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Abstract Several of the drugs currently used for the treatment
of glomerular diseases are prescribed for their immunothera-
peutic or anti-inflammatory properties, based on the current
understanding that glomerular diseases are mediated by im-
mune responses. In recent years our understanding of
podocytic signalling pathways and the crucial role of genetic
predispositions in the pathology of glomerular diseases has
broadened. Delineation of those signalling pathways supports
the hypothesis that several of the medications and immuno-
suppressive agents used to treat glomerular diseases directly
target glomerular podocytes. Several central downstream sig-
nalling pathways merge into regulatory pathways of the
podocytic actin cytoskeleton and its connection to the slit di-
aphragm. The slit diaphragm and the cytoskeleton of the foot
process represent a functional unit. A breakdown of the cyto-
skeletal backbone of the foot processes leads to internalization
of slit diaphragm molecules, and internalization of slit dia-
phragm components in turn negatively affects cytoskeletal
signalling pathways. Podocytes display a remarkable ability
to recover from complete effacement and to re-form interdig-
itating foot processes and intact slit diaphragms after pharma-
cological intervention. This ability indicates an active inside-
out signalling machinery which stabilizes integrin complex
formations and triggers the recycling of slit diaphragm mole-
cules from intracellular compartments to the cell surface. In
this review we summarize current evidence from patient stud-
ies and model organisms on the direct impact of immunosup-
pressive and supportive drugs on podocyte signalling

pathways. We highlight new therapeutic targets that may open
novel opportunities to enhance and stabilize inside-out path-
ways in podocytes.
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Introduction

Proper podocyte function and structure plays an important role
in determining the integrity of the glomerular filtration barrier.
Podocytes are highly differentiated epithelial cells with inter-
digitating foot processes that form a network on the outer sur-
face of the filter slit diaphragms connecting neighbouring foot
processes. Podocytes are terminally differentiated cells with no
regenerative capacity. Therefore, a reduction in podocyte num-
ber beyond a critical threshold leads to glomerular disease pro-
gression in experimental rodent models [1, 2]. However, as
long as the podocytes are just effaced and not lost, they display
a remarkable capacity to recover foot processes within a short
period of time, as occurs in minimal change disease, the clas-
sical example of the potential of podocytes to recover. Howev-
er, effacement caused by other diseases also has the capability
to recover, as described in a recent case of nephrotic range
proteinuria following a Hantavirus infection which completely
resolved within a few weeks [3].

Ultrastructural findings in this case report [3] document the
cytoskeletal phenotype of foot process effacement as well as a
redistribution of slit diaphragm proteins to the intracellular
compartment of podocytes. This process clearly indicates that
slit diaphragm components are not degraded immediately af-
ter internalization but may be transferred to intracellular stor-
age compartments from where they can be recycled from the
inside back out to the cell surface. Transient proteinuria
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models in rodents, such as the protamine sulphate model in
rats and the lipopolysaccharide (LPS) model in mice display
rapid but reversible foot process effacement and proteinuria.
Even more striking, PS infusions in rodents can result in the
fusion of podocyte foot processes, and this phenotype is re-
versible within minutes after infusion of heparin [4, 5]. There-
fore, experimental evidence also suggests that a molecular
machinery in podocytes exists to internalize slit diaphragm
components and recycle them rapidly back to the cell surface.
Most likely, as we recently demonstrated, those mechanisms
are orchestrated by posttranslational modifications [6]. The
targeting or supporting of these Binside-out^ pathways could
be a novel anti-proteinuric and podocyte-specific treatment
concept. Other mechanisms of recovery involve glomerular
cell replacement from stem cells. A glomerular stem cell niche
was recently described which implies that lost podocytes
could be replaced by cells from the parietal layer [7–9].
Whether this concept is only part of a physiological replenish-
ment or holds true in disease states is a controversial discus-
sion since parietal epithelial cells are clearly involved in the
disease process itself [10–13].

In this review we summarize current evidence supporting
the hypothesis that the established treatment regimens for ne-
phrotic syndromes might be interfering directly with cellular
pathways that stabilize and support the recovery of the actin
cytoskeleton and the slit diaphragm of podocytes. If this hy-
pothesis were to be valid, drugs commonly used in the clinic
to treat our patients would have to be put into a new context,
and there would be a need for novel and cell-specific thera-
peutic approaches since it most likely would be unnecessary
to target the general immune system and accept the systemic
side effects of immunosuppressive drugs.

The podocyte cytoskeleton plays a key role in proper
glomerular function

A central aspect of studies in podocyte cell biology, which
involves convergence of several signalling pathways of the
deregulated immune system, is the actin cytoskeleton.

Podocyte foot processes consist of cortical actin filaments
and actin-associated proteins, such as myosin, α-actinin and
synaptopodin, which ensure the dynamic maintenance and
reorganization of the cytoskeleton. The important role of the
podocyte actin cytoskeleton and podocyte–glomerular base-
ment membrane (GBM) interactions for the development of
foot process effacement is supported by several genetic loss-
or gain-of-function models affecting the cytoskeleton and re-
capitulating genetic human diseases [14–19]. It would there-
fore seem reasonable to search for supportive therapies that
would directly interfere with pathways regulating slit dia-
phragm protein expression and cytoskeletal pathways that ac-
tivate or support the recovery potential of stressed podocytes.

In the following section we discuss widely subscribed drugs
which have direct positive or negative (side-) effects on
podocyte structures. Table 1 summarizes current knowledge.

Commonly prescribed drugs directly targeting
the podocyte

Renin–angiotensin–aldosterone system blockers

The renin–angiotensin–aldosterone (RAAS) system plays a
crucial role in kidney disease. The major effector molecule
of the RAAS is angiotensin II that mediates its function
through angiotensin II type-1 and type-2 receptor (AT1-R
and AT2-R). Immunofluorescence studies showed that both
AT1-R and AT2-R are expressed in podocytes and that their
expression is elevated in the proteinuric state [20]. Angioten-
sin II depolarizes podocytes directly through the opening of
chloride ion channels and the resulting increased chloride con-
ductance. The activation of chloride ion conductance is medi-
ated by an AT1-R [21]. Angiotensin II infusion has been
shown to induce proteinuria independent of any pressure ef-
fects [22] and to induce reorganization of the actin cytoskele-
ton and increase intracellular cAMP in cultured glomerular
epithelial cells [23]. Durvasula et al. reported that exposure
to cyclic stretch increased both the production of endogenous
angiotensin II and the expression of AT1-R in cultured rat
podocytes, and in vivo after 5/6 nephrectomy in rats [24]. In
another study, the tissue RAAS of the kidneys was activated in
diabetic nephropathy and immortalized murine podocytes,
with higher concentrations of angiotensinogen, angiotensin
II and AT1-R expressed under high glucose conditions [25].

RAAS blockers have beneficial effects on proteinuria and
progression to renal failure. Lewis et al. showed a reno-
protective effect of angiotensin-converting enzyme (ACE) in-
hibitors in type 1 diabetes [26]. RAAS blockers also have
beneficial renal effects in type II diabetes [27]. The ACE in-
hibition in the Progressive Renal Insufficiency (AIPRI) study
demonstrated that ACE inhibitors are able to delay the loss of
renal function in non-diabetic patients.

The anti-proteinuric effect of RAAS blockers is primarily
thought to be mediated by a reduction in glomerular perfusion
pressure. However, growing evidence suggests that RAAS
inhibition might also act on the podocyte cytoskeleton and
on components of the glomerular slit diaphragm directly. In
podocytes RAAS inhibition results in decreased cell tonus,
rearrangement of the actin cytoskeleton and decreased rate
of apoptosis and protein leakage [24]. A direct effect of RAAS
inhibition on the slit diaphragm is that it prevents redistribu-
tion of zona occludens 1 (ZO-1) in rats [28] and restores the
expression of nephrin in experimental models of diabetic ne-
phropathy [29]. Both of these proteins are important compo-
nents for the proper filtration functioning of the glomerulus
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(Fig. 1). The selective aldosterone blocker eplerenone also
ameliorates podocyte injury, proteinuria and salt-evoked ne-
phropathy [30, 31].

Glucocorticoids

The current paradigm is that glucocorticoids act in glomerular
disease by reducing the release of pathogenic factors of circu-
lating T lymphocytes that are thought to be one of the major
causes of some forms of idiopathic nephrotic syndromes. Glu-
cocorticoids bind to the cytoplasmic glucocorticoid receptor
that is translocated to the nucleus after dimerization. In the
nucleus glucocorticoids bind to glucocorticoid response ele-
ments on the DNA or interact with other transcription factors
[32]. However, glucocorticoids might have important direct
effects on the cells as well (Fig. 1). Human podocytes also
express the glucocorticoid receptors [33] and in vitro, dexa-
methasone treatment protects podocytes from puromycin
aminonucleoside (PAN) injury by inhibiting actin filament
disruption and PAN-induced apoptosis [34, 35]. Similar to
the PAN model, dexamethasone can also rescue podocytes
from adriamycin-induced actin rearrangement by stabilizing
the expression of α-actinin-4 [36].

In a differential proteomic analysis of dexamethasone-
treated cultured murine podocytes ciliary neurotrophic factor,
αB-crystallin and heat shock protein 27 were upregulated by
dexamethasone. These three proteins play a well-known role
in protecting cells from injury, and current data suggest a
direct effect of steroids on podocytes in nephrotic diseases
[34]. Most of the in vivo studies of experimental nephrotic
syndrome induced in rats by PAN-injection performed to date
have demonstrated that glucocorticoid treatment reduces pro-
teinuria and attenuates podocyte foot process effacement [37,
38]. In humans, glucocorticoid therapy remains the primary
treatment option for nephrotic syndrome, and inmany cases of
minimal change disease, steroid treatment induces remission
and restoration of the slit diaphragm architecture, leading to
the term Bsteroid-sensitive nephrotic syndrome^ [39]. Steroid-
resistant cases usually receive combination treatments with
addition of calcineurin inhibitors (CNIs).

Calcineurin inhibitors

Calcineurin inhibitors (CNIs), such as cyclosporine A or
Fk506, lower the activity of T cells. The immunosuppressive
actions of cyclosporine were originally attributed to the de-
phosphorylation of the nuclear factor of activated T cell
(NFAT) family members (Fig. 2) as CNIs lead to nuclear trans-
location and activation of early genes of the T cell-driven im-
mune response [40]. However, Faul et al. showed that the ben-
eficial effect of cyclosporine A on proteinuria is not dependent
on NFAT inhibition in T cells. In podocytes, calcineurin de-
phosphorylates synaptopodin and makes it more susceptibleT
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to cathepsin L-mediated degradation. By inhibiting calcineurin,
cyclosporine A stabilizes the actin cytoskeleton in podocytes

by preserving the phosphorylation-dependent synaptopodin-
14-3-3β integrin interaction [41] (Fig. 1). In addition to the

Fig. 1 Illustration of different drug targets in the podocyte. Positive
effects of drugs on podocyte function are shown in green and negative
effects of drugs on podocyte function are shown in red. Please note that
mammalian target of rapamycin (mTOR) inhibitors are mentioned in both
colours as they have pro-survival effects in diabetic nephropathy but can
cause negative side effects on podocytes in other clinical settings. Here
mTOR inhibitors can lead to proteinuria and podocyte apoptosis by de-
creasing the expression of synaptopodin, podocin and nephrin. ARBs
Angiotensin receptor blocker, ASMase acid sphingomyelinase, AT1-R

angiotensin 1 receptor,CD2APCD2-associated protein,CTLA-4 cytotox-
ic T lymphocyte-associated protein 4, MC-R mineralocorticoid receptor,
PPARγ peroxisome proliferator-activated receptors γ, SMPDL 3b
sphingomyelin phosphodiesterase acid-like 3b protein, SUMOs small
ubiquitin-like modifiers, SYNPO synaptopodin, suPAR soluble urokinase
plasminogen activator receptor, TGF-R transforming growth factor recep-
tor, TRPC-6 transient receptor potential cation channel 6, VEGF-R vas-
cular endothelial growth factor receptor

Fig. 2 Signalling pathways activated by different drugs in podocytes.
AKT Protein kinase B, Ang I/II angiotensin I/II, DG diacylglycerol,
ERK extracellular signal-regulated kinases, IP3 inositol trisphosphate 3,
JAK janus kinase,MAKmitogen-activated protein kinases, NFAT nuclear

factor of activated T-cells, PI3K phosphatidylinositol-4,5-bisphosphate 3-
kinase,PKC-α protein kinase C alpha,PLC phospholipase C, STAT signal
transducer and activator of transcription, TSC tuberous sclerosis complex.
For other abbreviations, see caption to Fig. 1
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effectiveness in glomerular diseases that are thought to be im-
munologically mediated, CNIs are also used to reduce protein-
uria in Alport syndrome, which is a clear non-immunological
disease caused by mutations of the type IV collagen of the
GBM [42–44], further supporting the notion of additional
CNI-mediated effects independent of T cells. Additional evi-
dence derives from studies in children with genetic
podocytopathies. Here cyclosporine A was demonstrated to
have an anti-proteinuric effect in cases with mutations in the
WT-1, podocin and phospholipase C epsilon genes [45–47].

Rituximab

Rituximab is a monoclonal antibody directed against the
CD20 receptor expressed on B lymphocytes but has also been
demonstrated to be effective in glomerular diseases that are
not related to B cells, such as recurrent focal segmental
glomerulosclerosis (FSGS) after transplantation [48]. As re-
cently reported byRuggenenti et al., rituximab can also reduce
the number of relapses in patients with minimal change dis-
ease (MCD) and FSGS [49]. Interestingly, rituximab binds not
only to CD20 but also to other molecules, including
sphingomyelin phosphodiesterase acid-like 3b protein
(SMPDL-3b), in immune cells [50]. Interestingly, the authors
of a recent study suggested that rituximab controls actin cyto-
skeleton remodelling in podocytes through the stabilization of
sphingolipid-related enzymes [51] (Fig. 1). In this study,
SMPDL-3b downregulation after exposure to FSGS patient
sera rendered podocytes more susceptible to actin remodel-
ling, and rituximab partially preserved the disruption of stress
fibers through the stabilization of SMPDL-3b [51].

Mammalian target of rapamycin inhibitors

Mammalian target of rapamycin (mTOR) is a serine–threo-
nine kinase, which controls cell growth and metabolism.
MTOR also has a central role in cell survival. It mediates its
functions through mTOR complex 1 (mTORC1) and mTOR
complex 2 (mTORC2) as well as through regulatory-
associated protein of mTOR (Raptor) and rapamycin-
insensitive companion of mTOR (Rictor) [52]. Moreover,
mTOR regulates vascular endothelial growth factor (VEGF)
that is essential for podocyte survival through autocrine and
paracrine pathways [53]. Current data on the function of
mTOR inhibitors in renal disease are conflicting.

It has been shown that hyperactivation of the mTOR path-
way in diabetic nephropathy plays a pivotal role in the hyper-
trophy of glomerular cells and is associated with podocyte
injury and the progressive decline of glomerular filtration rates
[54] and that inhibition of the mTORC1 pathway with
rapamycin has reno-protective effects on the progression of
diabetic nephropathy [55]. However, the induction of protein-
uria after treatment with mTOR inhibitors, such as sirolimus

and everolimus, is a typical side effect [56, 57]. In a knock-out
model Raptor deletion induced proteinuria and glomerular
lesions in mice, and concomitant Rictor deletion exacerbated
this phenotype [52, 58, 59]. Sirolimus has also been shown to
reduce the expression of synaptopodin, podocin and nephrin
and in addition to increase podocyte apoptosis [60]. VEGF
expression was reduced in the glomeruli of patients with
sirolimus-induced thrombotic microangiopathy [61]. Thus,
mTOR inhibitors seem to have direct effects on podocyte
integrity. However, on the one hand mTOR inhibitors have
the side effect of proteinuria; on the other hand they have been
shown to have beneficial effects in diabetic nephropathy. The
conflicting data of mTOR regarding glomerular function
might indicate that a delicate balance of mTOR and/or
subtype-specific receptor activity is necessary for proper
podocyte function. In this regard mTOR function seems to
be similar to VEGF function (see below) that also requires
an orchestrated activity in the glomerulus. To date it is not
clear whether there is a specific mTOR pathway that should
be targeted depending on the disease that should be treated.
More studies on mTOR subtype-specific functions are
needed.

3-Hydroxy-3-methylglutaryl-coenzyme A reductase
inhibitors

3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) re-
ductase inhibitors—also known as statins—are a class of
drugs used to lower cholesterol levels by inhibiting the en-
zyme HMG-CoA reductase that plays a central role the pro-
duction of cholesterol in the liver. HMG-CoA reductase inhib-
itors have been shown to decrease the rate of decline of kidney
function and to reduce proteinuria in patients with chronic
kidney disease stages I–III [62, 63]. These effects are indepen-
dent of serum lipid levels, implicating pleiotropic effects of
statins in the kidney [64]. In addition to their general effect on
lipid metabolism, statins seem to have beneficial effects on
mitochondrial function in podocytes. Rosuvastatin attenuated
angiotensin II-dependent increases in NADPH oxidase activ-
ity and reactive oxygen species (ROS) generation in cultured
podocytes [65]. In line with these findings are reports that
fluvastatin is able to attenuate injury induced by PAN and to
increase the production of β1-integrin in human podocytes
in vitro, which is thought to be an ROS activity-inhibiting
mechanism [66, 67]. Rosuvastatin has also been found to dis-
play pro-survival activities in injured podocytes through a
p21-dependent anti-apoptotic pathway [68].

Peroxisome proliferator-activated receptors γ agonists

Thiazolidinediones (TZDs)—also known as glitazones—are
anti-diabetic agents which activate the peroxisome
proliferator-activated receptors γ (PPARγ), leading to
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modified gene transcription that improves insulin resistance,
among others. Growing evidence suggests that TZDs also
may affect PPARγ-independent pathways in glomerular dis-
ease. TZDs have been shown to reduce podocyte injury and
proteinuria in diabetic nephropathy [69, 70]. In two studies,
the development of PAN-induced glomerulosclerosis could be
ameliorated by pioglitazone which also reduced apoptosis and
necrosis in cultured podocytes [70, 71]. Similar, rosiglitazone
was observed to attenuate the development of proteinuria and
glomerulosclerosis in doxorubicin-induced FSGS in rats [72].
Rosiglitazone is able to protect podocytes against damage
caused by mitochondrial dysfunction [73]. Moreover, TZDs
can prevent actin filament redistribution induced by PAN [74]
and directly influence expression of small ubiquitin-like mod-
ifiers (SUMOs) [75], which we recently demonstrated are es-
sential for the cellular surface expression of nephrin in
podocytes (Fig. 1) [6].

Thus, PPARγ agonists do not only lower blood glu-
cose levels in diabetes but are also beneficial in diabetic
nephropathy by improving podocyte mitochondrial func-
tion, slit diaphragm integrity and stability of the actin
cytoskeleton.

VEGF inhibitors

Podocytes are the major source of VEGF production in the
glomerulus.We and others have shown that podocytes express
different VEGF isoforms and also VEGF receptors (VEGF-R)
[76, 77]. Furthermore, VEGF-A and VEGF-C have an impor-
tant autocrine role in the podocyte, and VEGF inhibition leads
to the activation of pro-apoptotic pathways in cultured human
podocytes [77]. Podocyte-specific heterozygous and homozy-
gous deletions of VEGF results in proteinuria and
endotheliosis in mice [78]. VEGF also has direct beneficial
effects on podocyte survival independent of nephrin expres-
sion [79]. An endogenous condition when VEGF-A levels are
reduced is preeclampsia. Here a soluble VEGF-R1 (sFLT-1)
produced by the placenta blocks VEGF in the circulation and
causes proteinuria, hypertension and endotheliosis [80, 81].
Serum from women with preeclampsia and with high sFlt-1
concentrations can directly alter podocyte structure and func-
tion whereas supplementing these sera with exogenous VEGF
can directly reverse is effects [82]. These studies clearly indi-
cate that podocyte function depends on a certain level of au-
tocrine VEGF-R activation. The delivery of VEGF121 via the
tail vein normalizes VEGF levels and prevents the late-
gestational spike in blood pressure and proteinuria in a murine
model for preeclampsia [83]. In a rat model for preeclampsia
the treatment with VEGF121 reverses hypertension, protein-
uria and glomerular endotheliosis [84]. To our knowledge,
VEGF-A treatment has not yet been used in humans to treat
proteinuria. However, because of the negative effects seen in
diabetic nephropathy (see below) more work has to be done to

elucidate more clearly the precise tuning of VEGF amount and
different isoforms before VEGF infusion can be tried in pa-
tients. Based on our own work treatment with VEGF-C could
be a short-term alternative [77].

The levels of VEGF, while downregulated in preeclampsia
VEGF levels, are upregulated in diabetic nephropathy. More-
over, podocyte VEGF164 overexpression in mice is sufficient
to induce structural and functional abnormalities in the glo-
merular filtration barrier similar to those in diabetic nephrop-
athy [85]. Anti-VEGF antibodies reduce the severity of dia-
betic nephropathy in rodents [86, 87], whereas they can in-
duce hypertension, proteinuria and glomerular disease in hu-
man patients [88]. Anti-VEGF strategies that either block the
extracellular binding of VEGF to its receptor (anti-VEGF
antibodies) or inhibit intracellular signalling pathways of
VEGF-R (receptor tyrosine kinase inhibitors) are widely used
in the clinical setting to inhibit angiogenesis in different types
of cancer. In patients treatment with VEGF inhibitors can lead
to podocyte effacement. Our group was the first to describe
podocyturia (loss of podocytes in the urine) in patients receiv-
ing VEGF ablation therapy with bevacizumab or sunitinib
[89].

Proteinuria recovery following the discontinuation of
VEGF ablation therapy indicates the direct beneficial effect
of this treatment and underlines the remarkable recovery po-
tential of podocytes.

The conflicting data on the VEGF system in different
species and different glomerular diseases suggest that a
dynamic and context-related balance of VEGF levels
and isoforms is necessary to maintain proper glomerular
function. Consequently, this molecule is a difficult po-
tential drug target.

New strategies to directly target the podocyte

Notch inactivation

Therapies based on newly identified podocyte proteins and
signalling pathways might be the future for the treatment of
glomerular disease. For example, inactivation of Notch sig-
nalling pathways in podocytes, which promotes apoptosis,
could be a promising target pathway to ameliorate the damage
caused by glomerular disease [90]. A major problem with this
therapeutic strategy is that many of the pathways which are
upregulated or reactivated in glomerular disease might be es-
sential for maintaining homeostasis in other tissues. There-
fore, a more podocyte-directed therapy is highly desirable.
In the following sections we present new therapeutic strategies
by directly targeting the podocyte. Table 2 summarizes the
effects of new anti-proteinuric strategies that potentially target
podocyte structures and pathways.
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Abatacept

Abatacept (CTLA-4–Ig) consists of a fusion protein of the extra-
cellular domain of CTLA-4 and human immunoglobulin (Ig)
G1. CTLA-4 transmits an inhibitory signal to Tcells and through
its binding to CD80 (also called B7-1) on antigen-presenting
cells, it prevents the delivery of the co-stimulatory signal to the
T cell [91, 92]. Abatacept is used in glomerular disease to sup-
press the T cell activity that is thought to be a major cause in
some of these diseases. For example,MCD is commonly thought
to be mediated by a circulating factor released by T cells. How-
ever, a couple of years ago an unanticipated novel role for CD80
in podocytes as an inducible modifier of glomerular
permselectivity was described [4]. While CD80 expression is
absent in normal podocytes, CD80 was found to be induced in
podocytes in various animal models of proteinuria and was de-
tected in podocytes from patients with glomerular diseases.

Increased podocytic CD80 expression has been found in
genetic, drug-induced, immune-mediated and bacterial toxin–
induced experimental nephrotic syndrome [4]. The exposure of
podocytes to LPS rapidly unregulate CD80 inmice and leads to
actin reorganization and nephrotic-range proteinuria, whereas
mice lacking CD80 are protected from this damage [4]. Sera
fromMCD patients in relapse, but not in remission, were found
to stimulate CD80 expression in cultured podocytes [93]. In
addition, urinary concentrations of soluble CD80 in patients
with relapsed MCD were significantly higher than those in
patients with MCD in remission and with other glomerular
diseases including FSGS and in healthy controls [94]. Serum
and urinary CTLA-4 levels tend to be low in MCD patients in
relapse, and the urinary CTLA-4 level returns to higher levels
during remission [95]. Yu et al. described the use of abatacept
in inducing remission in five patients with FSGS based on
positive staining for CD80 in glomerular podocytes, reporting
a clinically significant reduction in proteinuria in all patients
[96]. However, the validity of these findings were questioned
by other researchers [97, 98]. An ongoing clinical phase III trial
that is evaluating abatacept for the treatment of lupus class III

and IV is also analysing the outcome of proteinuria (https://
clinicaltrials.gov/ct2/show/NCT01714817).

Soluble form of the urokinase plasminogen activator
receptor blockers

Another potential therapeutic optionmight be the soluble form
of the urokinase plasminogen activator receptor (suPAR)
blocker. SuPAR secretion by T lymphocytes has been sug-
gested to be a Bpermeability factor^ in the pathogenesis of
FSGS. It binds to α5β3 integrin in the podocyte membrane,
thereby leading to podocyte contraction and loss of podocytes
from the GBM [99, 100]. Amiloride inhibits the synthesis of
uPAR and suPAR secretion by T lymphocytes and thereby
decreases α5β3 integrin activation [101, 102].

However, the role of suPAR in glomerular disease has been
questioned in recent years. Even though experimental data
suggest that suPAR therapy may also cause proteinuria and
FSGS by alternatedβ3-integrin signalling, these findings can-
not be easily translated to routine clinical care [103]. Higher
serum or plasma suPAR levels have also been demonstrated in
patients with other diseases, such as cancer, sepsis and athero-
sclerosis [104, 105]. Future studies are ongoing to specifically
reduce suPAR levels in patients with primary or recurrent
FSGS.

Transient receptor potential cation channel 6 small
interfering RNA

Another exciting concept is the direct and specific targeting of
therapeutic agents to the podocyte, thereby limiting systemic
adverse effects. One such example has been described for the
transient receptor potential cation channel 6 (TRPC6). TRPCs
are non-selective cationic channels which play a major role in
chemo- and mechanosensation. In podocytes, TRPC6 is a slit
diaphragm-interacting protein [106] which may regulate
changes in calcium ion (Ca2+) levels and in actin cytoskeleton
rearrangement [107]. Overexpression of TRPC6 in mice

Table 2 Effects and target
structures of new anti-proteinuric
strategies on podocytes

New anti-proteinuric strategies Target structures/pathways on podocytes

Abatacept (CTLA-4–Ig) B7-1, integrin signalling [4, 93, 96]

Adalimumab (Anti-TGF-β) TGF-β/SMAD, apoptosis [111]

Amiloride (suPAR blocker) β3-integrin signalling [99, 100]

Oral ManNAc Angptl 4 [116]

Ruboxistaurin (selective PKC-β inhibitor) (Among others) extracellular matrix synthesis/
turnover [120, 121]

Saquinavir (protease inhibitor) NF-κB/IκBα [122, 123]

TRPC6 siRNA Ca2+ levels, actin cytoskeleton rearrangement [107–110]

Ig, Immunoglobulin; TGF-β, transforming growth factor beta, MAnNAc, N-acetyl-D-mannosamine; protein
kinase C beta; TRPC6, transient receptor potential cation channel, subfamily C, member 6; siRNA, small
interfering RNA; Angptl 4, angiopoietin-like 4; NF-κB/IκBα, nuclear factor kappa-light-chain-enhancer of
activated B cells/inhibitor of kappa B
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induces glomerular disease [108]. In humans gain-of-function
mutations in TRPC6 have been associated with familial forms
of FSGS [109]. Novel therapeutic options might involve small
interfering RNAs (siRNAs) coupled with a podocyte-specific
delivery system. ATRPC6 siRNA coupled with a sheep anti-
mouse podocyte antibody has already been shown to reduce
TRPC6 protein expression in podocytes: the IgG–siRNA
complex was endocytosed into the podocyte and interfered
with protein expression [110]. To date, there has been no clin-
ical trial with TRPC6 siRNA.

Anti-transforming growth factor beta therapy

Transforming growth factor beta-1 (TGF-β1) and Smad7 in-
duce apoptosis in podocytes through different downstream
pathways leading to podocyte depletion and progressive
glomerulosclerosis [111]. In recent years case reports have
shown a reduction of proteinuria in patients receiving anti-
TGF-β therapy. TNF-α blockade was successfully used to
treat nephrotic syndrome in a patient with AA amyloid due
to TNF receptor-associated periodic syndrome [112], and
complete reversal of nephrotic syndrome secondary to amy-
loidosis was observed in a patient with inflammatory bowel
disease and ankylosing spondylitis after treatment with
infliximab (anti-TNF-α antibody) [113]. In a small study with
15 patients with renal amyloidosis, anti-TNF therapy had pos-
itive effects on the reduction of proteinuria in some patients
[114]. Alternatively, Stokes et al. reported five patients with
long-term rheumatoid arthritis who developed new-onset glo-
merular disease while receiving TNF-α antagonist. The au-
thors suggested an induction of rheumatoid arthritis-related
nephropathy or de novo autoimmune disorders due to the
anti-TNF therapy [115].

The aim of a phase II trial carried out between 2008 and
2014 was to test whether adalimumab and/or galactose can
safely reduce proteinuria and protect kidney function better
than standard treatment for patients with FSGS (https://
clinicaltrials.gov/ct2/show/ NCT00814255). The study has
been completed, but the results are not yet available.

Oral N-acetyl-D-mannosamine

Sialic acids are essential for a variety of cellular functions, in-
cluding cell adhesion and signal recognition as well as the for-
mation and progression of tumors. Disruption of sialic acids can
result in severe proteinuria.N-acetyl-D-mannosamine (ManNAc)
is the precursor of all physiological sialic acids. The discovery of
a central, mechanistic role played by two different forms of
angiopoietin-like 4 (Angptl 4) in human and experimental glo-
merular disease has opened new treatment avenues. Localized
upregulation of a hyposialylated form of glycoprotein Angptl 4
secreted by podocytes induces the cardinal features of human
MCD, suggesting that glycoprotein Angptl 4 upregulation is a

significant contributor toward proteinuria in experimental diabet-
ic nephropathy. Oral treatment with ManNAc improves
sialylation of Angptl 4 in vivo and reduces proteinuria by over
40% [116]. Oral ManNAc is currently being tested in two phase
I clinical trial for the treatment of the rare disorder distal myop-
athy with rimmed vacuoles–hereditary inclusion bodymyopathy
(http://clinicaltrials.gov/NCT01236898 and NCT01359319)
[117]. To our knowledge, there is no ongoing study involving
ManNAc in patients with glomerular disease.

Isoform-specific protein kinase C inhibitors

Among various podocyte kinases, proper protein kinase C
(PKC) signalling plays a critical role in podocyte function.
Where some PKC isoforms are indispensable for proper glo-
merular development, others might be harmful to the glomer-
ulus when activated in diabetes [118]. Moreover, a combined
deletion of atypical PKC-λ/ι and atypical PKC-ζ isoforms in
podocytes is associated with incorrectly positioned centro-
somes and Golgi apparatus and mis-localized molecules of
the slit diaphragm, leading to proteinuria [14]. Menne et al.
reported that diabetic PKC-α isoform-null mice are resistant
to albuminuria and glomerular upregulation of the VEGF sys-
tem [119].

The lack of PKC-β can provide protection against diabetes-
induced renal hypertrophy and glomerular hyperfiltration.
[120]. The ability of isoform-specific PKC inhibitors to antag-
onize diabetes-induced glomerulonephropathy might be a new
avenue for future therapeutic options. A selective PKC-β in-
hibitor (ruboxistaurin) has been used in clinical trials to deter-
mine its efficacy in diabetic macular edema, retinopathy, neu-
ropathy, nephropathy and endothelial dysfunction in patients
with type I or type II diabetes. The results of a phase II clinical
trial suggest that ruboxistaurin can decrease the loss of glomer-
ular filtration rate and proteinuria in diabetic patients who are
already receiving as therapy the optimal RAAS blockade [121].

Protease inhibitors

It has been suggested that alterations in the NF-κB (nuclear
factor kappa-light-chain-enhancer of activated B cells)/IκBα
(inhibitor of kappa B) regulatory feedback loop contribute to
immunologic abnormalities observed in MCD [122]. NF-κB
is centrally regulated by the proteasome. Saquinavir is a pro-
tease inhibitor usually used to treat human immunodeficiency
virus. In a small case series of patients with steroid-dependent
and steroid-resistant nephrotic syndrome, the addition of sa-
quinavir to therapy with other immunosuppressive drugs re-
duced proteinuria and had a steroid-sparing effect [123]. The-
se results give hope to a new management strategy for ne-
phrotic patients.
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Conclusions

For years nephrologists have successfully used immunosup-
pressive therapy for the treatment of glomerular diseases,
based on the rationale that many glomerular diseases are au-
toimmune-mediated. However, recent research has revealed
that many of these drugs have direct effects on the
podocyte - mostly through alterations of the actin cytoskele-
ton. Figures 1 and 2 summarize our current understanding of
how drugs directly act on podocytes and inform the affected
downstream signalling pathways. This information is of spe-
cial importance because in some cases podocyte injury can be
reversible, and the actin cytoskeleton has the ability to reorga-
nize and restore interdigitating foot processes and recycle slit
diaphragm proteins back to the cell surface.

The roles of the mTOR and the VEGF signalling pathways
in this context are controversial. It now appears that both path-
ways require a fine-tuned, balanced baseline activation to
maintain glomerular physiology. Thus, the question of wheth-
er parts of these signalling cascades can be safely targeted, and
if so which parts, remains to be answered.

A close crosstalk between researchers and clinicians is of
particular importance for the development of novel podocyte-
specific drugs and for the identification of podocyte-specific
drug targets in addition to those already widely used to treat
glomerular disease, with the aim to minimize the general side
effects of therapy in our patients.

Key points

1. A crucial structure for podocyte maintenance is the actin
cytoskeleton.

2. It is apparent that many of the drugs currently used to treat
glomerular diseases have direct effects on the podocytes
and their cytoskeleton, but are still not podocyte-specific.

3. Some drugs have direct side effects on podocytes, causing
proteinuria and loss of podocytes from the GBM.

4. The discovery of novel genes and signalling pathways
involved in glomerular diseases will facilitate the future
development of podocyte-specific drugs.

Multiple choice questions (answers are provided
following the reference list)

1. Which of the following answers is correct

a) The mTOR pathway is inactivated in diabetes.
b) mTOR inhibitors can induce proteinuria.
c) mTOR inhibitors have only immune modulatory

functions.

d) mTOR inhibitors bind to special receptors on the
podocyte surface.

2. Which of the following proteins is neither a unit of the
podocyte cytoskeleton nor has a direct interaction with it?

a) Actin
b) Synaptopodin
c) ZO-1
d) Nephrin

3. Which of the following is a podocyte-specific drug?

a) Cyclosporine
b) Prednisolone
c) Rituximab
d) mTOR inhibitors
e) None of the above

4. Which of the following statements is correct

a) Human podocytes express CD20.
b) Human podocytes do not express the angiotensin II

type 1 receptor
c) Human podocytes express the glucocorticoid receptor
d) Human podocytes express the abatacept-binding

partner under physiological conditions.
5. Which statement is correct?

a) VEGF inhibitors only have renal side effects on the
glomerular endothelium

b) Bevacizumab has a protective effect on podocytes
c) VEGF inhibitors can lead to foot process effacement
d) VEGF receptors are only expressed on glomerular

endothelial cells
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