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Abstract Refinement of immunosuppressive strategies has
led to further improvement of kidney graft survival in recent
years. Currently, the main limitations to long-term graft sur-
vival are life-threatening side effects of immunosuppression
and chronic allograft injury, emphasizing the need for innova-
tive immunosuppressive regimens that resolve this therapeutic
dilemma. Several cell therapeutic approaches to immunosup-
pression and donor-specific unresponsiveness have been test-
ed in early phase I and phase II clinical trials in kidney trans-
plantation. The aim of this overview is to summarize current
cell therapeutic approaches to immunosuppression in clinical
kidney transplantation with a focus on myeloid suppressor cell
therapy by mitomycin C-induced cells (MICs). MICs show
great promise as a therapeutic agent to achieve the rapid and
durable establishment of donor-unresponsiveness in living-
donor kidney transplantation. Cell-based therapeutic ap-
proaches may eventually revolutionize immunosuppression
in kidney transplantation in the near future.
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Introduction

Kidney transplantation is the gold standard treatment for end-
stage kidney failure [1]. However, long-term graft and patient
survival are still limited. Death with a functioning graft and
chronic allograft injury due to antibody-mediated rejection
(ABMR) are the most common causes of graft loss during
long-term follow-up after kidney transplantation. Death with
a functioning kidney graft is often preceded by severe side
effects of immunosuppressive medication, such as infection
or malignancy. Thus, there is a need for the development of
treatment strategies that enable sufficient immunosuppression
to prevent ABMR, while avoiding the well-known deleterious
side effects of immunosuppressive therapy. The ideal solution
would be the induction of tolerance by establishing selective
(donor-specific) unresponsiveness of the transplant recipient
without a need for broad non-specific immunosuppression,
thereby retaining full responsiveness of the patient’s immune
system against bacteria, viruses and other pathogens [2].

Historical background to transplantation tolerance

Starting with the pioneering scientific work by Sir Peter
Medawar and colleagues more than 60 years ago, it has be-
come well known that alloantigens can not only activate but
also inhibit immune responses. Billingham and colleagues
induced tolerance in newborn mice by in utero injection of
allogeneic bone marrow cells. A subsequently transplanted
skin graft from the same donor was tolerated in adult mice
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while third party grafts were rejected [3]. Today, tolerance is
believed to be the Holy Grail of transplantation. However,
tolerance is not uniformly defined, and various degrees of
tolerance can be discriminated. Complete tolerance is the per-
manent and specific immunologic acceptance of alloantigens
with full allograft acceptance; immunosuppressive medication
is not needed [4]. Patients with clinical operational tolerance
have well-functioning allografts without receiving immuno-
suppressive medication while an immune response against the
transplanted alloantigens is still detectable [5]. Clinical oper-
ational tolerance often results from immunosuppression with-
drawal many years after successful transplantation, such as in
patients non-adherent to immunosuppressive medication.
Clinical operational tolerance is seen at a higher frequency
in pediatric patient populations than in adolescents. The prom-
inent thymic function with the production of naive T cells
plays an important role in tolerance induction [6]. The rate
of tolerance is generally higher if transplantation is performed
in infants, illustrating the special role of tolerance induction in
pediatric patients [7, 8].

The recipient’s immune system, regulatory T cells
and tolerogenic dendritic cells

Discrimination between self and non-self is the key ele-
ment of allorecognition. Recipient T cells recognize non-
self-antigens from the foreign tissue present after trans-
plantation. These activated T cells perform effector func-
tions to reject the graft tissue. Artificial deprivation of T
cells has been achieved in animal models and is associat-
ed with the avoidance of allograft rejection. To the con-
trary, T cells also play an important role as regulators of
autoimmune responses. They are selected in the thymus
whereby those with a high affinity for self-antigens are
deleted, although some T cells escape thymus censorship
and enhance the risk for autoimmunity. Regulatory T cells
(Tregs) are the counterparts of T cells in that they are
crucial for the maintenance of immunological tolerance.
A major role of these cells is the limitation of T cell-
mediated immunity towards the end of an immune reac-
tion and the suppression of autoreactive T cells that es-
caped the process of negative selection in the thymus.
Two major Treg cell types can be distinguished, name-
ly naturally occurring thymus-derived Tregs (tTreg),
which develop in the thymus, and peripheral Tregs
(pTreg), which develop by conversion from mature
CD4" conventional T cells outside of the thymus [9, 10].
A reliable marker differentiating tTregs from pTregs has
not yet been found. However, pTreg cells are believed to
be an essential supplementary subset to tTreg cells by
expanding T-cell receptor diversity within regulatory re-
sponses [11]. Tregs in general are detectable by their
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expression of the interleukin (IL)-2 receptor alpha-chain
(CD25) and a low or negative expression of the IL-7 re-
ceptor alpha-chain (CD127) [12]. In addition, these cells
express the transcription factor forkhead box (Fox) P3
which is essential for their function. Mutations of the
FoxP3 gene can prevent regulatory T-cell development,
as illustrated by the lethal autoimmune disease IPEX
(immune dysregulation, polyendocrinopathy, enteropathy,
X-linked) syndrome [13]. Treg-cell dysfunction caused by
FoxP3 gene mutation is the main pathogenic event lead-
ing to multiorgan autoimmune disease.

Tregs are divided into three major Treg subsets: cen-
tral Treg (cTreg; resting Treg), effector Treg (eTreg; ac-
tivated Treg) and memory Treg (mTreg) [14, 15].
Following thymic exit, cTreg cells express high levels
of anti-apoptotic molecules and accumulate in lymphoid
organs. cTregs differentiate into eTregs. eTreg cells are
highly proliferative, predispose to apoptosis and are the
dominant Treg cell population in non-lymphoid tissues
[16]. eTregs develop into functional subsets such as T
helper 1 Tregs (Tyl-Tregs), T helper 2 Tregs (Ty2-
Tregs), T helper 17 Tregs (Tyl17-Tregs) and T follicular
helper Tregs (Tgy-Tregs) that can suppress specific T
effectors [10]. MTregs show a low proliferative status
and remain activated in the absence of ongoing antigen
stimulation [15].

Tregs exert their immunoregulatory properties by
targeting either T cells (e.g., cytolysis, release of suppres-
sive cytokines, IL-2 consumption) or antigen-presenting
cells (APCs), such as via reduced co-stimulation or anti-
gen presentation [17]. In pregnant women, possible mech-
anisms by which Tregs induce tolerance can be examined.
The role of Tregs in promoting tolerance to fetal allo-
antigens has convincingly been shown [18-20].
Pathologic changes within regulatory T-cell populations
have been associated with preterm labor and pregnancy-
associated diseases such as preeclampsia and HELLP syn-
drome [21-26]. These diseases show comparable pathol-
ogies to those seen in patients with biopsy-proven rejec-
tion after kidney transplantation. A distinct subset of hu-
man leucocyte antigen-antigen D related (HLA-DR)-pos-
itive Treg cells has a high impact on the suppressive ac-
tivity of the Treg cell pool and their disappearance is a
strong indicator for a rejection process [27, 28]. Aside
from Tregs cells, dendritic cells (DCs), which are profes-
sional APCs, have the capability to induce immune sup-
pression as well. The tolerogenic potential of DCs is in-
dicated by the downregulation of factors related to
boosting the immune response and the upregulation of
inhibitory cytokines [29, 30]. Antigen presentation with-
out co-stimulation inactivates effector T cells and impairs
antigen processing by non-activated APCs, both of which
contribute to the maintenance of self-tolerance [31, 32].
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Clinical protocols for tolerance induction

Clinical experience with the induction of tolerance has been
obtained in adult kidney transplant recipients; however, stud-
ies investigating pediatric patients are rare. Reported cases of
achieved (clinical operational) tolerance usually involve non-
adherent patients who stopped their immunosuppressive med-
ication but did not experience rejection of their allografts [5].
Prospective induction of tolerance has been attempted by
combining living-donor kidney with bone marrow transplan-
tation after the application of myeloablative or non-
myeloablative conditioning regimens [33-35]. Other thera-
peutic strategies using cell products that are composed of im-
munoregulatory cell populations are currently being tested.
The introduction of these newly developed strategies is ac-
companied by the need to overcome several hurdles. As with
all other new medical therapies, cell-based products need to be
validated in clinical trials. Strict governmental regulations are
in place for the production and application of cell preparations
[advanced therapy medicinal products (ATMPs); see section
Clinical development and regulatory milestones for advanced
therapy medicinal products] that are manufactured under con-
ditions of Good Manufacturing Practice (GMP) [31, 36, 37].
The situation is often complicated because cell therapeutic
approaches are usually combined with immunosuppressive
medication that may interfere with the integrity of the applied
cell population [38]. Table 1 gives an overview of all studies
on cell therapeutic approaches to clinical tolerance that have
been registered with www.clinicaltrials.gov as of December
2016.

Combined kidney and bone marrow transplantation

The aim of combined kidney and bone marrow transplantation
is the induction of (transient) mixed chimerism, a state in
which bone marrow hematopoietic stem cells from two genet-
ically different individuals coexist, representing a state of im-
munological tolerance [64]. Early data were provided by
Spitzer et al. in patients with multiple myeloma given fully
HLA-matched combined kidney and bone marrow trans-
plants. Complete immunosuppressive drug withdrawal was
achieved without evidence of acute or chronic kidney rejec-
tion or the occurrence of kidney disease in four of seven re-
cipients [65].

Only a few centers have experience with inducing toler-
ance using a chimerism approach in living-donor kidney
transplantation, namely Stanford University (Stanford, CA),
Massachusetts General Hospital (Boston, MA) and
Northwestern University (Chicago, IL). The main difference
between the three different protocols used at these centers is
the conditioning of the recipients. The Stanford group re-
ported the use of a combination of total lymphoid irradiation
(10 doses of 80 or 120 cGy), rabbit anti-thymocyte globulin

(1.5 mg/kg at 5 daily doses) and intravenous methylprednis-
olone [56]. The MGH group initially used cyclophospha-
mide (60 mg/kg, days —5 and —4), humanized anti-CD2
monoclonal antibody (0.1 mg/kg day —2 and 0.6 mg/kg days
—1, 0 and +1), intravenous calcineurin inhibitor (5 mg/kg
day —1) and thymic irradiation (700 cGy day —1). During
the course of the study rituximab and prednisone were added
to prevent B-cell mediated rejections [34]. The Northwestern
Group reported using a conditioning protocol consisting of
total body irradiation (200 ¢cGy day —1), cyclophosphamide
(50 mg/kg day —3 and +3) and fludarabine (30 mg/kg days
-4, =3, =2) [66].

The Stanford Group reported on 22 HLA-matched and 16
HLA-mismatched patients after combined living-donor kid-
ney and CD34" hematopoietic stem cell transplantation [56].
Graft survival was 100% during the maximum observation
period of 14 years. Of the 22 HLA-matched patients 19 dem-
onstrated persistent chimerism for at least 6 months, among
whom 16 were successfully weaned from immunosuppressive
medication. The results of the HLA-mismatched transplants,
however, are sobering. None of the patients developed chime-
rism beyond 3 months. Patients with transient chimerism, de-
fined by the absence of rejection episodes, graft-versus-host
disease (GvHD) and reactivity to donor cells were withdrawn
from immunosuppression. All of these patients developed re-
jections, necessitating the reintroduction of immunosuppres-
sive medication.

The Boston group recently published their experience with
ten HLA mismatched kidney transplants after combined kid-
ney and bone marrow transplantation [34]. All ten patients
presented transient chimerism, and in seven of the patients
immunosuppression was successfully discontinued for at least
4 years. To date, four patients remain free of immunosuppres-
sive medication, ranging for periods of'4.5 to 11.4 years, while
three have required reinstitution of immunosuppressive thera-
py due to recurrence of original disease or rejection. Two
patients have lost their allograft, one due to antibody-
mediated rejection and the other due to presumed
tacrolimus-associated thrombotic microangiopathy.

At Northwestern University, 25 patients were transplanted
after preconditioning in a HLA-mismatched living-donor kid-
ney transplantation trial. Follow-up data of more than
18 months were available for 17 patients, of whom 12 devel-
oped persistent chimerism, four patients showed transient chi-
merism and one patient never developed chimerism. Results
from Northwestern University of a non-chimeric operational
tolerance protocol in ten renal transplant recipients, HLA-
identical with their living-donor siblings, demonstrate an as-
sociation between global RNA expression profiling and oper-
ational tolerance. Moreover, a time-dependent increase of cir-
culating CD4*CD25"CD127 FOXP3* Tregs in patients
showing operationally tolerant versus a loss of Tregs in non-
tolerant subjects was demonstrable [66].
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These results are encouraging. However, there are impor-
tant issues that need to be addressed before the routine appli-
cation of these approaches is feasible, particularly a reduction
of toxicity of the current regimens and the reliable achieve-
ment of chimerism, to mention a few.

Mesenchymal stem cell therapies

Pluripotent mesenchymal stem cells (MSCs) are naturally
found in the bone marrow where they are precursors to
bone, fat and other connective tissues. It has been postu-
lated that this cell type also has immunosuppressive prop-
erties [67]. The exact mechanisms remain to be defined,
however, an increase in Tregs after MSC infusion has
been shown [68]. Tan and colleagues conducted the first
randomized trial to assess the role of autologous MSC
infusion as an induction agent for living-donor kidney
transplantation [47]. A total of 159 living-donor kidney
transplant recipients were divided into three treatment
arms: (1) MSC treatment (1-2 x 10° cells/kg body weight,
on days 0 and 14) together with standard dose cyclospor-
ine; (2) MSC treatment together with reduced dose cyclo-
sporine (80%); (3) basiliximab (a monoclonal anti-CD25
antibody) instead of MSC induction therapy together with
standard dose cyclosporine. Mycophenolic acid and glu-
cocorticoids were administered at the same standard doses
in all treatment arms. Patients treated with MSCs had
better kidney function, a reduced risk of opportunistic
infections and no rejection episodes, while four rejection
episodes occurred in control group C. The overall rejec-
tion rate in recipients of a living-related kidney transplant
during the first year after transplantation was relatively
high (26%), and there are still concerns about a possible
malignant transformation of MSCs. Further studies are
therefore needed to assess this therapeutic approach.

Another study from China provided evidence for a safe use
of MSCs. Six living-donor kidney transplant recipients re-
ceived autologous MSC infusions (first infusion at the time
of transplantation, second infusion 1 month later) and low-
dose tacrolimus (mean dose 0.045 mg/kg), whereas six control
group patients received tacrolimus (mean dose 0.077 mg/kg)
as the primary immunosuppressant. All patients had good
graft function during a follow-up period of 12 months. One
control group patient suffered from an acute rejection episode
while no such episode occurred in the study group [42].

In 2015, an Indian group published data from a pilot
study with four patients who underwent living-donor kidney
transplantation. These patients received low-dose anti-thy-
mocyte globulin induction followed by calcineurin
inhibitor-based triple drug immunosuppression. Autologous
MSCs were isolated after bone marrow aspiration 4—6 weeks
prior to transplantation. All patients received the first infu-
sion 1 day before transplantation and a second infusion

30 days after surgery. During a follow-up of 6 months,
none of the patients developed adverse events. No clinical
or protocol biopsy-proven graft injury was detectable, while
an increase of blood CD4"CD25"FOXP3*-Tregs was noted
[48].

Treg therapies

Regulatory T cells are believed to play a key role in toler-
ance induction. Tregs have been implicated in the immu-
nosuppressive mechanisms of all cell types discussed in
this overview. The main rationale for a therapeutic Treg
application is a shift in the naturally existing equilibrium
between conventional T cells (T-con) and Tregs in favor of
Tregs [36]. Although the exact dose for optimal immuno-
suppression is not known, it is widely accepted that en-
abling cell-based immunosuppression necessitates the in-
fusion of billions of Treg cells. However, the required
doses for different indications remain to be defined and
appear to vary greatly. Published trials in type I diabetes
mellitus and in hematopoietic stem cell transplantation re-
port the use of doses between 0.1 and 20 x 10° cells/kg
body weight [69]. Ex vivo expansion of isolated Tregs
can be achieved when addressing CD28 costimulation. In
combination with rapamycin a 1000-fold increase in Treg
numbers over approximately 3 weeks of culture has been
documented [70]. Alternatively, Tregs may be generated in
the presence of IL-2 and transforming growth factor-beta
(TGF-f3) by conversion of T-cons [36].

To date, only a few clinical studies have assessed Treg cell
therapy for GVHD prophylaxis in patients after hematopoietic
stem cell transplantation. In a phase I study published in 2011,
Tregs were expanded and administered to patients before stem
cell transplantation. The procedure was safe, and GVHD rates
were reduced compared to rates in control group patients [71].
Another study showed the prevention of GvHD by combined
infusion of Tregs and T-con [72].

To date, no published results are available on the clinical
use of Tregs after solid organ transplantation. The ongoing
ONE Study, part of a collaboration between U.S. and
European centers, focuses on living-donor transplant recipi-
ents. A phase I trial testing the safety of Treg application is
also underway, and the results are expected in 2017 [61]. A
trial from San Francisco evaluates Treg cell infusion after
kidney transplantation as an adjunct immunosuppressive ther-
apy, aiming at preventing biopsy-confirmed rejections during
a 60 month follow-up period (see Table 1, Clinical trial iden-
tifier NCT02088931).

The total Treg pool consists of a variety of subpopulations
with different functions. The ideal Treg subpopulations and
number of Tregs needed for clinical application are yet to be
defined [73].
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Regulatory myeloid cells

Myeloid cells derive from hematopoietic stem cells and may
differentiate into various subsets. In human in vitro models,
different regulatory myeloid cells can be generated from pe-
ripheral blood mononuclear cells (PBMCs), i.e., transplant
acceptance-inducing cells (TAICs), regulatory macrophages
(Mregs), dendritic regulatory cells (DCregs) and myeloid-
derived regulatory cells [74].

Mregs are derived from peripherally isolated CD14* mono-
cytes that are cultured together with macrophage colony-
stimulating factor and interferon-gamma. Several murine stud-
ies have yielded evidence of their immunosuppressive proper-
ties. Inhibition of T-cell activation has been shown to be asso-
ciated with inducible nitric oxide synthase [75]. The potential
of Mregs to induce tolerance has been shown in rodent solid
organ transplantation models. In humans, the TAIC-I clinical
trial assessed the safety and tolerability of administering TAICs
5 days after transplantation to recipients of a deceased donor
kidney graft; no adverse events occurred [76]. The TAIC-II
clinical trial included five living-related kidney transplant re-
cipients, and once again the administration of TAICs was
found to be safe [63]. Of the five patients, two were withdrawn
from steroids within 8 weeks, and tacrolimus trough levels
were weaned to 2 ng/ml without signs of graft dysfunction
during a follow-up of 36 months. One patient was excluded
due to a biopsy-proven acute rejection which, however, was
evident even before TAIC administration. Two years after
transplantation this patient presented with a well-functioning
allograft; HLA antibodies were no longer positive [63].

Since conducting these two trials, Hutchinson et al. have
refined their Mreg purification technique and treated two ad-
ditional living-donor kidney transplant recipients. Both pa-
tients were successfully transplanted and weaned to tacroli-
mus monotherapy [62]. Based on these results, it would ap-
pear that Mreg cell therapy might be a safe and efficient ap-
proach for achieving tolerance. Further proof of safety and
efficacy, however, is needed. Currently, Mreg therapy as well
as other cell therapies are being tested within The One study
[61].

DCregs derive from PBMCs by costimulation of
granulocyte/monocyte colony stimulation factor in addition
to IL-4, IL-10 and TGF-f3. A potential beneficial role has been
shown by suppressing autoimmunity in type I diabetes [77],
however, data in solid organ transplantation are lacking.

Myeloid-derived suppressor cells (MDSCs) are naturally
occurring and expanded during inflammation. Most existing
knowledge on these cells derives from cancer biology studies
which have investigated immunosuppressive mechanisms
[78]. Data on solid organ transplantation cases are rare.
Vanhove and colleagues showed the induction of immune
tolerance in a rat kidney transplantation model and an accu-
mulation of these cells in the allograft [79, 80]. In vitro,

@ Springer

MDSCs were able to induce T-cell apoptosis. A cross-talk
between MDSCs and Tregs was noted [79, 80]. Clinical stud-
ies are lacking. Recent hematologic data suggest that GvHD
can be controlled by MDSC treatment in mouse models [81].
In that study, MDSCs were shown to be associated with Treg
induction and prevention of the initiation of an adaptive im-
mune response. Elevated frequencies of circulating MDSCs
were measured in patients after kidney transplantation,
pointing to a possible role of MDSCs in tolerance induction
[81].

Induction of antigen-specific immunosuppression
by mitomycin-induced cells

Manipulation of DCs by various chemical, pharmaceutical or
biological means can convert these highly immunostimulatory
APCs into cells with tolerogenic properties, making them ca-
pable of inhibiting or even actively suppressing immune re-
sponses. Therefore, tolerogenic DCs are considered for clini-
cal application as a means to prevent rejection episodes in
organ transplantation, as well as for the suppression of delete-
rious immune reactions in autoimmune diseases [29, 82, 83].
Mitomycin C (MMC), due to its cytostatic properties causing
non-immunogenic apoptotic cell death and its usage for de-
cades for treating various types of cancer (including bladder,
metastatic breast, cervical, head and neck, non-small cell lung,
gastric, pancreas and colon cancer), is thought to be a suitable
candidate for modifying highly stimulatory immune cells (e.g.
DCs) into cells exhibiting immunoregulatory properties [84,
85]. It had been shown in in vitro and in vivo studies in mouse
and rat that tolerogenic MMC-treated DCs are capable of con-
trolling both allograft rejection and autoimmune reactions.
Protocols have been established to generate Good
Manufacturing Practice-grade regulatory DCs in vitro [83].
However, there are still concerns that modified DCs regain
their immunostimulatory properties when transfused into a
living organism. PBMCs have been tested as an alternative
to DCs. In a rat heart transplantation study, 50% of the recip-
ient animals achieved long-term acceptance of the transplant,
with >70 days of survival after the administration of a high
dose of 1x10® MMC-induced PBMCs [mitomycin C-
induced cells (MICs)] prior to transplantation [39].
Prophylactic treatment of the recipient resulted in donor-
specific unresponsiveness. Infusing untreated blood cells in-
stead of MICs or transplanting a heart from a third-party rat
strain caused the graft to be rejected in an accelerated fashion
[39]. Relevant preclinical treatment strategies using MMC-
treated cell preparations in transplantation and autoimmune
diseases are given in Table 2.

MIC therapy was applied for the first time to a human
patient suffering relapses of acute lymphoblastic leukemia in
an individual emergency treatment attempt. To control
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Reference

Major observations of outcome

Mitomycin-induced cell population and treatment modality

Table 2 (continued)

Animal model

@ Springer

[41]

-Downregulation of stimulatory cell surface receptors CD80,

-Active suppression of allogeneic T-cell responses in vitro

MMC-induced monocyte-derived myeloid suppressor
cells (MICs)

Organ Tx (in vitro)

CD83, CD86 and HLA-DR on MICs

-Induction of apoptosis in MICs

[40]

-Inhibition of autoantigen-specific T lymphocytes from MS

Mature monocyte-derived DCs

Multiple sclerosis (in vitro)

patients in vitro
-Upregulation of expression of apoptotic and

immunosuppressive genes

Rat-to-mouse (xenogeneic)

Rat pancreatic islets (34 x 10%), 20 h to 7 days in

[95]

-Significantly prolonged survival of islet xenografts

-Restoration of normoglycemia

Pancreatic islet Tx

vitro culture
Anti-donor ICAM-1 mAb / anti-recipient LFA-1 mAb

-Increased prolongation via blockage of ICAM-1 and LFA-1
-Optimal in vitro culture of islets for 40 h-3 days

-Induction of TGF-{3 expression in islets

CNS, Central nervous system; CsA, cyclosporine A; EAE, experimental autoimmune encephalomyelitis; ICAM-1, intercellular adhesion molecule-1; i.m., intramuscular; i.p., intraperitoneal; LFA-1,

lymphocyte function-associated antigen-1; mAb, monoclonal antibody; MBP, myelin basic protein; MMC, mitomycin C; MS, multiple sclerosis; TGF-{3, transforming growth factor-f3

recurrent therapy-resistant rejection of haploidentical stem cell
transplants, the young patient received a transfusion of 10°
paternal MICs derived from CD3/CD19-depleted donor blood
cells, mainly consisting of monocytes (about 53%), at the time
when the onset of a rejection episode against the third trans-
plant was noted. A second transfer of 2 x 10° MICs followed 1
week later, resulting in a decrease of autologous B, NK and T
lymphocytes. Finally, stable complete hematopoietic chime-
rism was established for more than 1 year, supported by the
additional administration of hematopoietic donor stem cell,
mesenchymal stem cell and paternal cytomegalovirus-
specific T-cell preparations. No adverse events attributable to
donor MICs were noted [39].

A scheme of the mechanisms underlying immunomodulation
achieved with MMC-treated peripheral blood cells is given in
Fig. 1.

The TOL-1 phase I study

The clinical application of MICs is presently being investigat-
ed in a single-center phase I trial in living-donor kidney trans-
plantation. The prospective organ recipient is transfused with
MMC-treated peripheral blood cells of the organ donor
(1.5 x 10® MICs/kg body weight) 1 week prior to transplanta-
tion (Fig. 2). In addition to MIC therapy, standard immuno-
suppressive medication consisting of cyclosporine A, enteric-
coated mycophenolate sodium and methylprednisolone is ad-
ministered to the kidney allograft recipients.

Tolerance induction in pediatric patients

As described in the preceding sections, several approaches for
induction of tolerance have been tested in adults. No tolerance
protocol has yet been tested in pediatric patients, although there
undoubtedly is great demand. Young patients can be expected
to have many years of life before them and therefore, at least in
principle, require a longer allograft survival time than adult
recipients. It is therefore particularly important to minimize
long-term allograft injury and the side effects of immunosup-
pression. Especially (very) young patients may have a better
potential for tolerance induction due to their immature immune
system. On the other hand, pediatric patients are more vulner-
able to conditioning regimens, such as preconditioning for he-
matopoietic cell therapies. If less toxic regimens were to be
identified they should be tested in pediatric patients as well.

Clinical development and regulatory milestones
for ATMPs

Advanced therapy medicinal products comprising somatic
cell therapy medicinal products, gene therapy medicinal
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Fig. 1 Mode of action of mitomycin C-treated peripheral blood cells
[mitomycin C-induced cells (MICs] for the induction of donor-specific
tolerance in allogeneic organ transplantation (adapted and modified from
Morath et al. 2015 [2], used with permission). Short incubation of
peripheral mononuclear blood cells (PBMCs) with mitomycin C
(MMC) induces the generation of tolerogenic myeloid cells (MICs).
These cells are characterized by low expression of immunostimulatory
surface molecules, such as cluster of differentiation (CD) 80, CD83,
CD86 and human leukocyte antigen—antigen D related (HLA-DR), as
well as the upregulation of immunosuppressive genes, such as arginase-
1 (arg-1), inducible nitric oxide synthase (iNOS), interleukin (/L)-10,

products and tissue-engineered products are attracting increas-
ing interest for the treatment of patients with cancer, autoim-
mune diseases or orthopedic diseases. To ensure the high qual-
ity, biosafety and efficacy of ATMPs, harmonized regulations

Fig. 2 Protocol for the TOL-1
Study on MIC therapy (adapted
and modified from Morath et al.
2015 [2], used with permission).
Seven days before
transplantation, PBMCs are
retrieved from the kidney donor.
After incubation of peripheral

blood mononuclear cells —— g &’

(PBMCs) with Mitomycin C for

30 min, cells are washed.

1.5 x 10® MICs per kilogram Donor blood cells
(PBMCs)

body weight are infused to the
recipient. Seven days later
recipients receive a kidney
allograft from the same donor

Donor

MHC-dependent, antigen-specific
inactivation

: Administration > s
Harvestingand treatment of cells of MIC cells Kidney transplantation

Mitomycin C

Donor

Recipient

transforming growth factor (TGF)-f3, cyclooxygenase (COX)-2 and the
transcription factor C/EBP. MICs directly inactivate alloreactive T
lymphocytes and induce the development of CD4"CD25FoxP3™*
regulatory T cells (Tregs) capable of suppressing harmful immune
responses. In addition, MMC induces apoptosis in its target cells.
MMC-treated apoptotic donor cells are taken up by recipient antigen-
presenting cells (e.g., immature dendritic cells) preventing their
maturation towards immunostimulatory cells. In turn, these immature
myeloid cells exhibit an immunosuppressive phenotype inhibiting
immune activation and promoting Treg formation

on the European Community level were established in 2008.
In the USA, the Food and Drug Administration (FDA) regu-
lates biological products for human use, both investigational
and licensed. It regulates biological products, including gene

Recipient

& 1

Day-7
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therapy, human tissue and cells, under applicable federal laws,
including the Public Health Service Act and the Federal Food,
Drug and Cosmetic Act. Both, Europe and USA have
established legislative frameworks for the control of quality,
manufacture, marketing and use of these complex cell therapy
medicinal products [96]. To make the path of development of
cell therapy medicinal products clear and transparent a harmo-
nization of rules and requirements across the European coun-
tries as well as between the European Medicines Agency and
the FDA is mandatory. For developers of ATMPs requests for
and compliance with regulatory scientific advice and direct
interaction with regulators is of great importance. The devel-
opment of an ATMP is time-consuming and cost-intensive.
After proof of concept by intensive preclinical studies, the
investigational cellular approach can be translated from bench
to bedside at a GMP unit in compliance with the legal require-
ments. In the next step, documents for the investigational me-
dicinal product have to be filed for the appropriate govern-
mental and institutional authorities to obtain (1) approval to
perform a clinical phase I-II study from the competent author-
ities, (2) the manufacturing license and (3) the ethical vote
from the Institutional Review Board at the study site.
Therefore, documents including a detailed study protocol, an
Investigator’s Brochure, an Investigational Medicinal Product
Dossier, extensive validation documents and complex
Standard Operating Procedures are required.

For a broader availability of ATMPs, not only do regulatory
requirements have to be fulfilled, but financial and economic
support by health insurance programs/companies funds over
the long term is also needed. These health insurance
programs/companies issue directives specifying which ser-
vices in their medical care coverage are reimbursed based at
least in part on scientific reports that evaluate the benefits and
risks of medical interventions.

Hence, it may take more than one decade to progress from
the original notion of a cell-based therapy through to its proof
of concept and translation into GMP-conform manufacturing
and up to the final ATMP approval/authorization. This entire
process translates into an enormous financial and regulatory
effort and, due to a changing world, a complicated prognosis
for the future development of products.

Conclusion

Cell therapeutic approaches might revolutionize immunosup-
pressive regimens after kidney transplantation in the future.
Early data on cell therapeutic strategies after kidney transplan-
tation are encouraging. Reliable protocols that are capable of
inducing stable clinical tolerance while at the same time
avoiding side effects remain to be defined. The application
of these cell therapies must be suitable for clinical routine.

@ Springer

An elegant approach to immunosuppression by MIC cells
had recently been introduced.
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