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Abstract It is currently postulated that steroid-sensitive idio-
pathic nephrotic syndrome (SSNS) and steroid-resistant idio-
pathic nephrotic syndrome (SRNS), which are not related to
the mutation of a gene coding for podocyte structures or for
glomerular basement membrane proteins, result from a circu-
lating factor affecting podocyte shape and function. T lym-
phocytes have for a long time been suspected to be involved
in the pathophysiology of these diseases. The successful treat-
ment of steroid-dependant nephrotic syndrome with rituximab
suggests a potential role for B lymphocytes. Clinical and ex-
perimental data indicate roles for cytokines IL-13, TNF «, cir-
culating cardiotrophin-like cytokine factor 1 (member of the
IL-6 family), circulating hemopexin, radical oxygen species,
and the soluble urokinase-type plasminogen activator receptor
(suPAR) in the development of nephrotic syndrome. Podocyte
metabolism modifications—Ieading to the overexpression of
the podocyte B7-1lantigen (CD 80), hypoactivity of the
podocyte enzyme sphingomyelin phosphodiesterase acid-like
3 b (SMPDL3b), and to the podocyte production of a
hyposialylated form of the angiopoietin-like 4 (Angptl4)—
are mechanisms possibly involved in the changes in the
podocyte cytoskeleton leading to SSNS and or SRNS. Differ-
ent multifactorial pathophysiological mechanisms can be ad-
vocated for SSNS and SRNS. The present paper reviews the
experimental and clinical data upon which the different hy-
potheses are based and reports their possible clinical
applications.

P4 Jean-Claude Davin
j.c.davin@amc.uva.nl

Emma Children’s Hospital/ Academic Medical Centre, University of
Amsterdam, Amsterdam, The Netherlands

Queen Fabiola Academic Children’s Hospital, Free University of
Brussels, Brussels, Belgium

Pediatric Nephrology Department, Emma Children’s Hospital/
Academic Medical Centre, Meibergdreef 9, 1105
AZ Amsterdam, The Netherlands

Keywords Circulating factors - Podocyte - Nephrotic
syndrome - Glomerular permeability factors - Proteinuria

Introduction

Idiopathic nephrotic syndrome (INS) is the most frequent
form of NS in children, representing more than 90 % of cases
between 1 and 10 years of age and 50 % after 10 years of age
[1]. INS is defined by the association of the clinical features of
NS with renal biopsy findings of diffuse foot process efface-
ment on electron microscopy and minimal changes (also
called minimal change disease (MCD), or focal segmental
glomerulosclerosis (FSGS), or diffuse mesangial proliferation
(DMP) on light microscopy [2]. Most patients have histologic
findings of MCD. The response to steroid therapy (steroid-
sensitive nephrotic syndrome [SSNS] versus steroid-resistant
nephrotic syndrome [SRNS]) is of higher prognostic signifi-
cance than histologic features seen on initial renal biopsy [3].
Overall, the renal outcome of children with steroid-dependent
NS is excellent as long as patients remain steroid responsive
[3]. Despite a favorable long-term outcome, adverse effects of
treatment contribute to inferior quality of life of children and
their families in case of SSNS [4]. The vast majority of pa-
tients with MCD (>90 %) respond to glucocorticoid therapy,
whereas only 50 % of those with DMP and 30 % of those with
FSGS are expected to do so [5]. Contrary to SSNS, SRNS
leads to chronic kidney disease (CKD) and end-stage renal
failure (ESRF) in about 50 % of patients [6, 7]. In a recent
study, a single-gene cause was found in 29.5 % of cases of
SRNS [8]. Within clinically relevant age groups, the fraction
of families with detection of the single-gene cause was as
follows: onset in the first 3 months of life (69.4 %), between
4 and 12 months old (49.7 %), between 1 and 6 years old
(25.3 %), between 7 and 12 years old (17.8 %), and between
13 and 18 years old (10.8 %) [8].

In a cohort of sporadic SRNS (exhibiting no extra-renal
symptoms, no familial history of the disease or consanguinity,
and no congenital onset) a genetic cause was found in 32.3 %
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of the children with SRNS versus 0 % in 38 children with
SSNS used as controls [9]. In the same study, genetic alter-
ations were also associated with response to immunosuppres-
sive agents in children with SRNS (0 % of patients with alter-
ations responded versus 57.9 % of patients without alter-
ations) [9]. Amazingly, however, some patients presenting
with a mutation are steroid sensitive [10] or improve under
cyclosporine [11, 12]. This apparently paradoxical response to
cyclosporine might be attributed to the stabilization of the
podocyte cytoskeleton by this compound [13].

Evidence of a circulating factor in INS

The pathophysiological role of a circulating factor affecting the
podocyte structure and function is mainly supported by the
following observations: (1) nephrotic proteinuria healed spon-
taneously in a few days in a child born from a mother with
FSGS and nephrotic syndrome [14]; (2) the successful trans-
plantation in a diabetic patient of a graft removed from a
transplanted FSGS recipient because of intractable recurrence
of massive proteinuria and renal insufficiency [15]; (3) the per-
fusion of isolated rat glomeruli with plasma of patients with
FSGS induces an increased glomerular capillary permeability
to albumin as compared to normal control plasma [16]; (4) after
kidney transplantation of an organ from a donor without the
disease, approximately 30 % of patients with FSGS develop
massive proteinuria within hours to days after transplantation
followed later on by FSGS histological lesions [17]; (5) some
of those patients are successfully treated with plasma exchange
when applied early [17]; (6) preemptive plasmapheresis re-
duces the risk of FSGS recurrence after transplantation [18].

The vast majority of recurrences are not associated with
mutations. Although exceptional, relapses of nephrotic syn-
drome after transplantation in some patients with mutations
have been described (for a review, see 12). Some of them
might be attributed to auto-antibodies directed to the neo-
antigen constituted by the proteins of transplanted podocytes
as in the case of defects for NPHS! gene [19]. However, this
hypothesis is not applicable in case of recurrence when muta-
tions concern antigens “hidden” within the cytoskeleton as
podocin or actinin 4 [12].

Immune response and permeability factors

Research on immunological causes of INS is complicated by
the need to observe homogeneous patients groups, which is
often not the case since the duration of proteinuria varies at the
time of presentation and some patients may have already
started treatment. Hyperlipidemia, which is a common com-
plication, might modulate the immune system [20]. Those
pitfalls may explain at least partly the discrepancies observed
between the data of different studies.
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The role of the immune system in the pathophysiology of
INS has been suspected for decades. This hypothesis was
suggested by the response to immunosuppressive drugs and
the association with Hodgkin’s disease and with allergies [21].
Many reports have been published on patients who developed
NS after having experienced allergic reactions to inhaled or
ingested allergens after vaccinations and insect stings. Fur-
thermore, the incidence of atopy was reported higher in pa-
tients with INS than in healthy subjects, ranging from 17 to
40 % in MCD patients compared with 10-23 % in age-
matched control subjects (for a review, see 22). Allergies are
associated with an elevated production of IgE by B-lympho-
cytes, and several investigators have reported an elevation of
IgE in the serum of NS patients (for a review, see 22).

T cells

The first experimental evidence suggesting a pathophysiolog-
ical role of lymphocytes in INS was reported by Lagrue and
co-workers in 1975 who showed that the supernatant of lym-
phocytes from patients with MCD stimulated in vitro by con-
canavalin A contains a factor that modifies the vascular per-
meability [23].

CD8-positive T cells of INS patients are clonally ex-
panded, which is not observed in healthy controls [24].
High levels of NF-xB (nuclear factor kKB) DNA-binding
activity are observed in T cells from untreated MCD pa-
tients during relapse compared with the MCD patients in
remission while treated with immunosuppressants [25]. In
one in vitro study, T cells produced interleukin IL-13 spon-
taneously, and B cells constitutively expressed IL-13 re-
ceptors (IL-13R) [26]. In addition, T cells stimulated sur-
face IgE-negative (sIgE-) and sIgG4- B cells to produce
IgE and IgG4, respectively, and IgE and 1gG4 production
was specifically blocked by anti-IL-13 antibody [26]. An
elevated expression of IL-13 mRNA was also shown [27].
Van de Berg and Weening [22] have studied, by quantita-
tive real-time PCR, the expression of IL-13, IL-1ra (IL-1
receptor antagonist), IL-2, 1L-4, IL-5, IL-9, IL-10, IL-13,
TNF-a, and IFN-y by PBMC from patients with MCD
during relapse and remission and from a control group of
patients with NS primarily caused by endogenous alter-
ations within the glomerular filter, for instance, mutations
in the genes encoding nephrin and podocin. Out of the
cytokines studied, only the expression of IL-10 and IL-13
mRNA was significantly up-regulated in relapsing MCD
patients when compared with MCD patients in remission.
The latter authors and others (for a review, see 22) have
shown that podocytes constitutively express functional
trans-membrane receptor complexes for IL-4, IL-10, IL-
13, and TNF-a. The possible role of IL-13 is also sug-
gested by a rat model of NS [28]. IL-13 was overexpressed
in Wistar rats through transfection of a mammalian
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expression vector cloned with the rat IL-13 gene. The IL-
13-transfected rats showed significant albuminuria, hypo-
albuminemia, and hypercholesterolemia. No significant
histologic changes were seen in glomeruli. However, elec-
tron microscopy showed up to 80 % of podocyte’s foot
process fusion. Glomerular gene expression was signifi-
cantly up-regulated for CD80, IL 4R, and IL13R and
downregulated for nephrin, podocin, and dystroglycan. Im-
munofluorescence staining intensity was reduced for
nephrin, podocin, and dystroglycan [28].

Because of the pathogenetic role of IL-13 in asthma
and the induction of glomerular CD80 gene expression
in an IL-13 induced experimental model of proteinuria,
it has been suggested that the relation between allergy
and INS could be the stimulation by IL-13 of the expres-
sion of CD80 on fragile podocytes [29]. Urinary CD80
levels are increased in patients with MCD during relapse
and return to normal after remission [30]. Evidence that
the source of the CD80 is the podocyte was suggested by
the finding that CD80 was expressed by podocytes in
kidney biopsy specimens from patients with MCD in re-
lapse and that urinary CD80 molecular weight was com-
patible with a podocyte origin [30].

TNF alpha is secreted by T cells and other types of
leucocytes. The successful treatment of SRNS on native kid-
ney or of SRNS relapse after kidney transplantation with anti-
TNF« antibodies strongly suggests that TNF« participates to
the pathogenesis of some types of INS [31, 32]. This hypoth-
esis is also supported by high blood levels of TNFa in patients
with active disease, normalizing with remission and by an
animal model of NS that is controlled by anti-TNF« agents
(for a review, see 31, 32). Bitzan et al. have shown that
podocyte [33-integrin can be activated by plasma from patients
with FSGS recurrence and this activation could be reversed by
blocking the TNF-« pathway [33].

B cells

The beneficial treatment by rituximab, a monoclonal antibody
directed against CD20, in difficult SSNSs suggests a patho-
physiological role for B cells [34-37]. A recent systematic
review of 39 reported cases (from whom 19 were pediatric)
of FSGS recurrence on kidney transplant treated with rituxi-
mab showed that complete remission occurred in 43.5 % of
patients [38]. Multivariate analysis revealed that normal serum
albumin at FSGS recurrence and lower age at transplant were
associated with response [38]. B cells may be involved
through an unidentified antibody-independent pathway,
which might be a control on T cells [39]. However, B cells
might act more directly. Indeed, observations of MCD in pa-
thologies associated with monoclonal light chains highly sug-
gest a potential implication of immunoglobulins and/or of
defective machinery leading to abnormal immunoglobulins

[40]. Other arguments for a B cell role are: the detection of
immunoglobulin in glomeruli from half the patients (for re-
view, see 41), the prevention of relapses during B cell deple-
tion in a majority of patients treated with rituximab [36, 37],
the concept of I[gM nephropathy and the demonstration in a
subgroup of patients with INS of circulating antibodies
against actin, a major molecule of a podocyte’s cytoskel-
eton [42]. A significant association of HLA-DQAI1 (a
MHC class II) missense coding variants with SSNS re-
cently brought a confirmation of the possible role of an
immune response and of the implication of B cells in the
pathogenesis of this disease [43].

Circulating cardiotrophin-like cytokine factor 1

The group of Virginia Savin in US has studied and character-
ized the circulating factor in FSGS by analyzing the plasma of
patients presenting with a post-transplant relapse (for a review,
see 16). Those studies are based on standard methods of bio-
chemical purification and analyses of molecular characteris-
tics followed by gel electrophoresis and mass spectrometry.
They have used a functional assay of permeability activity
with isolated rat glomeruli that shows changes in the glomer-
ular capillary permeability to albumin after incubation with
the patient plasma or serum. This assay has made it possible
to perform sequential purification steps and select fraction(s)
with enhanced activity. They have shown that the focal scle-
rosis permeability factor (FSPF) resides in a 30- to 50-kDa
plasma fraction. Using galactose as an effective affinity mate-
rial to enrich activity of FSGS plasma, they reported that
cardiotrophin-like cytokine factor 1 (CLC-1; encoded by
CLCF1I), a member of the interleukin 6 family, is present in
this enriched fraction of FSGS plasma. CLC-1 increases glo-
merular Palb and its injection causes proteinuria in rats. How-
ever, those experiments do not exclude the involvement of
other galactose-binding permeability factors. Interestingly,
CLC-1, may be obtained from activated T cells in vitro and
is able to stimulate B cells [44]. Those authors hypothesized
that galactose administered orally or intravenously at an early
stage might prevent the development of CKD in patients with
FSGS by impeding the binding of the circulating factor on
galactose residues present at the surface of podocytes [45,
46]. The therapeutic use of galactose is actually under inves-
tigation in clinical trials [47]. A pilot study on this topic was
recently published [48]. Seven pediatric subjects with idio-
pathic SRNS and positive FSPF activity were treated with oral
galactose (0.2 g/kg/dose twice daily) for 16 weeks [48]. The
treatment induced a reduction of FSPF activity but not of
proteinuria. It has been argued that this lack of response might
have been due to the already constituted FSGS lesions at the
moment of treatment and that galactose is expected to be pro-
tective only in an early phase of the disease [49].
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Radical oxygen species (ROS)

Some experimental models of NS are obtained using sub-
stances as puromycin and adriamycin that induce oxidative
stress in glomeruli (for a review, see 50). Furthermore, the
injection of H,O, induces proteinuria in rats and NO prevents
the increase of permeability to albumin induced by the TNF
alpha-induced O,- production in an isolated rat glomeruli sys-
tem [51]. Active FSGS is associated with massive oxidation of
plasma albumin [50]. Bertelli et al. [52] demonstrated a ten-
fold increase of ROS production by resting PMN from INS
patients compared to normal PMN. Those authors have also
shown that the oxidative burst by PMN was regulated high-
ly by T lymphocytes, mainly Tregs, by means of soluble
factors and that this regulatory circuit was altered in INS
[52].

Hemopexin

It has been shown that nephrotic plasma alters a slit
diaphragm-dependent signaling and translocates nephrin,
podocin, and CD2 associated protein in cultured human
podocytes [53]. This alteration might be due to hemopexin
(Hx) [54]. Hx is a heme-scavenging protein. It is predominant-
ly produced in the liver, and it increases in the acute phase
reaction to inflammation or infection. Plasma-purified and
recombinant Hx has been shown to have serine protease ac-
tivity [54]. It has been suggested that in normal conditions,
circulating Hx is inactive but under certain circumstances Hx
becomes activated as a serine protease [54]. Activated Hx has
been shown to have dramatic effects on the glomerular filtra-
tion barrier. Kidney sections incubated with Hx have a reduc-
tion of the anionic layer and of sialoglycoproteins [55].
In vivo, activated Hx induced reversible proteinuria in rats
parallel to podocyte foot process effacement [54]. Activated
hemopexin is increased in children during MCD relapses [54].
After in vitro treatment with hemopexin, actin reorganized
from stress fibers to cytoplasmic aggregates and membrane
ruffles in wild-type podocytes [55]. This process is nephrin-
dependent since it did not occur in nephrin-deficient
podocytes and in cells that do not express nephrin and was
inhibited by preincubation with normal human plasma. In ad-
dition, hemopexin led to a selective increase in the passage of
albumin across monolayers of glomerular endothelial cells
and to a reduction in glycocalyx [55]. What remains to be
elucidated is the primary events leading to the activation
of Hx. A possibility resides in the inhibition of Hx inhib-
itors or in their leakage in urine. In the latter case, Hx
activation should be only a secondary event depending on
the increased permeability of the glomerular filtration bar-
rier to proteins.
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Soluble urokinase-type plasminogen activator
receptor (su-PAR)

The eventual role of urokinase-type plasminogen activator
receptor (UPAR) in its soluble form (suPAR) in the pathogen-
esis of FSGS in human is actually in the center of a debate
between scientists. A review on this topic has been recently
published in Pediatric Nephrology [56].

The initializing event of FSGS seems to be the migration
along the glomerular basement membrane and the detachment
of podocytes. uPAR has a role in the migration of activated T
lymphocytes, monocytes, and neutrophils to sites of inflam-
mation (for a review, see 56). Overexpression of uPAR is
associated with disease progression in malignancies (see 56).
Those observations led to setting up experimental models of
FSGS using suPAR.

The biochemical features of uPAR are as follows [56]:
glycosylphosphatidylinositol (GPI)-anchored membrane gly-
coprotein; consists of three homologous domains (DI, DII and
DIII), which are encoded in PLAUR gene; molecular mass
between 35 and 60 kDa depending on the glycosylated state,
whereas suPAR molecular weight ranges from 20 to 50 kD. Of
importance, those MW ranges are similar to that found for the
FSPF by the group of Savin [16].

Podocyte foot processes contain an actin-based cytoskele-
ton that is linked to the vitronectin molecules of the glomeru-
lar basement membrane by a3B1 and avl33 integrin, which
bind to vitronectin (for a review, see 56). The stimulation of
integrins induces intracellular processes leading to modifica-
tions of the actin cytoskeleton. Podocyte’s uPAR binds to
integrin and to vitronectin. In podocyte cultures and murine
models, uPAR was shown to cause vitronectin-dependent
av33-integrin activation [57].

The hypothesis that suPAR induces FSGS in mice is
sustained by the fact that high-dose recombinant mouse
suPARI-III induced proteinuria in PLAUR knockout mice
(missing suPAR), indicating that circulating suPAR may acti-
vate (33-integrin independent of uPAR [57].

Indirect experimental observations using the plasma of pa-
tients with FSGS suggest the pathogenetic role of suPAR in
humans also (for a review, see 56).

Increased activation of (33-integrin was observed when dif-
ferentiated podocytes were exposed to sera from patients with
recurrent FSGS. Podocyte 33-integrin activation was reduced
when sera from patients with complete proteinuria remission
after plasmapheresis were used, and it was blocked by anti-
bodies against uPAR and by a (33-integrin inhibitor. Increased
[33-integrin activation was also observed in the glomeruli of
patients with primary FSGS in their native or transplant kid-
ney, compared to controls with minimal change disease or
membranous nephropathy.

Two studies suggested that serum suPAR was significantly
increased in patients with FSGS as compared to patients with
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other glomerular diseases inclusively MCD [58, 59], Impor-
tantly, in those two studies, the serum suPAR data were not
corrected for eGFR and several other studies failed to show
any difference between suPAR in FSGS and controls when
suPAR values were corrected for GFR [50-64].

In conclusion, taken together, the data obtained in clinical
studies are challenging the experimental data in mice and in
experiments testing the effect of plasma of patients with FSGS
on human podocytes in vitro. It is actually doubtful that
suPAR plays a pathophysiological role in human FSGS. Some
authors, however, suggest that the different domains of suPAR
and the differently glycosylated suPAR molecules might not
present the same functional characteristics [56, 65]. Therefore
further studies should be initiated using assays discerning the
different circulating forms of suPAR in various glomerular
pathological conditions [65, 66].

Some podocyte’s mechanisms possibly targeted
by circulating factors in INS

Podocyte B7-1 (CD80)

The expression of B7-1 (also named CD80) on podocytes in
experimental models [67] and in human MCD relapses [30] is
associated with the development of proteinuria.

CD80 is a trans-membrane protein expressed on the surface
of B cells and other antigen-presenting cells (APC). Toll-like
receptor 3 (TLR3) ligands induce CD80 expression in human
podocytes via an NF-kappaB-dependent pathway [68]. The
expression of podocyte CD80 induced by LPS in vitro
through binding to TLR4 is associated with actin reorganiza-
tion and shape change [67]. Viral products might also stimu-
late CD80 expression on podocytes. The incubation in vitro of
human podocytes with polyIC (polyinosinic-polycytidylic ac-
id, a TLR3 ligand that mimics viral RNA), increases the
podocyte expression of TLR3, CD80, and cathepsin L, de-
creases the expression of synaptopodin, and results in actin
reorganization [68]. In vivo polylC induces proteinuria, glo-
merular CD80 expression, and increased urinary CD80 in
mice [69].

CD80 expression on dendritic cells is inhibited by cytotox-
ic T-lymphocyte-associated-protein 4 (CTLA-4) and IL-10,
which are produced by T regulatory (Treg) cells [70, 71].
CTLA-4 and IL-10 are also produced by podocytes [72].

The expression of CD80 on podocytes, resulting in modi-
fying the podocyte’s cytoskeleton and shape leading to pro-
teinuria, might be a physiological phenomenon aiming to in-
crease the clearance of antigens during infectious or allergic
episodes [73]. The pathophysiological hypothesis of a defect
in the control of the expression of CD80 has been formulated
as follows [72]: under normal circumstances, CD80 expres-
sion is only transiently expressed after a triggering event and

proteinuria is minimal due to rapid auto-regulatory response
by circulating Treg cells or by the podocyte itself, leading to
the expression of factors as CTLA-4 that downregulate the
podocyte CD80 response [72]. Low circulating CTLA-4 dur-
ing relapses [74] and the predominance of some CTLA-4
genotypes in INS [75, 76] indirectly support that hypothesis.

CD80 has been proposed to be used for differential diag-
nosis between MCD and FSGS [59]. Unfortunately, this
seems to be difficult in the light of the results presented [59].
Indeed although the mean-+— SD of urinary CD80 is higher in
MCD in relapse than in FSGS (»<0.001), the mean+— SD of
urinary CD80 is higher in FSGS than in controls (p=0.003)
and there is an overlap between the lower values of MCD in
relapse and the higher values of FSGS [59]. This questions
the cutoff value to be used to make this differentiation.
Furthermore, the pathophysiological role of CDS80 in
FSGS is not excluded, since the use of abatacept
(CTLA-4-Ig) has been shown to reduce substantially pro-
teinuria in FSGS [77].

Sphingomyelin phosphodiesterase acid-like
3 b (SMPDL3b)

The discovery that glucocerebrides accumulation in glomeru-
lar cells of patients with Gaucher disease resulting in protein-
uria raised the interest for the eventual role of sphingolipids in
glomerular disease. Sphingolipids are components of the lipid
rafts in plasma membranes that are partially associated with
nephrin in podocytes. It has been shown that sphingolipid
accumulation occurs in several glomerular conditions such
as diabetes nephropathy, Lupus nephritis, and FSGS (for a
review, see 78). The expression of SMPDL3Db, an enzyme that
modulates sphingomyelinase activity in podocytes has been
shown to be reduced in FSGS (for a review, see 78).

V33 integrin activation occurs in association with de-
creased podocyte-specific expression of SMPDL3b in kidney
biopsy specimens from patients with FSGS. In vitro experi-
ments suggest that the physiological role of SMPDL3b should
regulate B3 integrin activation and prevent podocytes from
migration, possibly by interaction with suPAR. Fornoni et al.
suggest that targeting SMPDL3Db expression in podocyte may
prove beneficial in the treatment of FSGS. Those authors have
shown that rituximab treatment at the moment of transplanta-
tion was associated with lower incidence of post-transplant
proteinuria and stabilization of the glomerular filtration rate
[79]. In this study, rituximab partially prevented SMPDL-3b
down-regulation that was observed in podocytes treated with
the sera of patients with recurrent FSGS. Those authors sug-
gest that treatment of high-risk patients with rituximab at the
time of kidney transplant might prevent recurrent FSGS by
modulating podocyte function in an SMPDL-3b-dependent
manner [79].
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Angiopoietin-like 4 (Angptl4)

Initial studies revealed increased podocyte expression of
Angptl4 in human and experimental MCD, transient up-
regulation after the onset of proteinuria in experimental mem-
branous nephropathy (MN), and no change in podocyte ex-
pression in non-HIV collapsing glomerulopathy (CG) and
FSGS [80]. Further investigation revealed two types of
Angptl4 protein in NS: (a) a hyposialylated form secreted
from podocytes in MCD [80, 81]; (b) a neutral p/ sialylated
form of Angptl4 is increased in the circulation of patients with
MCD, MN, FSGS, and CG [82]. Most of this sialylated
protein is secreted from skeletal muscle, heart, and adi-
pose tissue when proteinuria reaches nephrotic range in an
attempt to reduce proteinuria through glomerular endothe-
lial binding; it induces also hypertriglyceridemia via inhi-
bition of lipoprotein lipase (LPL). It is also clear that
podocyte-secreted hyposialylated Angptl4 mediates pro-
teinuria in MCD [80, 81]. The effects of hyposialylated
Angptl4 are most likely related to its binding to the GBM
[80] or to endothelial cells [82]. Those data have led to
further studies that reveal that modification of the soluble
Angptl4 sialylation or changing key amino acids in its
sequence can be successfully used to treat proteinuria
[83].

If circulating factors might induce podocyte structure and
function abnormalities leading to NS, the primary cause of NS
might also be related to an abnormal response of podocytes to
common triggering events.

Conclusions

The attempts to characterize a circulating factor responsi-
ble for INS resulted in the identification of several differ-
ent molecules that can play a role in FSGS or in MCD.
However, the primary event remains to be identified and a
multifactorial mechanism is probable. Research on the
causes of INS has to be continued with several aims: (1)
to distinguish at an early stage SSNS from SRNS to avoid
useless and toxic steroid therapy; (2) to detect FSGS re-
lapses after transplantation at time in order to start plasma
exchange before the formation of definitive glomerular
lesions; (3) to set up new treatments aimed to antagonize
or to prevent the secretion of the causal agent; (4) future
studies should also focus on intrinsic podocytes features
which should make the cells more vulnerable to external
triggers.

Experimental and clinical studies should be done in the
frame of an international multicenter network to avoid possi-
ble bias related to the technique used and the selection of
patients and controls.
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Key points

1. The pathophysiological role of (a) circulating factor(s) in
MCD and FSGS has been suggested by numerous clinical
and experimental observations.

2. Tand B cells are highly suspected to play a key role in the
pathophysiology of MCD- and FSGS-associated nephrot-
ic syndrome.

3. Several molecules have been shown to be able to modify
the shape and the proprieties of podocytes and to provoke
proteinuria in experimental conditions.

Indirect evidence exists to suspect the role of some of
the latter molecules in the pathophysiology of MCD- and
FSGS, however none of them has been identified as the
unique primary cause.

4. The pathophysiology of MCD and FSGS probably results
from different mechanisms, which could be multifactorial
for both diseases.

5. A primary intrinsic dysregulation of the podocyte’s me-
tabolism rending the cell more sensible to external triggers
has been advocated recently.

6. FSGS recurrence after transplantation may be prevented
by pre-emptive plasma exchange. Recurrence of the dis-
ease after transplantation may be successfully treated by
plasma exchange when applied early.

Questions (answers are provided following
the reference list)

1. A relapse of nephrotic syndrome after kidney transplantation
is:

A. never observed in case of SRNS related to a mutation
of a gene coding for a podocyte’ s protein.

B. observed in all cases of FSGS not related with a mu-
tation of a gene coding for a podocyte’s protein.

C. often observed in case of FSGS not related with a
mutation of a gene coding for a podocyte’s protein
and never observed when such a mutation is present.

D. often observed in case of FSGS not related with a
mutation of a gene coding for a podocyte’s protein
and rarely observed when such a mutation is present.

2. The molecular weight of the focal sclerosis permeability
factor (FSPF) is situated:

A. between 30 and 50 kDa

B. between 50 and 180 kDa

C. above 180 kDa

D. under 30 kDa

3. Recurrence of massive proteinuria after renal transplant
for SRNS and FSGS:

A. may be prevented by pre-emptive plasma exchange

B. is not reversible even when treated early by plasma
exchange

C. is always reversible under rituximab treatment
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D. isreversible after plasma exchange even when histo-
logical lesions are already present
4. The soluble urokinase-type plasminogen activator recep-
tor (su-PAR) has been shown:
to have a molecular weight superior to the FSPF
not to be able to induce proteinuria in mouse
to be increased in blood of patients with FSGS only
to be consistently correlated with the degree of pro-
teinuria in the diseases studied
E. tobeinversely correlated with eGFR and most prob-
ably to be the consequence of a reduced clearance
5. What is the parameter which should be able to differenti-
ate with certainty MCD- from FSGS-associated nephrotic
syndrome at an early stage?
urinary CD80
serum suPAR
serum suPAR corrected for eGFR
serum suPAR/urinary CD80 ratio
none of them

SEeE-I-=
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