?
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Abstract Steroid-resistant nephrotic syndrome (SRNS) is a common cause of chronic kidney disease in childhood and has a
significant risk of rapid progression to end-stage renal disease. The identification of over 50 monogenic causes of SRNS has
revealed dysfunction in podocyte-associated proteins in the pathogenesis of proteinuria, highlighting their essential role in
glomerular function. Recent technological advances in high-throughput sequencing have enabled indication-driven genetic panel
testing for patients with SRNS. The availability of genetic testing, combined with the significant phenotypic variability of
monogenic SRNS, poses unique challenges for clinicians when directing genetic testing. This highlights the need for clear
clinical guidelines that provide a systematic approach for mutational screening in SRNS. The likelihood of identifying a causative
mutation is inversely related to age at disease onset and is increased with a positive family history or the presence of extra-renal
manifestations. An unequivocal molecular diagnosis could allow for a personalised treatment approach with weaning of immu-
nosuppressive therapy, avoidance of renal biopsy and provision of accurate, well-informed genetic counselling. Identification of
novel causative mutations will continue to unravel the pathogenic mechanisms of glomerular disease and provide new insights
into podocyte biology and glomerular function.
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Introduction

Nephrotic syndrome (NS) comprises a heterogeneous group of
disorders characterised by hypoalbuminaemia, oedema and hy-
perlipidaemia. This primarily reflects dysfunction of the normally

size- and charge-selective glomerular filtration barrier (GFB),
with resultant loss of protein into the urine. NS is the most
common glomerular disease of childhood, with an estimated
incidence of approximately 1–2 per 100,000 children [1, 2],
accounting for approximately 10% of early-onset chronic kid-
ney disease [3]. Classification is based on the response to treat-
ment with glucocorticoids (Gc) as either steroid-sensitive
(where Gc induces remission) or steroid-resistant NS (SRNS).
Approximately 80% of paediatric NS cases respond to Gc, with
the remaining 20% being steroid-resistant [4]. SRNS may be
further characterised by renal histology, with the majority of
cases showing focal segmental glomerulosclerosis (FSGS) [5]
and, to a lesser extent, minimal change disease (MCD) or dif-
fuse mesangial sclerosis (DMS). Furthermore, SRNS may oc-
cur as an isolated kidney disease or, less frequently, as a
syndromic disorder associated with extra-renal manifestations.
There is significant heterogeneity in the onset and clinical
course of SRNS, and neither the clinical features nor the histo-
logical pattern predicts therapy response. However, SRNS is
more likely to show resistance to a range of immunosuppres-
sive agents [6] and progress to end-stage renal disease (ESRD)
at a faster rate [4, 7].
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The exponential discovery of genes implicated in SRNS
has helped to build understanding about the molecular mech-
anisms of glomerular filtration. Mutations in genes encoding
podocyte-associated proteins have been implicated in about
30% of SRNS cases in children [8–10] (Table 1), and identi-
fication of these monogenic defects has provided fundamental
insights into the pathogenesis of SRNS. Importantly, mono-
genic SRNS exhibits significant clinical and histological het-
erogeneity, even with identical causative mutations, and is
initially indistinguishable from idiopathic NS. However, chil-
dren with monogenic SRNS experience higher rates of resis-
tance to immunosuppression and lower rates of disease reoc-
currence after renal transplantation [6, 63].

With the ever-increasing number of genes implicated in
SRNS and significant variability in clinical phenotype, clini-
cians face difficulties when presented with a child with
SRNS. Mutation detection in such patients allows for a more
personalised treatment approach; that is, the possibility of
avoiding immunosuppressive therapy, thereby preventing asso-
ciated side effects, and the potential to better predict post-
transplant reoccurrence. A genetic diagnosis may also allow
screening for, and early management of, associated medical
conditions, such as glaucoma in Nail–Patella syndrome. In ad-
dition, a molecular diagnosis offers scope for more accurate
genetic counselling, risk stratification and prenatal diagnosis
for affected families. Currently, there are no clear guidelines
detailing the clinical utilisation, relevance and cost-
effectiveness of mutational screening for children with SRNS.
Here, we discuss the most common causes of monogenic
SRNS and link these causes to clinical phenotypes. We discuss
the indications for genetic testing and propose a clinically useful
approach for mutational screening in SRNS, with particular
reference to who should undergo genetic testing, when this
should be performed and how this should be carried out.

Podocyte biology

The GFB is composed of three interacting layers: the
fenestrated endothelial cells, the glomerular basement mem-
brane and the outer podocyte layer. Podocytes are highly
specialised epithelial cells, and their interdigitating foot pro-
cesses connect to form the slit diaphragm, a unique multi-
protein cell junction structure which, through regulation of
podocyte function, controls the ultrafiltration of molecules.
Genetic advances in SRNS have unveiled dysfunction of
podocyte- and slit diaphragm-associated proteins in the path-
ogenesis of proteinuria, highlighting their importance in main-
taining GFB integrity. The discovery began with genes
encoding the slit diaphragm proteins nephrin (NPHS1) and
podocin (NPHS2) [11, 12]. Since then, linkage analysis and
next generation sequencing (NGS) have permitted the identi-
fication of over 50 genes implicated in SRNS, and this number

continues to increase. Interestingly, the majority of encoded
proteins map to distinct structural protein complexes and sig-
nalling pathways within the podocyte (Fig. 1). A thorough
functional analysis of these proteins is beyond the scope of
this review, but readers are directed elsewhere for a more
detailed evaluation [64].

Genotype–phenotype correlations
in monogenic SRNS

Monogenic SRNS can be inherited in an autosomal recessive,
autosomal dominant or mitochondrial manner, and can occur as
an isolated renal disease or as part of a multisystem disorder.
Most cases of recessive disease are characterised by an early
onset and high penetrance, and they are not infrequently asso-
ciated with extra-renal malformations. In contrast, the main
causes of dominant disease are associated with a later onset
and incomplete penetrance, and the patients may remain
asymptomatic. The genes associated with SRNS identified to
date and their associated phenotypes are presented in Table 1. In
the following sections, we outline the most common monogen-
ic causes of SRNS, according to age of onset.

Congenital NS

Congenital NS (CNS), which presents within the first
3 months of life, is commonly associated with causative
mutations. Indeed, mutations have been identified in 75–
100% of cases of CNS [8, 10, 65, 66]. Causative muta-
tions appear to largely occur in one of five genes (NPHS1,
NPHS2, WT1, LAMB2 and PLCE1). NPHS1, encoding
nephrin, is the main gene implicated in CNS, and muta-
tion is responsible for the autosomal recessive Finnish
type (CNF), which typically has a severe phenotype with
massive proteinuria and rapid progression to ESRD [11].
However, the NPHS1 mutation detection rate remains
high amongst non-Finnish cases of CNS [8, 10, 65].
Mutations in the NPHS2 gene, encoding podocin, are also
responsible for a significant number of CNS cases, and
the phenotype varies from the severe CNF presentation to
milder disease with onset of proteinuria occurring later
than in those with NPHS1 mutations [4, 66, 67].
Mutations in the PLCE1, WT1 and LAMB2 genes have
also been detected in patients presenting with isolated
CNS; mutations in these genes will be discussed in more
detail in the next section.

Infantile and childhood NS

Monogenic NS, which presents in infancy (from 4 to
12 months of life) and during childhood, is most commonly
attributed to mutations in the NPHS2 gene, encoding podocin
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[8, 68]. There is a recognised genotype to phenotype correla-
tion that explains this phenotypic variability [12, 66, 69].
Recent whole-exome sequencing performed on a paediatric
cohort of SRNS patients revealed the mean age of onset asso-
ciated with NPHS2mutations to be approximately 6 years [8].
That said, it is clearly important to consider NPHS2 mutation
as a cause for SRNS in a child of any age and, conversely, to
expect a low rate of NPHS2 mutations in certain ethnic
groups, namely Chinese, Japanese and Korean [10, 70].
Additionally, NPHS1 mutations have been identified in in-
fants and children presenting with SRNS, with the rarer
hypomorphic mutations being associated with a milder late-
onset phenotype [8, 71, 72]. Thus, mutations in this gene
should be considered in all paediatric age groups.

Mutations inPLCE1 (encoding phospholipase C epsilon-1)
typically cause isolated DMS, with patients presenting with
severe, early-onset SRNS and rapid progression to ESRD
[13]. Again, significant clinical heterogeneity exists, with
PLCE1 mutations manifesting from birth and throughout
childhood, with both FSGS or DMS found histologically
[73, 74].

WT1 encodes Wilms’ tumour 1, a transcription factor and
key kidney development gene. Mutations in WT1 cause iso-
lated and syndromic SRNS, which will be discussed later in
this review. Previous studies have estimatedWT1mutations to
account for approximately 6% of sporadic SRNS cases in
childhood, manifesting at any age, depending on the underly-
ing mutation [8, 66, 75, 76]. Genotype–phenotype correla-
tions have been drawn from specificWT1mutations. Of these,
certain mutations cause early-onset, severe disease with DMS
histologically, or alternatively, late-onset SRNS with FSGS
histologically and slower progression to ESRD [75].
Interestingly, isolated SRNS may result from a wide range
of WT1 sequence variations, which are associated with vari-
able expression and incomplete penetrance [75]. It is impor-
tant to stress thatWT1-related nephropathy may be an isolated
disease with no associated comorbidities or it may be an initial
symptom of syndromic SRNS with extra-renal features man-
ifesting later.

Although mutations in TRPC6 and ACTN4 are typical-
ly associated with autosomal dominant late-onset disease,
as discussed below, there are reports of both infantile and
childhood-onset SRNS caused by mutations in these
genes.

Late-onset NS

Autosomal dominant SRNS typically presents later in life, in
adolescence or adulthood, and has significant phenotypic var-
iability. The overall mutation detection rate remains substan-
tial, approaching 25% in adolescence and 12% in adulthood,
but it is lower than cases presenting earlier in childhood [8,
65]. The main genes implicated in late-onset SRNS, which

presents in adolescence, include NPHS2, TRPC6, INF2 and
ACTN4 [31, 65, 68, 77, 78]. TRPC6, encodes a transient re-
ceptor potential cation channel and was originally identified as
causing autosomal dominant FSGS, presenting in adolescence
and early adulthood and showing relatively rapid progression
to ESRD. Since then, TRPC6mutations have been implicated
in childhood-onset FSGS, and even SRNS presenting within
the first year of life, with variable disease severity [8, 10, 77,
79, 80]. Similarly, mutations in ACTN4, which encodes alpha-
actinin 4, typically cause late-onset FSGS with slow progres-
sion to ESRD [29, 81], but mutations in this gene have been
reported in children presenting with SRNS and rapid progres-
sion to ESRD [8, 82]. Mutations in INF2, encoding inverted
formin 2, were originally identified in patients with autosomal
dominant SRNS, with age of onset ranging from adolescence
and throughout adulthood [31, 83]. Although INF2mutations
typically result in isolated FSGS, they have also been detected
in a subgroup of patients with associated Charcot–Marie–
Tooth neuropathy [84]. Specific NPHS2 mutations may man-
ifest late, in adolescence or adulthood; the common variant
R229Q may result in late-onset SRNS in compound hetero-
zygotes with specific second mutations [85].

Syndromic SRNS and mitochondrial disorders

Syndromic SRNS is associated with extra-renal manifes-
tations and most commonly occurs due to mutations in
genes encoding nuclear proteins (WT1 , LMX1B ,
SMARCL1, WDR73), glomerular basement membrane
and adhesion components (LAMB2, ITGA3, ITGB4), actin
cytoskeleton components (MYH9) and lysosomal
(SCARB2) and mitochondrial proteins (COQ2, COQ6,
PDSS2, MTTL1, ADCK4). Table 2 lists the major extra-
renal manifestations associated with gene defects causing
syndromic SRNS; if extra-renal manifestations are pres-
ent, it is highly likely that a causative mutation will be
identified. A full description of syndromic SRNS is be-
yond the scope of this review but readers are directed to
several detailed reviews for a thorough discussion [5, 20,
21, 44, 45, 50, 55, 84, 86, 87].

WT1 mutations are associated with a spectrum of signif-
icant extra-renal manifestations, including urogenital ab-
normalities and malignancy. Mutations in the KTS (splice
insertion) site are associated with Frasier syndrome,
characterised by childhood-onset SRNS, histologically
characterised FSGS, male-to-female sex reversal and in-
creased risk of gonadoblastoma [18, 75]. Missense muta-
tions in exons 8 and 9 (affecting the zinc finger domains)
are associated with Denys–Drash syndrome, characterised
by infantile-onset SRNS, histologically characterised
DMS, sex reversal, gonadoblastoma and Wilms’ tumour
[75]. Large genomic rearrangements disrupting WT1 and
the neighbouring PAX6 result in WAGR syndrome (Wilms’
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Table 1 Monogenic causes of steroid-resistant nephrotic syndrome identified to date, including details of associated clinical phenotype, most fre-
quently observed renal histological lesion and likely mode of inheritance

Gene Protein Phenotype Mode of
inheritance

Histology Reference

Slit diaphragm-associated proteins

NPHS1 Nephrin CNS (Finnish type), SRNS (early onset) AR PTRD, PMS,
FSGS, MCD

[11]

NPHS2 Podocin CNS, SRNS (early and late onset) AR FSGS, MCD [12]

PLCE1 Phospholipase C epsilon 1 CNS, SRNS (early onset) AR DMS, FSGS [13]

CD2AP CD2-associated protein SRNS AD, AR FSGS [14]

TRPC6 Transient receptor potential channel C6 SRNS (late onset) AD FSGS [15]

CRB2 Crumbs family member 2 SRNS AR FSGS [16]

FAT1 FAT atypical cadherin 1 FSGS, neurological involvement AR Variable [17]

Nuclear proteins and transcription factors

WT1 Wilms’ tumour protein 1 Denys Drash, Frasier, isolated SRNS +/−
ambiguous genitalia

AD, AR FSGS, DMS [18, 19]

LMX1B LIM homeobox transcription factor 1β Nail-patella syndrome, isolated SRNS AD FSGS [20]

SMARCL1 SMARCA-like protein Schimke immuno-osseous dysplasia AR FSGS [21]

NUP93 Nuclear pore complex protein 93 SRNS AR FSGS [22]

NUP107 Nuclear pore complex protein 107 SRNS (early onset) AR FSGS [23]

NUP205 Nuclear pore complex protein 205 SRNS AR FSGS [22]

XPO5 Exportin 5 SRNS AR FSGS [22]

E2F3 E2F transcription factor FSGS, mental retardation (gene deletion) AD FSGS [24]

NXF5 Nuclear RNA export Factor 5 FSGS, co-segregating heart block XLR FSGS [25]

PAX2 Paired box protein 2 Isolated SRNS (adult-onset) AD FSGS [26]

LMNA Lamin A and C Familial partial lipodystrophy, FSGS AD FSGS [27]

WDR73 WD repeat domain 73 Galloway-Mowat syndrome AR FSGS, DMS [28]

Cytoskeletal, scaffold and membrane proteins

ACTN4 α-actinin 4 SRNS (late onset) AD FSGS [29]

MYH9 Myosin heavy chain 9, non-muscle MYH9-related disorders, SRNS AD FSGS [30]

INF2 Inverted formin 2 SRNS, Charcot-Marie-Tooth disease AD FSGS [31]

MYO1E Myosin 1E SRNS AR FSGS [32]

MAGI2 Membrane Associated Guanylate Kinase,
inverted 2

CNS, SRNS AR MCD [33]

ANLN Anillin actin binding protein SRNS (adult-onset) AD FSGS [34]

ARHGAP24 Rho GTPase-activating protein 24 SRNS (adult-onset) AD FSGS [35]

ARHGDIA Rho GDP dissociation inhibitor alpha SRNS (CNS), seizures, cortical blindness AR FSGS [36]

KANK 1/2/ 4 Kidney ankyrin repeat-containing protein SRNS +/− haematuria AR FSGS [37]

SYNPO Synaptopodin FSGS AD FSGS [38]

PTPRO Protein-tyrosine phosphatase-R O SRNS (childhood onset) AR FSGS, MCD [39]

EMP2 Epithelial membrane protein 2 SRNS (childhood onset) AR FSGS [40]

APOL1 Apolipoprotein L1 Susceptibility to SRNS Biallelic FSGS [41]

CUBN Cubilin SRNS AR FSGS [42]

PODXL Podocalyxin FSGS AD FSGS [43]

Glomerular basement membrane-associated proteins

LAMB2 Laminin subunit β2 Pierson syndrome, isolated SRNS AR DMS, FSGS [44]

ITGB4 Integrin β4 Epidermolysis bullosa, SRNS, lung
disease

AR FSGS [45]

ITGA3 Integrin α3 Epidermolysis bullosa, SRNS, lung
disease

AR FSGS [46]

COL4A3/4/5 Type IV collagen α3, α4, α5 Alport syndrome AD, AR, XL FSGS [47]
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tumour, aniridia, genito-urinary abnormalities and mental
retardation) [75]. Although these genotype–phenotype cor-
relations have been clearly described, it is important to
note that there remains significant phenotypic variability
with respect to extra-renal manifestations of WT1-associat-
ed disease. Furthermore, histopathological heterogeneity is
noted even amongst carriers of the same genetic abnormal-
ity [75].

LAMB2 and LMX1B mutations typically cause Pierson
syndrome and Nail–Patella syndrome, respectively, but
have also been identified in isolated congenital, infantile
and childhood-onset SRNS [88, 89], and mutation in these
genes should therefore be considered to be causative in
these age groups.

Isolated SRNSmay also be seen, although rarely, in certain
mitochondrial cytopathies, including MELAS (mitochondrial
myopathy, encephalopathy, lactic acidosis and stroke-like ep-
isodes) caused by MTTL1 mutations [54] and coenzyme Q10

deficiency [90]. Coenzyme Q10 deficiency due to mutations in
COQ2 and COQ6 may cause an isolated or syndromic

nephropathy [51]. Mutations in PDSS2 cause Leigh syndrome
but may also cause isolated SRNS [52].

ADCK4 mutations have been found to cause isolated
SRNS with histologically characterised FSGS, manifesting
from infancy through to early adulthood [53]. In contrast to
previous studies [9], in a large multicentre cohort of Chinese
paediatric patients with SRNS, ADCK4 was found to be the
most commonly mutated causative gene, responsible for
SRNS presenting as early as the congenital period, but most
frequently during childhood [10].

Interestingly, there have been reports of patients with co-
enzyme Q10 deficiency and ADCK4 mutation whereby inter-
ventional treatment with COQ10 supplementation has been
shown to modify disease progression [53, 90].

Genetic testing; why?

Genetic testing in NS has important clinical and non-clinical
implications. Confirmation of a genetic defect can personalise

Table 1 (continued)

Gene Protein Phenotype Mode of
inheritance

Histology Reference

GPC5 Glypican 5 NS (adult onset) Risk gene Variable [48]

CD151 CD151 antigen FSGS, bullous skin lesions, deafness AR FSGS [49]

Mitochondrial proteins

COQ2 Coenzyme Q2 CoQ10 deficiency, SRNS +/−
encephalopathy

AR CG [50]

COQ6 Coenzyme Q6 CoQ10 deficiency, SRNS and deafness AR FSGS, DMS [51]

PDSS2 Prenyl-diphosphate synthase subunit 2 CoQ10 deficiency, SRNS, Leigh
syndrome

AR FSGS [52]

ADCK4 AarF domain containing kinase 4 CoQ10 biosynthesis disruption AR FSGS [53]

MTTL1 Mitochondrial tRNA 1 MELAS, diabetes, deafness, SRNS Mitochondrial FSGS [54]

Lysosomal and endocytic proteins

SCARB2 Scavenger receptor class B, member 2 Action myoclonus-renal failure syn-
drome

AR FSGS [55]

OCRL1 Oculocerebrorenal syndrome of Lowe Dent-2 disease, Lowe syndrome, SRNS XLR FSGS [56]

Metabolic and cytosolic proteins

ZMPSTE24 Zinc metallopeptidase STE24 Mandibuloacral dysplasia AR FSGS [57]

PMM2 Phosphomannomutase 2 Congenital defect of glycosylation AR CG [58]

ALG1 Asparagine-linked glycosylation 1 Congenital defect of glycosylation AR FSGS [59]

TTC21B Tetratricopeptide repeat protein 21B FSGS AR FSGS [60]

CFH Complement factor H SRNS AR FSGS [61]

DGKE Diacylglycerol kinase epsilon NS AR FSGS [62]

AD, Autosomal dominant; AR, autosomal recessive; CG, collapsing glomerulopathy; CNS, congenital nephrotic syndrome; DMS, diffuse mesangial
sclerosis; FSGS, focal segmental glomerulosclerosis; MCD, minimal change disease; MELAS, Mitochondrial encephalomyopathy, lactic acidosis, and
stroke-like episodes; NS, nephrotic syndrome; PMS, progressive mesangial sclerosis; PTRD, proximal tubule radial dilatation; SRNS, steroid-resistant
nephrotic syndrome; XL, X-linked
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SRNS management by means of predicting clinical course,
weaning immunosuppression, avoiding renal biopsy, planning
renal transplantation, providing genetic counselling and offer-
ing potential antenatal and pre-symptomatic diagnosis. In ad-
dition to these clinical benefits, identification of known and
novel pathogenic variants implicated in monogenic SRNS
will better define genotype–phenotype correlations, advance
our understanding of the GFB and generate novel avenues for
the in vitro and in vivo study of the pathophysiological mech-
anisms of proteinuria.

Immunosuppression

Several studies highlight that monogenic SRNS is largely ste-
roid resistant, irrespective of the causative mutation [6, 69,
91]. Subsequent management of such patients often includes
various immunosuppressive agents, all with associated ad-
verse side effects and often limited clinical benefit [6, 91].

Indeed, in a recent paediatric cohort of sporadic SRNS, none
of those with an identified causative mutation responded to
immunosuppressive agents, compared to almost 60% of those
without a mutation [6]. However, there are reports in the liter-
ature of a partial response to steroids, ciclosporin therapy or
calcineurin inhibitors in patients with specific WT1, NPHS2,
PLCE1 and TRPC6 mutations or mutations in the regulators
of Rho-like GTPase (ARHGDIA, KANK 1, KANK 2 and
KANK 3) [13, 92–94]. Nonetheless, given that responsiveness
to immunosuppression is unlikely in monogenic SRNS, upon
receiving a positive genetic test result, clinicians should con-
sider weaning immunosuppression if no clinical benefit has
been demonstrated, thus protecting patients from the poten-
tially devastating side effects of such treatments. It is impor-
tant to note that there have been reports of patients with mono-
genic SRNS partially responding to secondary immunosup-
pression [13, 92–94]; in such cases, it would be important to
continue therapy whilst clinical improvement continues.
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Fig. 1 Genetic mutations
associated with steroid-resistant
nephrotic syndrome (SRNS)
grouped according to location and
function within the glomerular
filtration barrier. For full names of
proteins encoded by genes, please
refer to Table 1
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Novel interventional therapy and monitoring

The discovery of rare monogenic causes of SRNS have revealed
a small but significant cohort whose disease may be amenable to
specific interventional treatment, thereby avoiding lengthy im-
munosuppression and delaying progression to ESRD. Patients
with disease-causing mutations in genes encoding enzymes of
the coenzyme Q10 pathway (COQ2, COQ6 and ADCK4) and in
the CUBN gene may respond to treatment with coenzyme Q10

and vitamin B12, respectively. Likewise, patients with
ARHGDIA mutations, through modulation of Rac I–mineralo-
corticoid interactions, could theoretically respond to eplenerone
(a mineralocorticoid-receptor antagonist) [36].

As highlighted in Table 2, many syndromic forms of SRNS
have associated medical problems that may benefit from early
recognition and management. An example is theWT1mutation,
which can predispose to malignancy, and the detection of such
mutations should trigger monitoring for associated Wilms’ tu-
mour and gonadoblastoma. Given the latter entity is largely as-
sociated with sex reversal, a karyotype analysis should also be
performed, especially in phenotypically female patients present-
ing with SRNS and primary amenorrhoea.

Renal biopsy

Renal histology has historically been utilised as a key diag-
nostic and prognostic criterion for children with SRNS, but

emerging evidence reveals significant histological heteroge-
neity amongst monogenic causes of SRNS, demonstrating
that biopsy findings may not correlate with genetic results
[8, 95]. Furthermore, there does not appear to be a notable
difference in the frequency of histological lesions found in
patients with or without a recognised genetic cause [6]. For
these reasons, in cases of primary SRNS, rapid genetic testing
has the potential to obviate the need for renal biopsy for diag-
nostic purposes and serves as a less invasive diagnostic meth-
od; this is of particular significance in the younger SRNS
cohort, for whom a genetic aetiology is more likely. In the
event of rapid genetic testing being inaccessible, renal histol-
ogy may direct clinicians towards the most likely Bculprit^
gene; for example, if DMS is detected in an infant presenting
with SRNS, it would be prudent to perform mutational anal-
ysis on certain genes (LAMB2,WT1, NPHS1, PLCE1) prefer-
entially over others. However, clinical indications for renal
biopsy do remain, such as atypical features suggestive of lu-
pus nephritis, with histology providing useful information.
Additionally, a histological diagnosis enables phenotype pat-
terns to become better established and is therefore useful from
a clinical research perspective.

Disease reoccurrence post-transplantation

There is a high risk of progression to ESRD in monogenic
SRNS, with many patients requiring renal transplantation

Table 2 Syndromic steroid-
resistant nephrotic syndrome and
associated extra-renal
manifestations

Gene Disease Extra-renal manifestations

WT1 Denys–Drash syndrome Urogenital abnormalities, ambiguous genitalia, nephroblastoma

Frasier syndrome Gonadoblastoma, male pseudohermaphroditism

LAMB2 Pierson’s syndrome Ocular abnormalities; microcoria

LMX1B Nail–Patella syndrome Skeletal defects, hypoplastic nails, absent patella, glaucoma

SMARCL1 Schimke
immune-osseous dys-
plasia

Spondyloepiphyseal dysplasia, T cell immunodeficiency, cerebral
infarcts, skin pigmentation

SCARB2 Action myoclonus renal
failure

Progressive myoclonic epilepsy, tremor, ataxia

COQ2 CoQ10 deficiency Progressive encephalomyopathy

COQ6 CoQ10 deficiency Sensorineural hearing loss

PDSS2 Leigh syndrome Hypotonia, ataxia, deafness, growth retardation

WDR73 Galloway-Mowat
syndrome

Microcephaly, psychomotor impairment, seizures, hypotonia

MTTL1 MELAS Myopathy, encephalopathy, lactic acidosis, stroke-like episodes,
diabetes, deafness

ITGA3 Epidermolysis-associated Epidermolysis bullosa, interstitial lung disease

ITGB4 Epidermolysis-associated Epidermolysis bullosa, pyloric atresia

MYH9 MYH9-related
syndromes

Macrothrombocytopenia, mental retardation, sensorineural
deafness, cataracts

INF2 Charcot–Marie–Tooth Chronic peripheral motor and sensory neuropathy

ZMPSTE24 Manibuloacral dysplasia Mandibular and clavicular hypoplasia, cutaneous atrophy,
lipodystrophy, acro-oestolysis

For names of encoded proteins and associated histology, please consult Table 1
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[96]. Several studies have highlighted a low risk of disease
reoccurrence post-transplant when a genetic aetiology has
been confirmed [6, 8, 68, 69, 96, 97]. Conversely, there is a
high risk of post-transplant disease reoccurrence in the idio-
pathic group; this is postulated to be caused by circulating
factors [98, 99]. Given that the likelihood of post-transplant
reoccurrence is minimal for genetic SRNS; after excluding the
mutation in parents, a parental transplant can be planned, al-
though in our experience this typically follows bilateral ne-
phrectomy and an interval of time on dialysis. Post-
transplantation prognosis is improved with living donor trans-
plantation, which is associated with prolonged graft survival
and decreased rejection rates as compared to deceased donor
kidney transplantation.

Genetic counselling

Genetic counselling prior to testing should ensure that families
are informed regarding potential outcomes and limitations of the
chosen genetic test, including the discovery of variants of un-
known significance and the potential for incidental findings.
Possible benefits, including changes to medical management,
should be discussed, as well as potential harms, including priva-
cy, legal and social implication. These subjects are covered in the
next section.

Making a molecular diagnosis has important implications
for a family. It may enable accurate discussion of recurrence
risk in future children and potential identification of pre-
symptomatic individuals at risk [4]. Early referral to a clinical
genetics service can facilitate identification of individuals at
risk and genetic testing of family members as well as counsel-
ling in terms of family planning, prenatal diagnosis and pre-
implantation genetic diagnosis. Genetic screening in unaffect-
ed family members may be additionally important when plan-
ning a living related donor (LRD) renal transplant, especially
in the case of autosomal dominant disease. When inheritance
of a severe disease-causing mutation is likely, pre-
symptomatic testing for proteinuria and genotyping at birth
are avenues that should be discussed and offered to affected
families. Ethical considerations of causing potentially unnec-
essary anxiety should be addressed, and families should be
counselled on the benefits and risks of such an approach; that
is, the benefits of providing a timely genetic diagnosis, and
therefore active clinical management, versus the risks of test-
ing for a disease which may never manifest or be mild in the
event of incomplete penetrance or variable expression.
Prenatal diagnosis could be offered in families with a known
risk of severe NS, such as CNS, or in cases where elevated
alpha-fetoprotein levels have been detected in maternal serum
or amniotic fluid. It can be used to allow the family to make an
informed decision about continuing a pregnancy or to allow
preparation both by the family and medical professionals for
the birth of an affected child.

Risks of genetic testing

In addition to the ethical and emotional considerations that
must be addressed during genetic counselling, there are sev-
eral other risks to the patient and their family who are consid-
ering genetic testing or receiving a genetic diagnosis. In the
UK, genetic testing is usually paid for by the National
Health Service, and in countries with a privatised medical
system, health insurance policies often cover the cost of
genetic testing performed at the request of a doctor.
However, this is not always the case, and in some situa-
tions the significant cost, which can be over US$2000,
must be covered by the family. Furthermore, upon receiv-
ing a genetic diagnosis, the fear of insurance discrimina-
tion and the associated costs of enhanced insurance pre-
miums represent a significant emotional and financial bur-
den. Although there is legislation in place which protects
those with a genetic disease from discrimination by health
insurers, this does not always extend to protect patients
from employment discrimination or the amplified costs of
life, disability and long-term care insurance [100]. As part
of the genetic counselling process, these issues should be
discussed with affected families and informed consent ob-
tained prior to genetic testing. A thorough discussion re-
garding the barriers to genetic testing in public health is
beyond the scope of this review, but readers are directed to
several useful articles for further information [100–104].

Genetic testing; who?

Having discussed the benefits of identifying a causative
mutation in patients with SRNS, it is important to note that
the overall burden of monogenic SRNS has yet to be fully
delineated. Recent evidence estimates that a genetic
aetiology is detected in approximately 30% of cases. A
negative result does not exclude genetic disease as muta-
tions may be missed, with sensitivity for genes covered by
the test depending on methodology and analysis used.
Alternatively, a mutation may be present in a gene not
covered by the chosen test, for example a novel genetic
association. This, combined with the profound clinical
and pathological heterogeneity of genetic and idiopathic
SRNS, highlights that universal genetic testing in SRNS
is inappropriate and unlikely to be cost-effective. Rather,
mutational screening should be directed towards those in
whom a genetic aetiology is likely and should therefore be
reserved for patients presenting with primary SRNS.

Indications for genetic testing

When accessible and affordable, mutational screening should
be performed in all children presenting with primary SRNS.
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Even in young adults, the likelihood of detecting a causative
mutation remains substantial, and when cost allows, mutation-
al screening should also be offered to this cohort. However,
when such an inclusive approach is not possible, there are
certain indications in which a genetic cause for SRNS be-
comes more likely, and mutational screening should be per-
formed as a priority. Given that the likelihood of detecting a
causative mutation is inversely related to age of disease onset
[105], mutational screening becomes increasingly important
the earlier the disease manifests. Genotype–phenotype corre-
lations clearly demonstrate that mutations in recessive genes
are more frequently implicated in early-onset disease and that
mutations in dominant genes are more frequently implicated
in adult-onset disease. Although there may not be an obvious
family history in early-onset disease, a positive family history
in any age group indicates that monogenic SRNS is likely and
should trigger mutational screening. Additionally, the likeli-
hood of finding causative recessive mutations correlates di-
rectly with the degree of consanguinity [80]; thus, a history of
consanguinity should prompt mutational screening. Finally,
the presence of extra-renal manifestations suggestive of an
underlying genetic syndrome (Table 2) makes screening of
associated genes advisable.

The clinical indications for genetic testing in SRNS can be
summarized as follows:

& Congenital or infantile-onset NS
& Childhood-onset NS
& Family history of NS
& Consanguinity
& Extra-renal manifestations.

Genetic testing; when?

Before undertaking genetic testing for SRNS, it is important
that the potential detection of a causative mutation is likely to
aid in diagnosis, alter clinical management, inform likely
prognosis and provide information when stratifying risk for
family members and delivering genetic counselling. In
congenital- and infantile-onset NS, genetic testing should be
considered before commencing immunosuppressive therapy
or performing renal biopsy. Similarly, when genetic testing
can be performed in a timely manner, early confirmation of
a genetic diagnosis in childhood-onset SRNS would minimise
the adverse effects of current therapies on the growing child.
Pre-transplantation genetic testing will provide clinicians with
information that may be helpful in predicting the risk of post-
transplant reoccurrence and will therefore guide pre- and post-
transplant management, especially when considering LRD
kidney transplantation from family members.

To summarise, we suggest that genetic testing should be
considered when important clinical decisions need to be made
regarding the need for renal biopsy, the intensity and duration
of immunosuppression and pre-transplantation therapy, and
when syndromic SRNS is suspected.

Genetic testing; how?

Traditionally, genetic testing in diagnostic laboratories has
employed Sanger sequencing, frequently in association with
exon copy number analysis, to assess specific disease-related
genes individually. In genetically heterogeneous disorders,
with multiple causal genes, such as SRNS, this method can
be expensive and time-consuming owing to the cost of screen-
ing multiple individual genes. The advent of high-throughput
massively parallel sequencing (NGS methods) allows for a
higher diagnostic yield, time savings and a reduction in cost
[105, 106]. Typically, diagnostic laboratories utilise a targeted
capture of a ‘panel’ of genes of interest followed by sequenc-
ing on an NGS platform. Sanger sequencing still plays an
important role for the confirmation of genetic variants identi-
fied via NGS and filling in of regions of poor coverage. The
limitations of Sanger sequencing include the need to ensure
both adequate coverage of regions of interest and adequate
analysis to detect copy number variants such as exonic dele-
tions. As with most Sanger sequencing approaches, this meth-
od will miss deep intronic or regulatory region variants unless
specifically targeted.

Whole-exome sequencing (WES) or whole-genome se-
quencing (WGS) employ NGS methods to attempt to se-
quence the coding portion of the genome (the exome) or the
entire genome, respectively. This approach is not limited to
known candidate genes and therefore has the ability to identify
mutations in novel genes, thereby expanding the heterogene-
ity of SRNS and enhancing our understanding of the patho-
genesis and molecular mechanisms of proteinuria. WES is
increasingly being implemented in the clinical setting, but its
widespread application is limited by the amounts of data gen-
erated and the requirements for robust bioinformatics support
and assessments of the pathogenicity of larger numbers of
variants. When targeted capture utilised for WES gives suffi-
cient coverage of the ‘Mendeliome’, an in silico panel of
genes can be analysed to give similar results to a targeted
capture approach, whilst giving the flexibility to ‘open’ the
data if the initial analysis does not find a variant of interest,
or in light of novel genetic associations. A similar approach
can be utilised with WGS, with the potential advantage of
improved coverage, coverage of regulatory and intronic re-
gions and improved analysis of copy number and structural
rearrangements, but with the disadvantages of increased cost
and substantially increased data and variant volume.
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WES and WGS are hampered by the fact that large
numbers of genetic variants are identified, including vari-
ants of unknown significance and incidental or secondary
findings. These findings raise a number of ethical and prac-
tical issues relating to consent, data storage and analysis,
all too extensive to cover here. The American College of
Medical Genetics and Genomics has published guidance
on reporting secondary findings.

When compared toWES orWGS, the cost-effectiveness of
NGS using a targeted gene panel analysis has greater clinical
application in SRNS, as it produces a more feasible dataset for
bioinformatics analysis which is functionally interpretable in a
clinical setting.

Application to SRNS

Currently, clinical phenotyping combined with targeted NGS
panel analysis is the most cost-effective and clinically useful
approach for mutational screening in SRNS. This method en-
ables clinicians to quantify and stratify likely response to im-
munosuppression, rate of progression to ESRD and risk of
post-transplant reoccurrence. Using NGS technology, most
monogenic SRNS genes (approximately 40–50 genes per pan-
el) can be analysed within 6 weeks and at a competitive price
compared to Sanger methods [6, 107]. There are several com-
mercial indication-driven SRNS gene panels currently in use
around the world, with many laboratories conducting entire or
targeted sequence analysis, antenatal testing and carrier
screening for SRNS genes. Indeed, an internet search (www.
genetests.org) reveals at least 12 laboratories worldwide
offering extended NGS panels for SRNS with an average
turnaround of 3–6 weeks and associated cost ranging from
$1000 to $2200. Comparatively, Sanger sequencing for
individual genes or small panels of genes (approximately 5

genes) has a slightly quicker turnaround of 2–4 weeks and,
depending on the size of the gene, costs $450–$1000 per
individual gene.

In certain circumstances where NGS technology is inacces-
sible or unaffordable, and a disease-causingmutation is highly
likely in a specific gene, as suggested by the presence of extra-
renal manifestations or a positive family history, Sanger se-
quencing methods remain an important diagnostic tool. It is
important to stress that employing genotype–phenotype cor-
relations alone to direct mutational screening using Sanger
methods is only cost-effective, and clinically beneficial, pro-
vided a causative mutation is identified early in the screening
process.

Approach to mutational screening

Our recommended approach to mutational screening in pae-
diatric SRNS is demonstrated in Fig. 2. If NGS techniques are
accessible and affordable, an extended SRNS gene panel in-
cluding, but not limited to, the most common monogenic
causes of SRNS for each age group should be screened
(Fig. 2). For SRNS presenting in the congenital period, the
panel should include the five most likely causative genes
(NPHS1, NPHS2, WT1, LAMB2 and PLCE1), and for those
presenting in infancy or childhood, the gene panel should also
include TRPC6, ACTN4 and ADCK4. Similarly, for those pre-
senting in adolescence, an extended gene panel would maxi-
mise the likelihood of identifying a causative mutation, and
the panel should include the genes already mentioned, as well
as INF2.

Patients with disease-causing mutations in genes encoding
enzymes of the coenzyme Q10 pathway (COQ2, COQ6 and
ADCK4) may be amenable to treatment, and although these
represent a rare group of patients, they are important to

Fig. 2 Mutational screening in
children with isolated SRNS. If
next-generation sequencing
(NGS) technology is accessible,
screening should utilise a gene
panel including, but not limited
to, the most common monogenic
causes of SRNS. If NGS technol-
ogy is inaccessible, genes should
be screened in numerical order of
frequency per age group.
Ethnicity and histological find-
ings should trigger preferential
screening of certain genes. DMS
Diffuse mesangial sclerosis. For
names of genes and associated
encoded proteins, please refer to
Table 1
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recognise and should therefore be included in the genetic
screening panel for isolated SRNS presenting in any paediatric
age group, including the first year of life. This is especially
true for patients of Chinese, Japanese and Korean origin, as
there appears to be an increased frequency of the ADCK4
mutation in these populations [10, 70]. Additionally, given
that the APOL1 genotype represents a vulnerable population
who present with more advanced disease [108], defining a
patient’s APOL1 genotype has important clinical implications,
and mutational screening of this gene should be included in
the gene panel, especially for patients of African descent.

If NGS technology is neither accessible nor affordable and
clinicians are limited to sequential testing, genes should be
screened in numerical order, for each age group, as depicted
in Fig. 2. If renal histology is available and reveals isolated
DMS, we suggest preferentially screening for mutations in
WT1, PLCE1 and LAMB2. In the presence of extra-renal man-
ifestations, it is highly likely that a causative mutation will be
detected, and genes should be selected for screening depend-
ing on the specific phenotype identified (Table 2). In view of
the significant complications associated with WT1 mutations,
establishing a genetic diagnosis appears to be particularly im-
portant; it is therefore advisable to routinely screen WT1 for
mutations in isolated SRNS.

With the advent of NGS methods targeting large panels of
genes, novel pathogenic variants in genes that are more rarely
implicated in paediatric SRNS are being identified. Most re-
cently, mutations in SMARCAL1, CUBN, LMX1B, PODXL
and the nucleoporin genes, NUP93 and NUP107, have been
found to be causative of isolated SRNS presenting from in-
fancy and throughout childhood [8, 10]. Moreover, mutations
in genes which are usually linked to another renal phenotype
(DGKE,OCRL andCOL4A3) have been found to be causative
of isolated SRNS presenting in childhood [8]. These findings
highlight the importance of employing NGS technology in the
diagnosis of monogenic SRNS through expanding current
knowledge in the pathogenesis and molecular basis of protein-
uria. For this reason, extended gene panels and if appropriate
resources are available, WES/WGS techniques, should be
considered wherever possible.

Conclusion

Mutations of podocyte-associated genes account for approxi-
mately 30% of paediatric cases of SRNS. The younger the
child at presentation, the higher the genetic diagnostic rate.
Advances in genomic sequencing have improved our under-
standing of the molecular basis of NS and of the genetic het-
erogeneity of SRNS. A genetic diagnosis allows a
Bpersonalised^ approach when investigating and managing
patients and their families. That is, clinicians are more able
to make decisions about weaning immunosuppression,

avoiding renal biopsy and planning renal transplantation and
geneticists can offer more informed genetic counselling. In a
small but significant sub-group of patients with specific mu-
tations, a genetic diagnosis may open avenues for interven-
tional disease-modifying therapy and allow clinicians to detect
and treat asymptomatic extra-renal manifestations early.

The clinical utility of such advances has been hindered by a
lack of clear guidelines pertaining to mutational screening in
SRNS. There exists profound clinical and pathological het-
erogeneity in monogenic SRNS, with mutations in the
same gene and even identical mutations resulting in signif-
icant phenotypic variability. This heterogeneity renders se-
quential mutational screening using traditional Sanger se-
quencing a timely and costly process. Technological ad-
vances in genomic sequencing have led to the development
of commercial, indication-driven gene panels which simul-
taneously sequence over 40 known SRNS-related genes.
NGS panels are available worldwide, and with a similar
turnaround time and slightly increased cost to traditional
methods, they currently represent the most time- and cost-
effective approach to mutational screening in SRNS. We
propose that all children presenting with primary SRNS be
screened for monogenic causative mutations using an ex-
tended gene panel; especially in cases of early-onset dis-
ease and those with a positive family history or history of
consanguinity. If such an inclusive approach is not possi-
ble, we provide recommendations for sequential gene test-
ing which direct the clinician towards the most frequently
occurring causative mutation per age group, depending on
available histology, presence of extra-renal manifestations
and ethnicity.

NGS methods targeting large panels of genes, the whole
exome or genome have allowed the identification of novel
pathogenic variants and also novel genetic associations impli-
cated in paediatric SRNS. This in turn enables in vitro and in
vivo study of podocyte-associated proteins, further unravelling
the pathogenic pathways of SRNS and providing important
therapeutic targets to guide advanced medical management on
a gene-specific basis.

Key summary points

& Mutations of podocyte-associated proteins account for ap-
proximately 30% of SRNS in childhood.

& The likelihood of detecting a causative mutation is in-
versely related to age of disease onset.

& Monogenic SRNS displays significant phenotypic hetero-
geneity in terms of associated renal histology and clinical
presentation.

& A definitive molecular diagnosis has important clinical
implications, allowing for a personalised treatment
approach.
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& Recent advances in high-throughput sequencing have
revolutionised genetic testing, and indication-driven gene
panel analysis currently represents the most cost-effective
approach for mutational screening in SRNS.

& Identification of novel SRNS genes and causative
mutations will further unravel the pathogenic path-
ways of SRNS.
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